
Noname manuscript No.
(will be inserted by the editor)

On Construction of a Library of
Formally Verified Low-level Arithmetic Functions

Reynald Affeldt

the date of receipt and acceptance should be inserted later

Abstract Arithmetic functions are used in many im-

portant computer programs such as computer algebra

systems and cryptographic software. The latter are crit-

ical applications whose correct implementation deserves

to be formally guaranteed. They are also computation-

intensive applications, so that programmers often re-

sort to low-level assembly code to implement arithmetic

functions. We propose an approach for the construc-

tion of a library of formally verified low-level arithmetic

functions. To build our library, we first introduce a for-

malization of data structures for signed multi-precision

arithmetic in low-level programs. We use this formal-

ization to verify the implementation of several prim-

itive arithmetic functions using Separation logic, an

extension of Hoare logic to deal with pointers. Since

this direct style of formal verification leads to techni-

cally involved specifications, we also propose for larger

functions to show a formal simulation relation between

pseudo-code and assembly. This style of verification is

illustrated with a concrete implementation of the binary

extended gcd algorithm.

1 Introduction

Arithmetic functions are used in many important com-

puter programs such as computer algebra systems and

cryptographic software. The latter are critical appli-

cations whose correct implementation deserves to be

To appear in 2013 in Innovations in Systems and Software En-
gineering, Nasa/Springer. A preliminary version of this work
appeared in the proceedings of the 27th ACM SIGAPP Sym-
posium On Applied Computing (SAC 2012), Software Verifi-
cation and Testing Track [3].

National Institute of Advanced Industrial Science and Tech-
nology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, Japan

formally guaranteed. For example, formal verification

of arithmetic functions is a prerequisite to firmly as-

sess the security properties of cryptographic software.

Programs using arithmetic functions also turn out to

be computation-intensive, so that in practice program-

mers often resort to low-level assembly code to imple-

ment arithmetic functions. For example, the good per-

formance of the GNU Multi-Precision Arithmetic Li-

brary [31] comes mostly from its low-level part being

optimized with assembly code [9, Sect. 5.1.2].

We propose an approach for the construction of a

library of formally verified low-level arithmetic func-

tions. There already exist experiments about formal

verification of low-level unsigned multi-precision arith-

metic (for assembly using proof-assistants [1,2,23]) and

verification of high-level multi-precision arithmetic (for

a subset of Ada using the Isabelle/HOL proof-assistant

[7]), see Sect. 7 for details. Yet, to the best of our knowl-

edge, no effort for a fully formalized library of low-level

multi-precision arithmetic has ever been undertaken, in

particular encompassing signed multi-precision arith-

metic. In this work, we aim at providing means for

formal verification in the Coq proof-assistant [29] of

arithmetic functions written in assembly. Concretely,

we experiment with Hoare logic-based verification (see

“first contribution” below) and relational verification

between pseudo-code and actual implementations (“sec-

ond contribution” below). We build on top of an exist-

ing framework [1, 2] for formal verification of Smart-

MIPS (a MIPS variant for smartcards) programs [21]

using Separation logic [26] (an extension of Hoare logic

that allows for local reasoning in the presence of point-

ers), a framework that already comes together with sev-

eral functions for unsigned multi-precision arithmetic.

Our first contribution is the formalization of data

structures for signed multi-precision arithmetic and the

2 Reynald Affeldt

verification of primitive arithmetic functions. We choose

to mimic the data structure for signed integer arith-

metic used in the GNU Multi-Precision Arithmetic Li-

brary [31] (hereafter, GMP). GMP is the main reference

for arbitrary-precision arithmetic and it is known to de-

liver good performance (indeed, using GMP routines

is recognized as a way to improve the performance of

other implementations of multi-precision arithmetic—

see [9, Sect. 5.1.1] or “Tips for Getting the Best Perfor-

mance out of NTL” [27]). We experiment this formal-

ization with the verification of several primitive multi-

precision functions, such as signed subtraction, signed

halving, etc. In order to simplify our development, we

choose a layered approach (functions for signed multi-

precision arithmetic are implemented using functions

for unsigned multi-precision arithmetic) and restrict our-

selves to functions parametrized by the size of the in-

teger size (the verification of arithmetic functions that

dynamically determine or extend the integer size is de-

ferred to future work). Verification of these primitive

functions is carried out in direct-style, i.e., by provid-

ing a Hoare triple (pre/post-conditions) and applying

Hoare rules, using the frame rule of Separation logic to

compose code.

The problem with direct-style formal verification is

that it leads to technically involved specifications. In

particular, the verification of functions that call sev-

eral other functions leads to large intermediate subgoals

that are difficult to manipulate formally, and ultimately

this leads to specifications that are difficult to read.

This comes in contrast to handbooks where arithmetic

functions are traditionally specified using pseudo-code

(e.g., [20]). This is however at the price of imprecision.

Besides inaccuracies due to the absence of formal def-

initions (it is not rare to find wrong corner cases and

initialization issues, see the errata of [20] for examples)

that are in general eventually spotted and dealt with

by programmers, there are more difficult issues that

are left unspecified with pseudo-code. For example, the

delicate task of providing concrete data structures and

to make sure that they are adequate is left to the pro-

grammer alone, though it is well-known that “in many

cases the intellectual heart of a program lies in the in-

genious choice of data representation rather than in the

abstract algorithm” [25, p. 298].

Our second contribution is to propose, as an alterna-

tive to direct-style verification, to show a formal simu-

lation relation between pseudo-code and assembly, so

as to overcome the issues raised by direct-style ver-

ification as explained above. In this way, we end up

with more readable specifications in pseudo-code, akin

to standard handbooks. Exhibiting a formal simulation

relation shows that the assembly is “as sound as” the

pseudo-code, the correctness of the latter being also for-

mally provable. We illustrate concretely this approach

with the binary extended gcd algorithm. An impor-

tant application of this algorithm is the computation

of modular multiplicative inverses, that are pervasive

in cryptography, e.g., in ElGamal decryption [12]. This

approach of showing a formal simulation relation has

the additional advantage of naturally allowing for hand-

written assembly (this issue is discussed in more depth

with a pencil-and-paper formalization in [14]). Hand-

written assembly is often necessary, for example, to use

special assembly instructions (see Sect. 3.1 for exam-

ples of such instructions in the case of SmartMIPS), or

more generally to improve performance.

About notations in this paper To avoid ambiguities, we

display the Coq formalization as it is, using obvious

non-ascii symbols and a few shortcuts (in particular,

variables are universally quantified by default) to ease

reading. To clear up any ambiguity, the complete for-

malization is available online [5].

Outline In Sect. 2, we formalize the data structures for

signed multi-precision integers using Separation logic.

In Sect. 3, we explain how to verify the correctness

of assembly implementations of signed multi-precision

arithmetic. In Sect. 4, we formalize the notion of for-

ward simulation and explain how to carry out simu-

lation proofs between pseudo-code and assembly pro-

grams. In Sect. 5, we explain how to prove formally sim-

ulation for primitive arithmetic instructions. In Sect. 6,

we show how to prove simulation for a larger example,

namely the binary extended gcd algorithm. We review

related work in Sect. 7 and conclude in Sect. 8.

2 Multi-precision integers

In this section, we formalize the data structures for

signed multi-precision integers in assembly using Sep-

aration logic. For this purpose, we first introduce our

formal model of execution states of assembly programs

(Sect. 2.1). Second, we give a brief overview of Separa-

tion logic and its formal encoding in Coq (Sect. 2.2).

We then explain in turn the formalization of unsigned

multi-precision integers (Sect. 2.3) and signed multi-

precision integers (Sect. 2.4).

2.1 Execution states of assembly programs

This section explains how we formalize the execution

states of assembly programs. (This presentation of as-

sembly programs will be completed in Sect. 3.1 where

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 3

we further explain the syntax and the semantics of as-

sembly programs.)

The assembly programming language we are dealing

with is SmartMIPS, a superset of the MIPS assembly

programming language [21]. Informally, an execution

state of a SmartMIPS program comprises the contents

of registers and of the memory. They both consist of

finite-size integers (of type int n when the underlying

bit representation is n-bit long). A finite-size integer

can be interpreted either as an unsigned integer (by

the function u2Z) or as a signed integer (by the function

s2Z), according to the two’s complement notation.

The register file is formalized as a store (of type

store.t): it is a finite map from registers to finite-size

integers. There are 32 general-purpose registers (here-

after ranged over by rx, ai, etc.) that hold 32-bit inte-

gers. Among them, there is in particular a special reg-

ister r0 constantly holding 032. There is also the MIPS

multiplier, an additional set of three registers (LO, HI,

ACX) dedicated to arithmetic computations. The value

held by the general-purpose register rx in the store s is

noted JrxKR s.

The flat memory of the computer is formalized as a

heap (of type heap.t): a finite map from natural num-

bers to 32-bit integers. (We restrict ourselves to assem-

bly programs that address memory by words, as cus-

tomary with MIPS.) The heap is finite, of size β = 232.

Formally, a state of execution of an assembly pro-

gram is a pair of a store and a heap, as defined above.

2.2 Overview of our formalization of Separation logic

Separation logic [26] is an extension of Hoare logic that

deals elegantly with pointers while supporting local rea-

soning (see the end of this section).

The assertions that appear in the pre- and post-

conditions of Separation logic triples are shallow en-

coded in our development, i.e., they are formalized as

functions from states to Prop, the sort of propositions

in Coq:

Definition assert := store . t → heap . t → Prop .

The simplest assertion is emp, that holds when the heap

is empty, regardless of the store:

Definition emp : assert :=
fun s h ⇒ h = heap . emp .

The assertion that is the most characteristic of Sep-

aration logic is the separating conjunction. Given two

assertions P and Q, P ? Q holds when the heap of the

state can be split into disjoint heaps such that P and Q
hold respectively. This is formalized by the following

definition:

Definition con P Q : assert := fun s h ⇒
∃ h1 h2 , h1 ⊥ h2 ∧ h = h1] h2 ∧ P s h1 ∧ Q s h2 .

The most primitive assertion of Separation logic is

the mapsto formula that specifies individual memory

cells. Let us assume that we are given a language of ex-

pressions ranged over by e and an evaluation function

from stores to finite-size integers (notation: J e K E s).

The mapsto formula e
17→ e’ holds when the heap con-

sists exactly of the memory cell that contains the word

e’ and whose address is e (aligned on a word-boundary).

This is formalized by the following definition:

Definition mapsto e e ’ : assert := fun s h ⇒
∃ p , u2Z (J e KE s) = 4 ∗ p ∧
h = heap . sing p (J e ’ KE s) .

