
Formal Verification of Arithmetic Functions in SmartMIPS Assembly∗

Reynald Affeldt† Nicolas Marti‡

†Research Center for Information Security (RCIS), ‡Department of Computer Science,
National Institute of Advanced Industrial Science and Technology (AIST) University of Tokyo

Abstract
In embedded systems, the recent trend is to man-

ufacture processors with application-specific exten-
sions. This makes it often necessary to write assem-
bly programs to take advantage of the added hard-
ware facilities. In such situations, formal verifica-
tion is technically difficult because the programs in
question manipulate data in a bitwise fashion, us-
ing non-standard specialized instructions, and under
strict constraints for memory usage. In this paper, we
propose an encoding of Hoare logic in the Coq proof
assistant for formal verification of assembly programs
that manipulate machine integers and bounded mem-
ory. Using this encoding, we formally verify arith-
metic functions used in cryptography and written in
SmartMIPS, an extension of the MIPS instruction set
for smartcards.

1 Introduction
In embedded systems, the recent trend is to man-

ufacture processors with application-specific exten-
sions. For example, SmartMIPS is an application-
specific extension of the MIPS32 4Km processor core:
it extends the core instruction set with instructions to
enhance cryptographic calculations and improve the
performance of virtual machines [1].

In order to take advantage of the hardware facili-
ties added by application-specific extensions, it is of-
ten necessary to write assembly programs. In such
situations, formal verification is technically difficult
because the programs in question manipulate data in
a bitwise fashion, using non-standard specialized in-
structions, and under strict constraints for memory
usage. In particular, such verifications require much
effort to check overflow conditions and the validity of
memory accesses.

∗This work has been presented at the 23rd Workshop
of the Japan Society for Software Science and Technology:
http://www.ipl.t.u-tokyo.ac.jp/jssst2006/.

In this paper, we propose an encoding of Hoare
logic [2] in the Coq proof assistant [3] for formal ver-
ification of assembly programs that manipulate ma-
chine integers and bounded memory. First, we de-
velop a library for machine integers, with lemmas for
overflow conditions. Second, we use this library to
encode the separation logic [6] variant of Hoare logic,
that extends traditional Hoare logic with a native no-
tion of mutable memory; because of our use of ma-
chine integers to access memory, the accessible range
of addresses is natively bounded.

Using this encoding, we formally verify arithmetic
functions used in cryptography and written in Smart-
MIPS. Arithmetic functions typically deal with over-
flow conditions and bit-level predicates to specify the
usage of carries. In particular, we verify an optimized
implementation of the Montgomery multiplication,
that is used in most public-key cryptosystems.

This paper is organized as follows. In Sect. 2, we
explain how we encode machine-integer arithmetic in
Coq. In Sect. 3, we explain how we encode separa-
tion logic for SmartMIPS in Coq. In Sect. 4, we ex-
plain how we apply our encoding to the verification of
SmartMIPS functions for multi-precision arithmetic.
In Sect. 5, we comment on technical aspects of our
experiments. In Sect. 6, we review related work. In
Sect. 7, we conclude and comment on future work.

2 Machine Integers

In this section, we explain how we encode machine-
integer arithmetic in Coq. This encoding is important
for formal verification of assembly programs because
many properties of instructions depend on the physi-
cal representation of data in computers, and this has
often counter-intuitive consequences. For example,
in the C programming language, the (signed) integer
“−1” happens to be larger than any unsigned inte-
ger. Another example is the remainder of a signed
integer: the sign of the result depends on the value

1

of the input. Overlooking such problems often leads
to bugs.

In order to encode machine integers faithfully, our
approach is (1) to provide an encoding of the com-
puter circuitry in terms of lists of bits, (2) to prove
the properties of the computer circuitry, in particu-
lar w.r.t. the interpretation of lists of bits as decimal
integers, and (3) to encapsulate these results in an
abstract type for machine integers. There are two ad-
vantages in adopting