We extend the mapsto formula to deal with contiguous

memory cells. The formula e 7→ l holds when the heap

consists exactly of the contiguous memory cells that

contain the words of the list l whose head is pointed to

by e. This is formalized by the following definition:

Fixpoint mapstos e l : assert :=
match l with
| nil ⇒ fun s h ⇒

u2Z (J e KE s) mod 4 = 0 ∧ emp s h

| hd :: tl ⇒ (e
17→ int_e hd) ?

(mapstos (e + int_e 432) tl)
end .

Above, int_e is the constructor for constant expressions

and the semantics of + is the addition as implemented

by the hardware.

We have actually formalized Separation logic in pre-

vious work following Reynolds [26]; we refer the reader

to [1, 2, 18] for the complete detail of such an encod-

ing in Coq. Let us just state the frame rule that allows
for local reasoning. We will use the frame rule primar-

ily to compose the code of functions (see Sect. 3.3 for

illustration).

Assume that we are given a syntax and a seman-

tics for some programming language, and let c be some

program. We write { P } c { Q }, where P and Q are

Separation logic assertions, for Hoare triples. Let us as-

sume that we are given a function modified_regs, that

extracts the variables modified by the execution of a

program c, as well as a predicate independent l R, in-

dicating whether the validity of the assertion R depends

on the variables occurring in l. The frame rule is for-

mally stated as follows:

Lemma frame_rule P c Q : { P } c { Q } →
∀ R , independent (modified_regs c) R →

{ P ? R } c { Q ? R } .

Intuitively, it means that any Hoare triple that has been

established locally (i.e., relatively to the memory foot-

print captured by the assertions P and Q) can be safely

4 Reynald Affeldt

extended beyond its memory footprint (the extra mem-

ory being captured by the assertion R) as long as the

execution of the program does not interfere with it.

2.3 Unsigned multi-precision integer

As depicted in Fig. 1, an unsigned multi-precision in-

teger consists of an array of words in memory (its pay-

load) that is pointed to by a register, the length of the

payload being kept in another register. The payload is

of course interpreted as the encoding of a positive in-

teger (it is understood that the least significant word

comes first in the payload). Since we are dealing with

a 32-bit architecture, the base of the encoding is 232.

Fig. 1 An unsigned multi-precision integer

We define a Separation logic assertion to state that a

(positive) integer is implemented as an unsigned multi-

precision integer. var_unsign k rx val holds when the

positive integer val is implemented by a payload of size

k pointed to by register rx. This is formalized in Coq

as follows:

0 Inductive var_unsign k rx val s h : Prop :=
1 | mkVarUnsign : u2Z J rx KR s + 4 ∗ k < β →
2 0 ≤ val < βk →
3 (rx 7→ Z2ints 32 k val) s h →
4 var_unsign k rx val s h .

Line 1 specifies that the array does not “wrap around”
the heap (recall from Sect. 2.1 that the heap is finite of

size β). This is an expected property that is for exam-

ple guaranteed by standard dynamic memory allocation

routines and that prevents overflows when accessing the

memory. Line 2 specifies that val can safely be encoded

in the base 232 = β as a payload of size k, in other words

that the multi-precision integer indeed fits in memory.

As seen in Sect. 2.2, line 3 is a Separation logic formula;

it specifies that the register rx points to the encoding of

val (Z2ints 32 converts an arbitrary-precision integer

into the corresponding list of words).

2.4 Signed multi-precision integer

Compared to unsigned multi-precision integers, the en-

coding (and therefore the formalization) of signed multi-

precision integers is of course more involved. Signed

multi-precision integers are usually encoded using sign-

magnitude. This means that they are represented by a

payload to be interpreted as unsigned, the sign informa-

tion being kept separately. Performance being crucial,

the zero integer is treated as a special case; this is for

example what is done in GMP [31, Sect. 17.1].

Fig. 2 A signed multi-precision integer

Fig. 2 pictures a typical encoding of signed multi-

precision integers. The first word of this data struc-

ture contains the size in words of the magnitude (as

for the unsigned case, we call it payload). More pre-

cisely, this size is a signed integer whose absolute value

is the length of the payload and whose sign is the sign

of the multi-precision integer being represented. There

is a special case: the zero multi-precision integer is rep-

resented by having the size set to zero, in which case

the contents of the payload are ignored.

The second word of the data structure depicted in

Fig. 2 is a pointer to the payload. Actually, we are

here mimicking GMP (except for the _mp_alloc field

in GMP, that is used to do reallocation, which we defer

to future work.)

Before the formalization in terms of Separation logic,

we first formalize the relation between an integer value

val and the elements of its sign-magnitude encoding:

the size sz (of type int 32) and the list X (of type

list (int 32) and of length k):

0 Inductive SignMagn sz k X val : Prop :=
1 | mkSignMagn : length X = k →
2 s2Z sz = Zsgn (s2Z sz) ∗ k →
3 Zsgn (s2Z sz) = Zsgn val →
4 val = Zsgn (s2Z sz) ∗ Sum k X →
5 SignMagn sz k X val .

Line 1 just fixes the length of the payload. Line 2 for-

malizes the relation between the actual length of the

payload (k) and the size that is encoded (sz). (Zsgn is

0, 1, or −1, according to whether its argument is zero,

positive, or negative, respectively.) When sz is not 0,

this ensures that the absolute values of sz and k are

the same; but, importantly, the fact that sz is 0 does

not imply that k is 0. Line 3 forces the size that is en-

coded (sz) and the value that is encoded (val) to be of

the same sign (in particular, to be 0 simultaneously).

Finally, line 4 formalizes the relation between the ac-

tual contents of the payload (X) and the value that is

encoded (val). (Sum k X computes the value encoded by

the first k finite-size integers of list X; it is the converse

of Z2ints 32). In particular, the fact that val is 0, does

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 5

not imply that the payload X is zeroed. Also, X cannot

be 0 if val and l are not 0.

In summary, the peculiarity of the SignMagn pred-

icate is to let the contents of the payload unspecified

when the encoded value val is zero, thus achieving the

same design principle as in GMP.

We define a Separation logic assertion to state that

a (possibly negative) integer is implemented as a signed

multi-precision integer. var_signed k rx val holds when

the relative integer val is implemented by a signed

multi-precision integer pointed to by register rx with

a payload of length k:

0 Inductive var_signed k rx val s h : Prop :=
1 mkVarSigned : ∀ sz p X ,
2 u2Z J rx KR s + 4 ∗ 2 < β →
3 u2Z p + 4 ∗ k < β →
4 SignMagn sz k X val →
5 (rx 7→ sz :: p :: nil ? p 7→ X) s h →
6 var_signed k rx val s h .

Like the unsigned case, lines 2 and 3 avoid wrap-around’s.

In the Separation logic formula line 5, the first conjunct

contains a pointer p to the second conjunct. Here, the

length k of the payload has been made a parameter of

the definition because we will be dealing later with a

mix of signed and unsigned multi-precision integers, the

latter requiring explicit mention of the payload length.

Formalization of dynamic allocation that we plan for

future work should alleviate this restriction.

3 Verification of primitive arithmetic functions

The purpose of this section is to explain how we for-

mally prove the functional correctness of primitive op-

erations for signed arithmetic. We consider a version of

signed multi-precision addition as a running example.

First, we explain the syntax and semantics of Smart-

MIPS assembly programs (Sect. 3.1); this presentation

completes Sect. 2.1 where we explained the formaliza-

tion of the states of execution. Then, we comment on

the concrete example of an implementation of the signed

addition (Sect. 3.2). (See Table 1 for references to more

examples.) Finally, we explain the corresponding cor-

rectness statement and comment on its formal verifica-

tion (Sect. 3.3).

3.1 Syntax and semantics of assembly programs

Fig. 3 summarizes the syntax of the SmartMIPS pro-

grams that we are dealing with. We have formalized

about thirty basic, one-step instructions (entry cmd0,

instructions are named after the official documenta-

tion [21]). Some of them are specific to SmartMIPS

b ::= beq r1 r2 | bne r1 r2
| bltz r | bgtz r
| bgez r | blez r

cmd0 ::= nop | add r1 r2 r3
| addi r1 r2 i | addiu r1 r2 i
| addu r1 r2 r3 | and r1 r2 r3
| andi r1 r2 i | lw r1 i r2
| lwxs r1 r2 r3 | maddu r1 r2
| mfhi r1 | mflhxu r1
| mflo r1 | movn r1 r2 r3
| movz r1 r2 r3 | msubu r1 r2
| mthi r1 | mtlo r1
| multu r1 r2 | nor r1 r2 r3
| or r1 r2 r3 | sll r1 r2 a

| sllv r1 r2 r3 | sltu r1 r2 r3
| sra r1 r2 a | srl r1 r2 a
| srlv r1 r2 r3 | subu r1 r2 r3
| sw r1 i r2 | xor r1 r2 r3
| xori r1 r2 i with 0 ≤ i < 216, 0 ≤ a < 25

cmd ::= cmd0
| c1 ; c2
| If b Then c1 Else c2
| While b { c }

Fig. 3 Syntax of SmartMIPS assembly programs

and not part of MIPS32. For example, lwxs, that loads

a word from memory using scaled indexed addressing,

has been introduced to improve performance of byte-

code interpreters. maddu, multu, and mflhxu rely on the

new ACX register that receives the carry out from the

HI register. (Fig. 19 illustrates the usage of special in-

structions with the code for unsigned multi-precision

addition.) In Fig. 3, i corresponds to 16-bit integers,

a (in shifts) corresponds to 5-bit integers. These ba-

sic instructions can be composed together using se-

quence, structured branching, and while-loops (entry

cmd in Fig. 3). Programs written with this syntax have
therefore a structured control-flow. Standard Smart-

MIPS programs with labeled jumps are obtained via

certified compilation [2]. Conditional control-flow com-

mands make use of tests between registers (entry b in

Fig. 3). To ease reading, we write If beq r1 r2 instead

of If (beq r1 r2), and so on. General-purpose registers

are not hard-wired in programs but will be made pa-

rameters of programs (see for example Fig. 4).

The semantics of SmartMIPS assembly programs is

formalized following the official documentation [21]; in

particular, it takes into account the various error sit-

uations such as overflow conditions or alignment re-

strictions that lead to undefined behaviors. We distin-

guish error states with an option type: b s, h c repre-

sents a valid state, ⊥ represents error states. We note

b s, h c � c _ s’ the (big-step) operational semantics

of the cmd assembly language; it reads: starting from

state b s, h c, execution of the program p leads to the

state s’; s’ can be a valid state or an error state. Con-

cretely, this operational semantics is formalized in Coq

6 Reynald Affeldt

as an inductive predicate. It is provably deterministic.

By way of example, here follows the semantics of the in-

struction lw (“load word”). The execution of lw r1 i r2
amounts to loading in register r1 the contents of the

address obtained by (hardware) addition of the base r2
with the offset i (with i appropriately sign-extended).

This is captured by the constructor exec0_lw of the

operational semantics:

exec0_lw : ∀ s h r1 i r2 p z ,
u2Z (J r2 KR s +h signext 16 i) = 4 ∗ p →
heap . get p h = b z c →
b s , h c � lw r1 i r2 _

b store . upd r1 z s , h c

In contrast, when the memory is not properly initialized

or when the address is not on a word-boundary, the

execution of lw r1 i r2 fails. This is captured by this

other constructor of the operational semantics:

exec0_lw_error : ∀ s h r1 i r2 ,
¬ (∃ p , u2Z (J r2 KR s +h signext 16 i) =

4 ∗ p ∧ ∃ z , heap . get p h = b z c) →
b s , h c � lw r1 i r2 _ ⊥

See the online documentation [5] for more details, or [1,

2]. The semantics of further instructions will be illus-

trated concretely via examples in the course of this pa-

per.

3.2 Example: In-place signed multi-precision addition

As an example of assembly code making use of signed

integers, we display in Fig. 4 a variant of the signed-

unsigned addition, that adds in-place a signed multi-

precision integer and an unsigned multi-precision inte-

ger (with payloads of the same length). This example

illustrates in particular the technical difficulties caused

by treating the zero multi-precision integer as a spe-

cial case. To simplify our development, we adopt a lay-

ered approach: functions for signed arithmetic are im-

plemented using functions for unsigned arithmetic; this

is possible because (the absolute value of) a signed

integer can always been seen as an unsigned integer

by just looking at its payload. This lets us implement

functions in an incremental way and factorizes the for-

malization. Below, we assume that we are given two

functions (multi_add_u_u and multi_sub_u_u) that re-

spectively add and subtract unsigned multi-precision

integers (these functions originally come from [1]; they

can be found online [5]; Fig. 19 reproduces the code of

multi_add_u_u).

The algorithm for multi-precision addition in Fig. 4

first sorts out the situations in which one of the argu-

ment is zero: when the second argument is zero, nothing

needs to be done besides clearing the overflow register

(line 3); when the first argument is zero, it is enough

0 Definition multi_add_s_u :=
1 multi_is_zero_u rk ry a0 a1 a2 ;
2 If bne a2 , r0 Then (∗ y = 0 ? ∗)
3 addiu a3 r0 016 (∗ no o v e r f l ow ∗)
4 Else (∗ y 6= 0 ∗)
5 multi_add_s_u0 rk rx ry a0 a1 a2 a3 a4 a5 rX .
6

7 Definition multi_add_s_u0 :=
8 lw rX 416 rx ; (∗ pay l oad o f X ∗)
9 pick_sign rx a0 a1 ;

10 If bgez a1 Then (∗ 0 ≤ x ? ∗)
11 If beq a1 , r0 Then (∗ x = 0 ? ∗)
12 copy_u_u rk rX ry a2 a3 a4 ;
13 addiu a3 r0 016 ; (∗ no o v e r f l o w ∗)
14 sw rk 016 rx (∗ f i x s i z e ∗)
15 Else (∗ 0 < x ∗)
16 addiu a3 r0 116 ;
17 multi_add_u_u rk a3 ry rX rX a0 a1 a2 ;
18 mflo a3 (∗ o v e r f l o w ∗)
19 Else (∗ x < 0 ∗)
20 multi_lt rk ry rX a0 a1 a5 a2 a3 a4 ;
21 If beq a5 , r0 Then (∗ x ≤ y ? ∗)
22 If beq a2 , r0 Then (∗ x = y ? ∗)
23 addiu a3 r0 016 ; (∗ no o v e r f l o w ∗)
24 sw r0 016 rx (∗ f i x s i z e ∗)
25 Else (∗ x < y ∗)
26 multi_sub_u_u rk ry rX rX a0 a1 a2 a3 a4 a5 ;
27 multi_negate rx a0
28 Else (∗ x > y ∗)
29 multi_sub_u_u rk rX ry rX a0 a1 a5 a3 a2 a4 .

Fig. 4 In-place signed-unsigned addition (see Fig. 19 for
multi_add_u_u)

Definition multi_sub_s_s :=
lw rY 416 ry ;
pick_sign ry a0 a1 ;
If bgez a1 Then (∗ 0 ≤ y ? ∗)

If beq a1 , r0 Then (∗ y = 0 ? ∗)
addiu a3 r0 016 (∗ no o v e r f l o w ∗)

Else (∗ 0 < y ∗)
multi_sub_s_u rk rx rY a0 a1 a2 a3 a4 a5 rX

Else (∗ y < 0 ∗)
multi_add_s_u rk rx rY a0 a1 a2 a3 a4 a5 rX .

Fig. 5 In-place signed subtraction (see Fig. 4 for
multi_add_s_u and Fig. 18 for multi_sub_s_u)

to copy (function copy_u_u) the contents of the sec-

ond argument (line 12) and to update the size. Other-

wise, when the first argument is strictly positive, it boils

down to an unsigned multi-precision addition (line 17).

Because of the special handling of zero, the situation

where the first argument is strictly negative requires

comparison between the two arguments. Upon equal-

ity, no computation needs to be performed and it is

enough to set the size to zero (line 24); the (now un-

used) payload is left untouched, though we still have

a pointer to it. Otherwise, in-place unsigned subtrac-

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 7

0 Lemma multi_add_s_u_triple :
1 nodup (rk , rx , ry , a0 , a1 , a2 , a3 , a4 , a5 , rX , r0) →
2 0 < k < 231 → (∗ not t h e we i rd number ∗)
3 { fun s h ⇒ J rx KR s = vx ∧ J ry KR s = vy ∧ u2Z J rk KR s = k ∧
4 (var_signed k rx X ? var_unsign k ry Y) s h}
5 multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 rX
6 { fun s h ⇒ ∃ X ’ sz ’ ptr ,
7 J rx KR s = vx ∧ J ry KR s = vy ∧ u2Z J a3 KR s ≤ 1 (∗ p o t e n t i a l o v e r f l o w ∗) ∧
8 (rx 7→ sz ’ :: ptr :: nil ? int_e ptr 7→ X ’ ? var_unsign k ry Y) s h ∧
9 length X ’ = k ∧ s2Z sz ’ = Zsgn (s2Z sz ’) ∗ k ∧ Zsgn (s2Z sz ’) = Zsgn (X + Y) ∧

10 Zsgn (s2Z sz ’) ∗ (Sum k X ’ + u2Z J a3 KR s ∗ βk) = X + Y } .

Fig. 6 Formal specification of the in-place signed-unsigned multi-precision addition of Fig. 4

tion (lines 26 and 29), possibly coupled with negation

(function multi_negate), finishes the algorithm.

The algorithm we have just commented on for the

in-place signed-unsigned addition as an easy counter-

part for subtraction; let us call multi_sub_s_u its im-

plementation (for the sake of completeness, we provide

its code in Fig. 18). Given these two functions, it is easy

to finally implement the in-place signed multi-precision

subtraction (see Fig. 5).

3.3 Example: Verification of multi-precision addition

For primitive arithmetic functions (functions that cor-

respond to primitive arithmetic operations such as ad-

dition), it is technically manageable to perform a direct

proof in Hoare logic. Here, Separation logic (Sect 2.2)

comes in handy: it is easy to deal with pointers that

navigate inside the multi-precision integers; the use of

the separating conjunction in specifications makes it

clear whether the function operates in-place or not;

when the target functions uses other functions, their

proofs can be composed using the frame rule.

For example, the result of the formal verification of

the multi-precision addition of Fig. 4 takes the form of

the Hoare triple of Fig. 6.

Precondition of Fig. 6 The most important part of the

precondition is the specification that the heap contains

a signed integer (var_signed k rx X, encoding of X) and

an unsigned integer (var_unsign k ry Y, encoding of Y)

(see line 4). The nodup predicate of line 1 specifies a list

of pairwise distinct registers, a necessary condition for

correct execution. Line 2 seeks to avoid the undesirable

case of the size being the so-called “weird number”: in

two’s complement notation −231 has indeed no positive

inverse.

Postcondition of Fig. 6 The most informative part of

the postcondition is its last conjunct (see line 10). If

we forget about the overflow (the overflow bit is stored

in a3), it says that the resulting size sz’ and the result-

ing payload X’ are indeed the result of the addition X
and Y:

Zsgn (s2Z sz ’) ∗ Sum k X ’ = X + Y

Yet, potential overflow makes the most generic post-

condition a little bit more involved. Potential overflows

can indeed break the encoding of the first argument as

a signed multi-precision integer, that is why the mem-

ory after execution of the program exhibits the points-

to structure of the once-signed integer (line 8). Line 9

nevertheless keeps tract of the relations between the

results of the computation.

Similarly to the example of in-place signed-unsigned

addition, we have also formally verified the in-place

signed subtraction whose code appeared in Fig. 5, as

well as other assembly functions that are summarized

in Table 1.

4 Verification using simulation

As seen in Sect. 3, Hoare triples for arithmetic functions

can become technically involved. Our experience led us

to seek for alternative approaches to verify larger func-

tions, such as the binary extended gcd algorithm we will

see in Sect. 6. This is why we experiment with formal

verification of larger functions by providing a pseudo-

code version of the verification target together with an

assembly version and by showing a formal simulation

between both.

In this section, we first introduce a pseudo-code

programming language (Sect. 4.1). Second, we intro-

duce a generic definition of simulation between pseudo-

code and assembly (Sect. 4.2). Then, we provide lem-

mas to prove simulation compositionally (Sect. 4.3).

Last, we instantiate the generic definition of simulation

with a relation between arbitrary-precision and multi-

precision integers (Sect. 4.4).

8 Reynald Affeldt

4.1 Formalization of pseudo-code

Fig. 7 displays the syntax of pseudo-code programs.

Variables are ranged over by x, y, etc. We are given a

type for primitive arithmetic expressions (addition, sub-

traction, multiplication, division, remainder, and nega-

tion) ranged over by e. We are also given a type for

boolean expressions (ranged over by b). The syntax

for commands correspond to a type pcmd and they are

ranged over by p.

e ::= x | i ∈ Z | e1 + e2 | e1 − e2 | e1 × e2
| e1 / e2 | e1 % e2 | − e

b ::= true | b1 && b2 | b1 || b2 | ¬ b
| e1 = e2 | e1 6= e2 | e1 ≥ e2 | e1 > e2

p ::= x ← e | skip | p1 ; p2 | If b Then p1 Else p2
| While b { p }

Fig. 7 Syntax of pseudo-code programs

The semantics for pseudo-code commands is unsur-

prising. We are given a type pstore of stores with vari-

ables holding arbitrary-precision integers. Given a store

st, we note J b K B st the truth value of the boolean ex-

pression b and J e K E st the integer value of the arith-

metic expression e. We note b st c � p _ b st’ c the

(big-step) operational semantics of the pseudo-code lan-

guage: starting from store b st c, the execution of the

program p leads to the store b st’ c (⊥ models error

states). For illustration, the operational semantics of

the assignment x ← e is captured by the following con-

structor:

exec0_assign : ∀ st x e ,
b st c � x ← e _

b store . upd x (J e KE st) st c

See the online documentation [5] for more details, or [18]

for the original presentation of this pseudo-code lan-

guage.

4.2 Forward simulation

We want to reason about the equivalence between two

programs: (abstract) pseudo-code on the one hand, and

(concrete) assembly code on the other hand. For that

purpose, we introduce the type of relations between a

state of the pseudo-code (type pstore) and a state of

the assembly language (a pair of a store store.t and a

heap heap.t):

Definition Rel :=
pstore → store . t → heap . t → Prop .

Given the pseudo-code p and the assembly program c,

the simulation that preserves the relation R under initial

conditions P0 is noted “p .(R, P0) c” and is defined as

follows:

Definition fwd_sim (R P0 : Rel) p c :=
∀ st s h , R st s h → P0 st s h →
∀ st ’ , b st c � p _ b st ’ c →
∃ s ’ h ’ , b s , h c � c _ b s ’ , h ’ c ∧

R st ’ s ’ h ’ .

In other words, when p and c are started at states re-

lated by R, they still end up in states related by R.

fwd_sim is a forward simulation in the sense of Leroy

[16]. It is biased towards imperative programs and is

therefore a simplification of the homonymous definition

for concurrent systems [17]. fwd_sim can also be seen

as a simplification of the “correspondence” predicate of

Winwood et al. [32], in particular because we are in a

deterministic setting.

Once forward simulation is proved, it becomes possi-

ble to transport formally correctness from the pseudo-

code to assembly, thus effectively reducing the proof

of correctness of the assembly to a simulation proof

and the proof of correctness of the easier pseudo-code

(see [5]).

We also define a notion of simulation that relates

boolean expressions from the pseudo-code (as defined in

Fig. 7) and their equivalent in assembly code. Strictly

speaking, there is no boolean expression in assembly

but they can be simulated with a piece of code and a

test between registers (second entry in Fig. 3). We note

“b .b(R) pre ; post” the fact that a boolean test b
is simulated by a piece of code pre and a test between

registers post under the relation R. This is formalized

as follows:

Definition fwd_sim_b R b pre post :=
∀ st s h , R st s h →
∃ s ’ , b s , h c � pre _ b s ’ , h c ∧
J b KB st ↔ J post KB s ’ .

4.3 Composition lemmas

This section presents the main lemmas to reason com-

positionally about forward simulation. As a preliminary

step, we introduce intermediate definitions to express

the side-conditions of these composition lemmas. The

first definition is similar to the semantics of relational

Hoare logic, a proof system to relate the execution of

pairs of programs, typically a program and its opti-

mized version [6]. Concretely, relational Hoare logic ex-

presses the fact that a relation is preserved by the exe-

cution of two programs p and c in the following way: if

the initial states of p and c satisfy the relation P, then

the final states of p and c satisfy the relation Q, which

we note p ∼c : P ⇒ Q. Our definition actually slightly

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 9

generalizes relational Hoare logic because we are deal-

ing with two programs p and c in different languages:

Definition rela_hoare (P Q : Rel) p c :=
∀ st s h , P st s h →
∀ st ’ , b st c � p _ b st ’ c →
∀ s ’ h ’ , b s , h c � c _ b s ’ , h ’ c →

Q st ’ s ’ h ’ .

Simulation of sequence The composition lemma for se-

quences shows that simulation of a sequence of instruc-

tions can be broken down to the simulations of each

part:

Lemma fwd_sim_seq : ∀ R p p ’ c c ’ P Q ,
p ∼ c : P ⇒ Q →
p .(R , P) c → p ’ .(R , Q) c ’ →
(p ; p ’) .(R , P) (c ; c ’) .

The side-condition p ∼c : P ⇒ Q formalizes the cor-

rect propagation of initial conditions.

We now come to the composition lemmas for struc-

tured branching and while-loops. They are a bit more

involved because simulation between boolean expres-

sions (as formalized by fwd_sim_b) is required. Again

to express side-conditions, we introduce another inter-

mediate definition that states that the execution of an

assembly program c does not change the validity of a

relation, ignoring the execution of pseudo-code:

Definition invariant (R : Rel) c :=
∀ st s h , R st s h →
∀ s ’ h ’ , b s , h c � c _ b s ’ , h ’ c →
R st s ’ h ’ .

Simulation of structured branching There is a simula-

tion between structured branching in pseudo-code and

in assembly code, if there is a simulation between the

taken branches and if there is a simulation between

boolean tests on both sides:

Lemma fwd_sim_ifte
pre post p1 p2 c1 c2 R P0 :

invariant (R ∧ P0) pre →
b .b(R ∧ P0) pre ; post →
p1 .(R , fun st s h ⇒ P0 st s h ∧

J post KB s ∧ J b KB st) c1 →
p2 .(R , fun st s h ⇒ P0 st s h ∧

¬ J post KR s ∧ ¬ J b KB st) c2 →
(If b Then p1 Else p2) .(R , P0)

(pre ; If post Then c1 Else c2) .

Simulation of while-loops As can be expected, simu-

lation of while-loops requires, as a side-condition, an

invariant about the propagation of the initial condi-

tion (P0 below), the latter being captured by relational

Hoare logic:

Lemma fwd_sim_while b pre post p c R P0 :
invariant (R ∧ P0) pre →
p ∼ c : (fun st s h ⇒ P0 st s h ∧

J post KB s ∧ J b KB st) ⇒ P0 →
b .b(R ∧ P0) pre ; post →
p .(R , fun st s h ⇒ P0 st s h ∧

J post KB s ∧ J b KB st) c →
(While b { p }) .(R , P0)

(pre ; While post { c ; pre }) .

We will see a concrete application of this composition

lemma in Sect. 6.4.

4.4 Instantiation for signed arithmetic

We now define concretely the relation for arithmetic

between the execution states of pseudo-code and as-

sembly programs. More precisely, the relation we de-

fine relates (1) a store for pseudo-code where variables

contain arbitrary-precision integers, and (2) a state of

execution of an assembly program where registers point

to multi-precision integers (as explained in Sect. 2) con-

taining the same values as the pseudo-code variables.

We first introduce a type for multi-precision inte-

gers. A multi-precision integer is either an unsigned

multi-precision integer, implemented by two registers,

one for the pointer to the payload and one for the size,

or a signed multi-precision integer, implemented by the

length of the payload and a pointer to the header of the

data structure:

Inductive mint : Type :=
| unsign : reg → reg → mint
| signed : nat → reg → mint .

The point of this abstract definition of a multi-precision

integer is to define the relation between, on the one

hand, one pseudo-code variable, and, on the other hand,

one multi-precision integer. A pseudo-code variable x is

related to a multi-precision integer mx (of type mint)

when the variable x contains the same value as the one

encoded by the multi-precision integer mx. Put formally:

Definition var_mint x mx : Rel :=
fun st s h ⇒

match mx with
| unsign rk rx ⇒ var_unsign

(u2Z J rk KR s) rx (J x KE st) s h
| signed k rx ⇒

var_signed k rx (J x KE st) s h
end .

We now come to the relation between a pseudo-code

store and an assembly state. A pseudo-code store and

an assembly state are related by state_mint d (where

d is an association list) when all the arbitrary-precision

integer variables in the domain of d are implemented

by their image according to the map d:

10 Reynald Affeldt

0 Definition state_mint d : Rel :=
1 fun st s h ⇒
2 (∀ x mx , get x d = b mx c →
3 var_mint x mx st s (heap_mint mx s h)) ∧
4 (∀ x y , x 6= y → ∀ mx my ,
5 get x d = b mx c → get y d = b my c →
6 heap_mint mx s h ⊥ heap_mint my s h) .

In this definition, heap_mint mx s h cuts out exactly

that part of the heap that encodes the multi-precision

integer mx. The first conjunct (starting at line 2) states

that pseudo-code variables are related to the correspond-

ing multi-precision integer in the association list. The

second conjunct (starting at line 4) ensures that multi-

precision integers are disjoint in the heap. The relation

state_mint between pseudo-code variables and multi-

precision integers is technically involved. This is essen-

tially because there is a significant gap between, on one

side, arbitrary-precision integers and, on the other side,

their concrete implementations. This comes in contrast

to relations used in proving, say, correctness of a com-

piler pass, where the gap between data on both sides is

typically smaller than here.

5 Simulation for primitive arithmetic functions

In order to verify large arithmetic functions using simu-

lation, we first need to equip primitive arithmetic func-

tions, such as multi-precision signed addition, with sim-

ulation proofs.

5.1 Approach for simulation proofs

We found it easier in practice to split the proof of for-

ward simulation into a proof of termination and a proof

of partial forward simulation. Given the pseudo-code

p and the assembly program c, the partial simulation

that preserves the relation R under initial conditions P0
is noted “p .p(R, P0) c” and is defined as follows:

Definition pfwd_sim (R P0 : Rel) p c :=
p ∼ c : (R ∧ P0) ⇒ R .

Definition safe_termination (R : Rel) c :=
∀ s st h , R s st h →
∃ s ’ , b st , h c � c _ b s ’ c .

Put together, pfwd_sim and safe_termination imply

forward simulation fwd_sim:

Lemma pfwd_sim_fwd_sim (R P0 : Rel) p c :
p .p(R , P0) c →

safe_termination (R ∧ P0) c →
p .(R , P0) c .

Formal proof of fwd_sim for a pair of a pseudo-code

program and an assembly program is conceptually easy

when we are given the Hoare triple that establishes the

functional correctness of the assembly program at hand.

Concretely, proofs of safe_termination are traditional

termination proofs (typically by exhibiting a variant)

after which one shows that the final state is not an error

state by using the corresponding Hoare triple. Proofs of

pfwd_sim are illustrated by a concrete example below.

5.2 Example: Simulation for multi-precision addition

Intuitively, the proof of partial forward simulation for

the addition multi_add_s_u defined in Sect. 3 makes

explicit the conditions under which it behaves as the

addition for arbitrary-precision integers. This setting is

pictured in Fig. 8.

Fig. 8 Simulation for signed-unsigned addition

Fig. 9 is the formal version of Fig. 8. It states that

the executions of, on the one hand, the pseudo-code

x ←x + y (with 0 ≤ y) (see line 4) and of the assembly

code multi_add_s_u rk rx ry . . . (see line 9) preserve

the relation

state_mint
(x Z⇒ signed k rx] y Z⇒ unsign rk ry] d)

that appears at line 5. The relation state_mint was

defined in Sect. 4.4 and d is an association list with

no register in common with the code (as specified by

lines 2–3). Because of potential overflows, this relation

does not hold in general, hence the restrictions enforced

at line 8 in the initial conditions (Zabs is the absolute

value in the Coq standard library).

6 Application: Binary extended gcd algorithm

This section illustrates verification using simulation as

introduced in Sect. 4 on a non-trivial program. We

show that there is a simulation between the pseudo-

code version of the binary extended gcd algorithm and

an assembly implementation. The proof of simulation

is performed compositionally (using the lemmas from

Sect. 4.3) using the individual simulation proofs for

primitive arithmetic functions (as the one we proved

in Sect. 5.2 for addition).

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 11

0 Lemma pfwd_sim_multi_add_s_u :
1 nodup (x , y) → nodup (rk , rx , ry , a0 , a1 , a2 , a3 , a4 , a5 , rX , r0) →
2 disj (mints_regs (cdom d)) (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: rX :: nil) →
3 x 6∈ dom d → signed k rx 6∈ cdom d → y 6∈ dom d → unsign rk ry 6∈ cdom d →
4 x ← x + y
5 .p(state_mint (x Z⇒ signed k rx] y Z⇒ unsign rk ry] d) ,
6 fun st s _ ⇒ 0 < u2Z (J rk KR s) < 231 ∧
7 k = u2Z (J rk KR s) ∧
8 Zabs (J x KE st) < βk ∧ 0 ≤ J y KE st < βk ∧ Zabs (J x KE st + J y KE st) < βk)
9 multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 rX .

Fig. 9 Simulation for multi-precision addition

6.1 Pseudo-code for the binary extended gcd algorithm

The binary extended gcd algorithm is an extension of

the celebrated Euclid algorithm: it combines the ex-

tended gcd algorithm, that computes the gcd of two

integers together with the integers that satisfy the cor-

responding Bézout identity, with the binary gcd algo-

rithm, that computes the gcd efficiently by replacing

multi-precision divisions with shifts.

We borrow the pseudo-code for the binary extended

gcd algorithm from authoritative literature [15, p. 646].

The algorithm begcd of Fig. 10 computes the gcd of u
and v and stores the result in u3 and g.

Definition begcd g u v u1 u2 u3 v1 v2 v3 t1 t2 t3 :=
g ← 1 ;
prelude u v g ;
init u v u1 u2 u3 v1 v2 v3 t1 t2 t3 ;
While t3 6= 0 {

While t3 % 2 = 0 { halve u v t1 t2 t3 } ;
reset u v u1 u2 u3 v1 v2 v3 t1 t2 t3 ;
subtract u v u1 u2 u3 v1 v2 v3 t1 t2 t3 } .

Fig. 10 The binary extended gcd algorithm (see Fig. 20 for
the implementation in assembly, and Fig. 12, 14, 15, 16, and
17 for auxiliary functions)

The auxiliary function prelude halves the inputs as

much as possible, recording the number of iterations

in g. It is an interesting step because it reduces the

size of data by means of mere shifts. Indeed, the gcd

is preserved (modulo shifts) because when a and b are

even, gcd(a, b) = 2× gcd(a/2, b/2). We detail this step

further as an illustration in Sect. 6.4.

There are several other variables (ui, vi, ti) in the

binary extended gcd algorithm that are manipulated in

such a way that the relations u ∗ u1+ v ∗ u2= u3 (that

will give the Bézout identity), u ∗ v1+ v ∗ v2= v3, and

u ∗ t1+ v ∗ t2= t3 hold after each call to one of the

auxiliary functions. In short, the auxiliary function init
initializes the variables ui, vi, and ti using u, v, 0, or 1

(see the code in Fig. 14). The auxiliary function halve

tries to halve the temporary variables ti (see the code

in Fig. 15). The auxiliary function reset updates the

variables ui or vi using the variables ti (see the code in

Fig. 16). The auxiliary function subtract updates the

temporary variables ti using ui − vi (see the code in

Fig. 17).

6.2 Correctness of the binary extended gcd algorithm

The first task is of course to make sure that the pseudo-

code behaves as expected. This correctness statement is

captured by the Hoare triple displayed in Fig. 11, where

Zgcd is the gcd function of the standard Coq library.

0 Lemma begcd_triple :
1 nodup (g , u , v , u1 , u2 , u3 , v1 , v2 , v3 , t1 , t2 , t3) →
2 0 < vu → 0 < vv →
3 { fun st ⇒ uv_init vu vv u v st }
4 begcd g u v u1 u2 u3 v1 v2 v3 t1 t2 t3
5 { fun s ⇒
6 Zgcd vu vv = J g KE st ∗ J u3 KE st ∧
7 vu ∗ J u1 KE st + vv ∗ J u2 KE st =
8 J g KE st ∗ J u3 KE st ∧
9 uivi_bounds u v u1 v1 u2 v2 u3 v3 st ∧

10 ti_bounds u v t1 t2 t3 st } .

Fig. 11 Correctness of the binary extended gcd algorithm

Precondition of Fig. 11 Line 2 declares two strictly pos-

itive inputs as ghost variables; the predicate uv_init at

line 3 specifies that the input variables u and v are ini-

tialized correctly with the ghost variables:

Definition uv_init vu vv u v st :=
J u KE st = vu ∧ J v KE st = vv .

Postcondition of Fig. 11 Line 6 states that the variables

u3 and g indeed contains the gcd of the inputs; lines 7–

8 show that the variables u1 and u2 realize the Bézout

identity. Besides functional correctness, the postcondi-

tion also states that all the variables that are manipu-

lated by the algorithm remain bounded by the inputs.

12 Reynald Affeldt

Ensuring this fact is the role of the uivi_bounds and

ti_bounds predicates:

Definition uivi_bounds u v u1 v1 u2 v2 u3 v3 st :=
0 ≤ J u1 KE st ≤ J v KE st ∧
0 ≤ J v1 KE st ≤ J v KE st ∧
− J u KE st ≤ J u2 KE st ≤ 0 ∧
− J u KE st ≤ J v2 KE st ≤ 0 ∧
0 < J u3 KE st ≤ J u KE st ∧
0 < J v3 KE st ≤ J v KE st .

Definition ti_bounds u v t1 t2 t3 st :=
0 ≤ J t1 KE st ≤ J v KE st ∧
− J u KE st ≤ J t2 KE st ≤ 0 ∧
− J v KE st ≤ J t3 KE st ≤ J u KE st .

6.3 From pseudo-code to assembly

Starting from the pseudo-code we explained in the pre-

vious section, we produce assembly programs using our

library of verified assembly functions for signed multi-

precision arithmetic. In practice, we map to each pseudo-

code instruction an assembly function such that there

is an adequate simulation between both. For example,

the result of this process can be observed in the case

of the auxiliary function halve in Fig. 15. There, the

pseudo-code addition is mapped to the assembly func-

tion multi_add_s_u, the corresponding simulation be-

tween both being the one we saw in Sect. 5.

The correspondence between the pseudo-code and

the assembly program is further highlighted by Fig-

ures 12, 14, 16, and 17. The assembly programs are

naturally given the same control-flow structure as the

pseudo-code; this is convenient for applying the compo-

sition lemmas discussed in Sect. 4.2. Even though our

library of assembly functions does not handle dynamic

allocation, this correspondence is perfectly meaningful

because we know that all the variables in the binary ex-

tended gcd algorithm lie between −vv and vu (as spec-

ified in Fig. 11); as a consequence, we can assume that

the payload of all the multi-precision integers is stored

into the same amount of words.

6.4 Example: Simulation of the prelude of the binary

extended gcd algorithm

As explained in the previous section, the formal proof of

simulation between the binary extended gcd in pseudo-

code and its assembly counterpart decomposes natu-

rally according to the auxiliary functions. Let us illus-

trate one of these subgoals using the simulation proof

for the auxiliary function prelude. This function is dis-

played with its assembly counterpart prelude_mips in

Fig. 12.

We first introduce some notation to simplify the pre-

sentation. Let us note d the association list that as-

sociates all the variables from the pseudo-code in the

binary extended gcd to multi-precision integers:

Definition d :=
g Z⇒ unsign rk rg] u Z⇒ unsign rk ru]
v Z⇒ unsign rk rv] u1 Z⇒ signed k ru1]
u2 Z⇒ signed k ru2] u3 Z⇒ signed k ru3]
v1 Z⇒ signed k rv1] v2 Z⇒ signed k rv2]
v3 Z⇒ signed k rv3] t1 Z⇒ signed k rt1]
t2 Z⇒ signed k rt2] t3 Z⇒ signed k rt3

Then, the formal statement of simulation between the

pseudo-code prelude and the assembly prelude_mips
is written as follows (we justify the initial condition in

the next paragraph):

Lemma fwd_sim_begcd_prelude :
(∗ p r e d i c a t e s nodup e l i d e d ∗)
prelude u v g

.(state_mint d ,
fun st s h ⇒
J u KE st ∗ J g KE st < β u2Z J rk KRs ∧
0 ≤ J g KE st ∧ 0 < J u KE st ∧
0 < u2Z J rk KR s)

prelude_mips rk rg ru rv a0 a1 a2 a3 .

The formal proof of the simulation statement above

essentially amounts to applying the composition lem-

mas we saw in Sect. 4.3: first for the while-loop (lemma

fwd_sim_while), and then for the sequences in the body

of the while-loop (lemma fwd_sim_seq). This decom-

poses the proof into simulation proofs between primi-

tive operations (e.g., between the pseudo-code x ←x / 2

and the assembly function multi_halve_u) that are han-

dled directly by simulation proofs we provide as a li-

brary (on the model of what we did in Sect. 5.2 for the

addition).

Observe that in the case of the prelude of the binary

extended gcd, the initial condition is necessary to estab-

lish the invariant required to simulate the while-loop. In

essence, this invariant limits the size of g relatively to u
so as to guarantee the absence of overflows (otherwise

simulation could not be established because of the mul-

tiplication by 2 occurring in the body of the loop). Yet,

this invariant does not deal with any gcd property. This

is an illustration of the fact that the proof of simulation

deals essentially with implementation-related aspects of

the verification, functional correctness being the mat-

ter of the correctness statement for the pseudo-code (as

summarized in the Hoare triple of Fig. 11 in our case).

6.5 Simulation for the binary extended gcd

Equipped with the simulation proofs for each auxiliary

function as illustrated in the previous section, we are

now in a position to prove the simulation between the

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 13

Definition prelude x y g :=
While x % 2 = O && y % 2 = O {

x ← x / 2 ;
y ← y / 2 ;
g ← g × 2 } .

Definition prelude_mips :=
multi_is_even_u_and rk rx ry a0 a1 ;
While (bne a0 r0) {

multi_halve_u rk rx a0 a1 a2 a3 ;
multi_halve_u rk ry a0 a1 a2 a3 ;
multi_double_u rk rg a0 a1 a2 a3 ;
multi_is_even_u_and rk rx ry a0 a1 } .

Fig. 12 Pseudo/assembly code for the prelude function of the binary extended gcd algorithm (see [5] for details)

binary extended gcd algorithm and its assembly im-

plementation, simply by appealing to the composition

lemmas. The formal statement is displayed in Fig. 13.

Lemma fwd_sim_begcd :
(∗ p r e d i c a t e s nodup e l i d e d ∗)
0 < vu < βk → 0 < vv < βk →
begcd g u v u1 u2 u3 v1 v2 v3 t1 t2 t3

.(state_mint d ,
fun st s h ⇒ uv_init vu vv u v st ∧

uv_bound rk s u v st k)
begcd_mips rk rg ru rv ru1 ru2 ru3 rv1 rv2 rv3

rt1 rt2 rt3 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 .

Fig. 13 Simulation for the binary extended gcd algorithm

The association list d was defined in the previous

section. The initial condition deserves some explana-

tion. The predicate uv_init has already been explained

in Sect. 6.2. The predicate uv_bound establishes an im-

portant link between the pseudo-code inputs and the

length of the payload of multi-precision integers in or-

der to guarantee the absence of overflows:

0 Definition uv_bound rk s u v st k :=
1 k = u2Z (J rk KR s) ∧
2 0 < k < 231 ∧
3 0 < J u KE st < βk−1 ∧ 0 < J v KE st < βk−1 .

Line 2 specifies that the length of the payload of the

multi-precision integers is smaller than 231, thus avoid-

ing any conversion issue due to the two’s complement

notation (this issue was already evoked in Sect. 3.3).

Line 3 specifies that the input values are strictly smaller

than βk−1 (not βk). This latter condition makes it pos-

sible to guarantee that there is no overflow during ex-

ecution. Indeed, as we have explained in Sect. 6.2, the

values of variables in the pseudo-code are all bounded

by the inputs during execution (to be precise, after each

invocation of init, halve, reset and subtract). So, at

intermediate steps, all the multi-precision integers only

require k words of payload. Yet, we cannot rule out

the possibility for overflows inside auxiliary functions

(consider for example the subtract function). We solve

this problem by reserving the kth word of the payload

for extra storage. This fact about the variables being

bounded transports from the pseudo-code to the assem-

bly code through the state_mint relation. Since this is

a non-trivial part of the proof of correctness of begcd,

it is very satisfactory to be able to avoid dealing with

this issue directly at the assembly level thanks to the

simulation relation.

6.6 Technical aspects of the formalization

We use the Coq proof-assistant extended with SSRe-

flect [13]. This is essentially to benefit from SSRe-

flect’s concise tactics; our development does not rely

crucially on SSReflect’s library.

The framework for pseudo-code (Sect. 4.1) and the

framework for assembly code (Sect. 2.2 and 3.1) essen-

tially come from previous work [1, 2, 18, 19]. Since our

development is rather long, their availability was impor-

tant to reduce the formalization burden. These frame-

works use two safe axioms: proof irrelevance and the ex-

tensionality of predicates [30]. Proof irrelevance is used

to provide finite maps with Leibniz equality. The exten-

sionality of predicates is used to equate equivalent Sepa-

ration logic assertions (type assert in Sect. 2.2) so that

rewriting can be performed using Coq’s native rewrite
tactic. The Setoid library could have been used as an

alternative. The operational semantics and Hoare logics

of the pseudo-code and the assembly code are actually

two instances of a module that factorizes proofs such as

the soundness of Hoare logic. This module can be used

to ease instantiation to another assembly language.

The introduction of simulation called for a few ex-

tensions to the above frameworks. We extended them

with several lemmas to reason about operational se-

mantics (e.g., lemmas to prove termination, see Sect.

5.1). But the main improvement lies maybe in the un-

derlying library for finite maps. We needed to extend

this library with lemmas to deal with deletions and

projections; this was made necessary by our definition

of the relation between arbitrary-precision integers and

multi-precision integers (see heap_mint in Sect. 4.4). We

also needed to provide tactics to deal with association

lists implemented as finite maps (the d in state_mint d),

e.g., proving automatically that two association lists

14 Reynald Affeldt

Definition init
u v u1 u2 u3 v1 v2 v3 t1 t2 t3 :=

u1 ← 1 ;
u2 ← 0 ;
u3 ← u ;
v1 ← v ;
v2 ← 1 − u ;
v3 ← v ;
If u % 2 = 1 Then
t1 ← 0 ;
t2 ← −1 ;
t3 ← − v

Else

t1 ← 1 ;
t2 ← 0 ;
t3 ← u .

Definition init_mips :=
multi_one_s ru1 rk a0 a1 a2 a3 ;
multi_zero_s ru2 ;
copy_s_u rk ru3 ru a0 a1 a2 a3 ;
copy_s_u rk rv1 rv a0 a1 a2 a3 ;
multi_one_s rv2 rk a0 a1 a2 a3 ;
multi_sub_s_u rk rv2 ru a0 a1 a2 a3 a4 a5 a6 ;
copy_s_u rk rv3 rv a0 a1 a2 a3 ;
multi_is_even_u rk ru a0 ;
If beq a0 , r0 Then

multi_zero_s rt1 ;
multi_one_s rt2 rk a0 a1 a2 a3 ;
multi_negate rt2 a0 ;
copy_s_u rk rt3 rv a0 a1 a2 a3 ;
multi_negate rt3 a0

Else

multi_one_s rt1 rk a0 a1 a2 a3 ;
multi_zero_s rt2 ;
copy_s_u rk rt3 ru a0 a1 a2 a3 .

Fig. 14 Pseudo/assembly code for the init function of the binary extended gcd algorithm (see [5] for details)

Definition halve u v t1 t2 t3 :=
If t1 % 2 = 0 && t2 % 2 = 0 Then

t1 ← t1 / 2 ;
t2 ← t2 / 2 ;
t3 ← t3 / 2

Else

t1 ← (t1 + v) / 2 ;
t2 ← (t2 − u) / 2 ;
t3 ← t3 / 2 .

Definition halve_mips :=
multi_is_even_s_and rt1 rt2 a0 a1 a2 a3 ;
If bne a0 , r0 Then

multi_halve_s rt1 a0 a1 a2 a3 a4 a5 ;
multi_halve_s rt2 a0 a1 a2 a3 a4 a5 ;
multi_halve_s rt3 a0 a1 a2 a3 a4 a5

Else
multi_add_s_u rk rt1 rv a0 a1 a2 a3 a4 a5 a6 ;
multi_halve_s rt1 a0 a1 a2 a3 a4 a5 ;
multi_sub_s_u rk rt2 ru a0 a1 a2 a3 a4 a5 a6 ;
multi_halve_s rt2 a0 a1 a2 a3 a4 a5 ;
multi_halve_s rt3 a0 a1 a2 a3 a4 a5 .

Fig. 15 Pseudo/assembly code for the halve function of the binary extended gcd algorithm (see [5] for details)

Definition reset
u v u1 u2 u3 v1 v2 v3 t1 t2 t3 :=

If t3 ≥ 0 Then
u1 ← t1 ;
u2 ← t2 ;
u3 ← t3

Else

v1 ← v − t1 ;
v2 ← − (u + t2) ;
v3 ← − t3 .

Definition reset_mips :=
pick_sign rt3 a0 a1 ;
If bgez a1 Then

copy_s_s ru1 rt1 a0 a1 a2 a3 a4 a5 ;
copy_s_s ru2 rt2 a0 a1 a2 a3 a4 a5 ;
copy_s_s ru3 rt3 a0 a1 a2 a3 a4 a5

Else

multi_sub_s_s_u rk rv1 rt1 rv a0 a1 a2 a3 a4 a5 a6 a7 ;
multi_negate rv1 a0 ;
multi_add_s_s_u rk rv2 rt2 ru a0 a1 a2 a3 a4 a5 a6 a7 ;
multi_negate rv2 a0 ;
copy_s_s rv3 rt3 a0 a1 a2 a3 a4 a5 ;
multi_negate rv3 a0 .

Fig. 16 Pseudo/assembly code for the reset function of the binary extended gcd algorithm (see [5] for details)

are disjoint. This part of the development is reusable

because it is not tied to the target programming lan-

guages. The file that defines simulations and proves re-

lated properties (Sect. 4.2–4.4) amounts to 2480 lines

of Coq script (coqwc figures).

Table 1 provides an overview of the arithmetic func-

tions discussed in this paper. It complements previous

work [1,2] on unsigned modular arithmetic (see Sect. 7).

The library that makes possible the verification of the

binary extended gcd algorithm consists of a total of

313 lines of assembly code, spread over 25 functions.

Almost all functions come with correctness proofs in

the form of Hoare triples (for a total of 7746 lines of

Coq script). Most functions are equipped with simula-

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 15

Definition subtract
u v u1 u2 u3 v1 v2 v3 t1 t2 t3 :=

t1 ← u1 − v1 ;
t2 ← u2 − v2 ;
t3 ← u3 − v3 ;
If 0 ≥ t1 Then
t1 ← t1 + v ;
t2 ← t2 − u

Else
skip .

Definition subtract_mips :=
multi_sub_s_s_s rk rt1 ru1 rv1 a0 a1 a2 a3 a4 a5 a6 a7 a8 ;
multi_sub_s_s_s rk rt2 ru2 rv2 a0 a1 a2 a3 a4 a5 a6 a7 a8 ;
multi_sub_s_s_s rk rt3 ru3 rv3 a0 a1 a2 a3 a4 a5 a6 a7 a8 ;
pick_sign rt1 a0 a1 ;
I f b lez a1 Then

multi_add_s_u rk rt1 rv a0 a1 a2 a3 a4 a5 a6 ;
multi_sub_s_u rk rt2 ru a0 a1 a2 a3 a4 a5 a6

Else

nop .

Fig. 17 Pseudo/assembly code for the subtract function of the binary extended gcd algorithm (see [5] for details)

tion proofs (for a total of 4753 lines of Coq script). The

binary extended gcd algorithm is written with 49 lines

of pseudo-code and 68 lines of assembly code (using the

library of functions above). The simulation proof for the

binary extended gcd algorithm consists of 1466 lines of

a systematic Coq script.

We did not seek for brevity in Coq scripts so that

above figures have to be understood as improvable up-

per bounds.

7 Related Work

Verification of assembly programs using proof-assistants

is not a new topic. The complexity of dealing with low-

level aspects has already triggered much research. Tan

and Appel tackled the problem of reasoning about un-

structured control-flow [28]. They proposed a program

logic that handles multiple-entry and multiple-exit pro-

gram fragments in a way that makes possible modular

reasoning. It has been instantiated to SPARC machine

code, proved sound in Twelf, and applied to estab-

lish safety properties for proof-carrying code. Myreen

and Gordon addressed the issue of Hoare logic reason-

ing for realistically modeled machine code [22]. They

model finite data and finite memory, and their Hoare

logic still accounts for multiple-entry and multiple-exit

program fragments using position-dependent specifica-

tions. It has been in particular instantiated to ARM

machine code and applied to the verification of arith-

metic operations [23]. In subsequent work, Myreen also

provided a solution to the problem of verification of self-

modifying code by treating code as data in an even more

precise model that includes an instruction cache [24].

The corresponding Hoare logic has been instantiated

to x86 machine code and applied to the verification

of just-in-time compilers. In our work, we do not sup-

port advanced reasoning features about unstructured

control-flow, position-dependent or self-modifying code

because they are not required to implement arithmetic

functions. Still, our model of SmartMIPS is realistic

enough (data and memory are finite [1]) so that veri-

fied programs can be turned to standard SmartMIPS

programs (with labeled jumps) via certified compila-

tion [2].

As already explained in Sect. 1, there exist other

experiments about formal verification of low-level un-

signed multi-precision arithmetic. In previous work, we

formally verified in the Coq proof-assistant several other

assembly functions for unsigned multi-precision arith-

metic [1, 2]. In fact, modular multiplication, modular

squaring, and modular exponentiation (all based on the

Montgomery multiplication) as well as pseudo-random

number generation (the Blum-Blum-Shub algorithm)

come as a complement to the library summarized in Ta-

ble 1. Myreen and Gordon also verified some modular

arithmetic written in machine code in the HOL proof-

assistant [23]. Their experiment illustrates an original

approach that splits verification of machine code be-

tween verification of a functional version of the algo-

rithm and a proof that the machine code implements

the functional version. Berghofer also carried out ver-

ification of multi-precision arithmetic [7] but with a

higher-level language: the Spark subset of Ada. The

standard tool suite for Spark comprises a generator of

verification conditions that are passed to an automatic

verifier; when automation fails, it reverts to an inter-

active verification tool to which reasoning rules can be

added without rigorous consistency checks. This is this

interactive verification tool that Berghofer proposes to

replace with the Isabelle/HOL proof-assistant. The re-

sulting environment has been applied to the verification

of a library for multi-precision integers. It features func-

tions similar to Table 1 and our previous work [1, 2]

but does not seem to address signed multi-precision

arithmetic. Our work therefore appears as an original

effort to build a fully-formalized library of low-level

multi-precision arithmetic encompassing signed multi-

precision arithmetic.

All things being relative, our approach shares sim-

ilarities with the one used to formally verify the seL4

microkernel [10,32] in Isabelle/HOL. There also, refine-

ment is established by forward simulation, itself proved

16 Reynald Affeldt

Description Proof scripts Assembly (l.o.c.)

Arithmetic computations

x←0 x unsigned multi_zero_u_{prg,triple,simu}.v 6
x signed multi_zero_s_{prg,triple,simu}.v 1

x←1 x unsigned multi_one_u_{prg,triple,simu}.v 3
x signed multi_one_s_{prg,triple,simu}.v 12

x←x / 2 x unsigned multi_halve_u_{prg,triple,simu}.v 13
x signed multi_halve_s_{prg,triple,simu}.v 22

x←x * 2 x unsigned multi_double_u_{prg,triple,simu}.v 12
x←y x signed, y unsigned copy_s_u_{prg,triple,simu}.v 7

x, y signed copy_s_s_{prg,triple,simu}.v 8
x←-x x signed multi_negate_{prg,triple,simu}.v 3
x++ x unsigned multi_incr_u_{prg,triple}.v 15
x←x + y x, y unsigned multi_add_u_u_{prg,triple}.v 12

x signed, y unsigned multi_add_s_u_{prg,triple,simu}.v 27
z←x + y z, x, y unsigned multi_add_u_u_u_triple.v

z, x signed, y unsigned multi_add_s_s_u_{prg,triple,simu}.v 24
x←x - y x, y unsigned multi_sub_u_u_{L,R}_{prg,triple}.v 19

x signed, y unsigned multi_sub_s_u_{prg,triple,simu}.v 28
x, y signed multi_sub_s_s_{prg,triple,simu}.v 9

z←x - y z, x, y unsigned multi_sub_u_u_u_triple.v
z, x signed, y unsigned multi_sub_s_s_u_{prg,triple,simu}.v 34
z, x, y signed multi_sub_s_s_s_{prg,triple,simu}.v 10

Arithmetic tests

x
?
=y, x

?
<y, x

?
>y x, y unsigned multi_lt_{prg,triple,simu}.v 15

sign of x x signed pick_sign_{prg,triple,simu}.v 9
parity x unsigned multi_is_even_u_{prg,triple,simu}.v 6

x signed multi_is_even_s_{prg,triple,simu}.v 8
x, y unsigned multi_is_even_u_and_{prg,simu}.v 3

x
?
= 0 x unsigned multi_is_zero_u_{prg,triple}.v 7

Binary extended gcd algorithm

Correctness for the pseudo-code (Fig. 10) and variants begcd.v
Simulation for the prelude auxiliary function (Fig. 12) begcd_mips_prelude.v 6
Simulation for the init auxiliary function (Fig. 14) begcd_mips_init.v 18
Simulation for the halve auxiliary function (Fig. 15) begcd_mips_halve.v 11
Simulation for the reset auxiliary function (Fig. 16) begcd_mips_reset.v 12
Simulation for the subtract auxiliary function (Fig. 17) begcd_mips_subtract.v 9
Simulation for the begcd main function (Fig. 20) begcd_mips.v 12

Table 1 Overview of our library of formally verified low-level arithmetic functions (see [1, 2] for modular arithmetic)

using Hoare logic. A first refinement step relates an ab-

stract specification and an executable model; a second

refinement step relates the executable model and a C

implementation. It is tempting but difficult to compare

the pseudo-code in our work with the abstract specifi-

cation above because the latter is more detailed: it fea-

tures nondeterminism, abstract functions are used to

model pointers, some parts of the model are very con-

crete (e.g., decoding of machine registers to feed system

calls [10]). Similarly, the executable model of seL4 is

(essentially) a Haskell program that describes the low-

level design with a high degree of detail (it uses machine

words, doubly linked lists, etc.); as a consequence, the C

source code may make small optimizations but is struc-

turally similar [32]. In comparison, a pseudo-code in-

struction and a related assembly function in our work

seem more apart than the executable model and the C

implementation in [32]. Our work may have informa-

tive value because we are dealing with simulation and

assembly whereas assembly is out of scope in [10,32].

Simulation proofs are also at the heart of the for-

mal verification of the compiler of Leroy [16]. In this

work, relations are established between the languages

of each compiler pass. In our work, the relation is es-

tablished between pseudo-code and assembly, that are

more apart than two consecutive intermediate compila-

tion languages. Indeed, our goal departs from the one

of certifying a set of program transformations (stream-

lined as a compiler) in that we aim at providing a library

to ease formal proof of correctness about hand-written

assembly programs.

Yang has already combined simulation and Separa-

tion logic in the form of relational Hoare logic [33], that

Crespo and Kunz mechanized [11]. In relational Sepa-

ration logic, the programs that are related are writ-

ten in the same abstract, high-level language (storage

is limited to integers and there are native list values).

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 17

In contrast, we relate very different programming lan-

guages (one of them being a realistic assembly lan-

guage) and are seeking to establish data refinement

rather than program equivalence. Also, the validating

experiment by Yang [33] (the Schorr-Waite algorithm)

is much smaller and therefore technically addresses dif-

ferent issues. Yet, Crespo and Kunz [11] hint at im-

provements to go beyond structurally equivalent pro-

grams, which, in our case, is an extension that highly-

optimized assembly code is bound to call for.

Our work is about the verification of implementa-

tions of multi-precision arithmetic. It naturally raises

the question of the verification of implementations of

multiple-precision floating-point computations. This is-

sue is certainly more challenging, in particular in terms

of specification because floating-point arithmetic is used

to implement an approximation of real numbers. To

tackle this problem, Boldo and Melquiond have recently

been developing a library for proving floating-point al-

gorithms in Coq [8].

8 Conclusion

We proposed an approach for the construction of a li-

brary of formally verified low-level arithmetic functions.

We introduced a formalization of data structures for

signed multi-precision arithmetic. Using this formaliza-

tion, it becomes possible to formally verify basic assem-

bly functions about signed multi-precision arithmetic.

This is done directly, by appealing in particular to the

frame rule of Separation logic to handle composition

of code. In order to deal with larger functions (beyond

primitive operations such as addition), we proposed an

approach based on simulation. It consists in showing

formally a simulation relation between the pseudo-code

and the assembly, so that the pseudo-code can serve

as a specification of the implementation, as this is usu-

ally done in standard handbooks, and as it is expected

by programmers. Simulation are proved directly for the

most primitive arithmetic functions so as to produce a

library of simulation proofs. Table 1 gives an overview

of the library we have constructed in this way. Using

such a library, one can then work compositionally to es-

tablish simulation for larger functions. This latter point

was illustrated thoroughly with an assembly implemen-

tation of the binary extended gcd algorithm.

In the simulation proofs, we made the hypothesis

that multi-precision integers share the same length, but

since we use pointers in the data structure for signed

integers, we can extend our work to deal with variable

size multi-precision integers. We plan to do so by con-

nection with a formal model for the C programming

language that we have been developing in the context

of another project [4], so that dynamic allocation can

be provided by C’s malloc. As an application of the

resulting library, we plan to investigate the trustful im-

plementation of realistic cryptographic schemes.

References

1. Affeldt, R., Marti, N.: An Approach to Formal Verification
of Arithmetic Functions in Assembly. In: Proceedings of the
11th Annual Asian Computing Science Conference. LNCS,
vol. 4435, pp. 346–360. Springer, Heidelberg (2008)

2. Affeldt, R., Nowak, D., Yamada, K.: Certifying Assembly
with Formal Security Proofs: the Case of BBS. Sci. Comput.
Program, 77(10–11), 1058–1074 (2012)

3. Affeldt, R.: On Construction of a Library of Formally Veri-
fied Low-level Arithmetic Functions. In: Proceedings of the
27th ACM SIGAPP Symposium On Applied Computing
(SAC 2012), Software Verification and Testing Track, vol. 2,
pp. 1326-1331. ACM (2012)

4. Affeldt, R., Marti, N.: Towards Formal Verification of TLS
Network Packet Processing Written in C. In: Proceedings of
the 7th ACM SIGPLAN Workshop on Programming Lan-
guages meets Program Verification (PLPV 2013), pp. 35–
46. ACM (2013)

5. Affeldt, R.: A Library for Formal Verification of Low-level
Programs. Coq documentation. http://staff.aist.go.jp/
reynald.affeldt/coqdev (last access: 2013/02/25).

6. Benton, N.: Simple relational correctness proofs for static
analyses and program transformations. In: Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2004), pp. 14–25.
ACM (2004)

7. Berghofer, S.: Verification of Dependable Software using
Spark and Isabelle. In: Proceedings of the 6th International
Workshop on Systems Software Verification Proceedings,
pp. 48–65 (2011)

8. Boldo, S., Melquiond, G.: Flocq: A Unified Library for
Proving Floating-Point Algorithms in Coq. In: Proceed-
ings of the 20th IEEE Symposium on Computer Arith-
metic (ARITH 2011), pp. 243–252. IEEE Computer Society
(2011)

9. Brent, R.P., Zimmermann, P.: Modern Computer Arith-
metic. Version 0.5.9 (7 October 2010). Available at http:
//www.loria.fr/˜zimmerma/mca/mca-cup-0.5.9.pdf (last ac-
cess: 2012/12/03). Final version published by Cambridge
University Press (2010)

10. Cock, D., Klein, G., Sewell, T.: Secure Microkernels,
State Monads and Scalable Refinement. In: Proceedings
of the 21st International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2008). LNCS, vol. 5170,
pp. 167–182. Springer, Heidelberg (2008)

11. Crespo, J.M., Kunz, C.: A Machine-Checked Framework
for Relational Separation Logic. In: Proceedings of the 9th
International Conference on Software Engineering and For-
mal Methods (SEFM 2011). LNCS, vol. 7041, pp. 122–137.
Springer, Heidelberg (2011)

12. ElGamal, T.: A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory 31(4), 469–472 (1985)

13. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Re-
flection Extension for the Coq System. Technical Report
6455. Version 11. INRIA (2012)

14. Hur, C.-K., Dreyer, D.: A Kripke logical relation be-
tween ML and assembly. In: Proceedings of the 38th ACM

http://staff.aist.go.jp/reynald.affeldt/coqdev
http://staff.aist.go.jp/reynald.affeldt/coqdev
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.9.pdf
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.9.pdf

18 Reynald Affeldt

SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 133–146. ACM (2011)

15. Knuth, D.E.: The Art of Computer Programming. Vol. 2,
3rd edition. Addison-Wesley (1997)

16. Leroy, X.: A formally verified compiler back-end. J. Au-
tom. Reasoning. 43(4), 363–446 (2009)

17. Lynch, N.A., Vaandrager, F.W.: Forward and Backward
Simulations Part I: Untimed Systems. Inform. Comput.
121(2), 214–233 (1995)

18. Marti, N., Affeldt, R., Yonezawa, A.: Formal Verifica-
tion of the Heap Manager of an Operating System using
Separation Logic. In: Proceedings of the 8th International
Conference on Formal Engineering Methods (ICFEM 2006).
LNCS, vol. 4260, pp. 400-419. Springer, Heidelberg (2006).

19. Marti, N., Affeldt, R.: A Certified Verifier for a Frag-
ment of Separation Logic. Computer Software 25(3), 135–
147 (2008)

20. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Hand-
book of Applied Cryptography. 5th printing. CRC Press
(2001)

21. MIPS Technologies: MIPS32 4KS Processor Core Family
Software User’s Manual (2001)

22. Myreen, M.O., Gordon, M.J.C.: Hoare Logic for Real-
istically Modelled Machine Code. In: Proceedings of the
13th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2007).
LNCS, vol. 4424, pp. 568–582. Springer, Heidelberg (2007)

23. Myreen, M., Gordon, M.: Verification of Machine Code
Implementations of Arithmetic Functions for Crypto-
graphy. In: TPHOLs Emerging Trends Proceedings. Tech-
nical report 364/07. Department of Computer Science, Uni-
versity of Kaiserslautern (2007)

24. Myreen, M.O.: Verified just-in-time compiler on x86. In:
Proceedings of the 37th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL
2010), pp. 107–118. ACM (2010)

25. Reynolds, J.C.: The Craft of Programming. Prentice-Hall
International (1981).

26. Reynolds, J.C.: Separation Logic: A Logic for Shared Mu-
table Data Structures. In: Proceedings of the 17th IEEE
Symposium on Logic in Computer Science (LICS 2002),
pp. 55–74. IEEE Computer Society (2002)

27. Shoup, V.: NTL: A Library for doing Number Theory.
Version 5.5.2. Available at http://www.shoup.net/ntl (last
access: 2012/12/03) (2009)

28. Tan, G., Appel, A.W.: A Compositional Logic for Control
Flow. In: Proceedings of the 7th International Conference
on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI 2006). LNCS, vol. 3855, pp. 80–94. Springer,
Heidelberg (2006)

29. The Coq Proof Assistant: Reference Manual. Ver. 8.4.
Available at http://coq.inria.fr. INRIA (2012)

30. The Coq Proof Assistant: Frequently Asked Questions.
Available at http://coq.inria.fr/faq. INRIA (2012)

31. The GNU Multi Precision Arithmetic Library. Edition
5.0.2. http://gmplib.org/ (2011)

32. Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock,
D., Norrish, M.: Mind the Gap: A Verification Framework
for Low-level C. In: Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2009). LNCS, vol. 5674, pp. 500–515. Springer,
Heidelberg (2009)

33. Yang, H.: Relational separation logic. Theor. Comput.
Sci. 375(1–3), 308–334 (2007)

A Additional assembly code

This section provides for the sake of completeness assembly
code that is explicitly referred to in the body of this paper.
See [5] for other assembly code or formal proofs.

Definition multi_sub_s_u :=
multi_is_zero_u rk ry a0 a1 a2 ;
If bne a2 , r0 Then
addiu a3 r0 016

Else

multi_sub_s_u0 rk rx ry a0 a1 a2 a3 a4 a5 rX .

Definition multi_sub_s_u0 :=
lw rX 416 rx ; (∗ pay l oad o f X ∗)
pick_sign rx a0 a1 ;
If bgez a1 Then (∗ 0 ≤ x ? ∗)
If beq a1 , r0 Then (∗ x = 0 ? ∗)
copy_u_u rk rX ry a2 a3 a4 ;
addiu a3 r0 016 ; (∗ no o v e r f l o w ∗)
sw rk 016 rx ; (∗ f i x s i z e ∗)
multi_negate rx a0

Else
multi_lt rk rX ry a0 a1 a5 a2 a3 a4 ;
If beq a5 , r0 Then (∗ y ≤ x ? ∗)
If beq a2 , r0 Then (∗ x = y ? ∗)
addiu a3 r0 016 ; (∗ no o v e r f l o w ∗)
sw r0 016 rx (∗ f i x s i z e ∗)

Else (∗ y < x ∗)
multi_sub_u_u rk rX ry rX a0 a1 a2 a3 a4 a5

Else (∗ y > x ∗)
multi_sub_u_u rk ry rX rX a0 a1 a2 a3 a4 a5 ;
multi_negate rx a0

Else (∗ x < 0 ∗)
addiu a3 r0 116 ;
multi_add_u_u rk a3 ry rX rX a0 a1 a2 ;
mflo a3 .

Fig. 18 In-place signed-unsigned subtraction (appears in
Fig. 5)

Definition multi_add_u_u :=
addiu a0 r0 016 ;
addiu rZ rz 016 ;
multu r0 r0 ;
While (bne a0 rk) {

lwxs rX a0 rx ;
maddu rX r1 ;
lwxs rX a0 ry ;
maddu rX r1 ;
mflhxu rX ;
sw rX 016 rZ ;
addiu rZ rZ 416 ;
addiu a0 a0 116 } .

Fig. 19 Unsigned-unsigned addition (appears in Fig. 4 and
18)

http://www.shoup.net/ntl
http://coq.inria.fr
http://coq.inria.fr/faq
http://gmplib.org/

On Construction of a Library of Formally Verified Low-level Arithmetic Functions 19

Definition begcd_mips rk rg ru rv ru1 ru2 ru3
rv1 rv2 rv3 rt1 rt2 rt3 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 :=
multi_one_u rk rg a0 a1 ;
prelude_mips rk rg ru rv a0 a1 a2 a3 ;
init_mips rk ru rv ru1 ru2 ru3 rv1 rv2 rv3

rt1 rt2 rt3 a0 a1 a2 a3 a4 a5 a6 ;
pick_sign rt3 a0 a1 ;
While (bne a1 r0) {
multi_is_even_s rt3 a0 a1 a2 ;
While (bne a2 r0) {
halve_mips rk ru rv rt1 rt2 rt3

a0 a1 a2 a3 a4 a5 a6 ;
multi_is_even_s rt3 a0 a1 a2 } ;

reset_mips rk ru rv ru1 ru2 ru3 rv1 rv2 rv3
rt1 rt2 rt3 a0 a1 a2 a3 a4 a7 a8 a9 ;

subtract_mips rk ru rv ru1 ru2 ru3 rv1 rv2 rv3
rt1 rt2 rt3 a0 a1 a2 a3 a4 a5 a6 a7 a8 ;

pick_sign rt3 a0 a1 } .

Fig. 20 Assembly code for the main function of the binary
extended gcd algorithm (see Fig. 10 for the corresponding
pseudo-code)

	Introduction
	Multi-precision integers
	Verification of primitive arithmetic functions
	Verification using simulation
	Simulation for primitive arithmetic functions
	Application: Binary extended gcd algorithm
	Related Work
	Conclusion
	Additional assembly code

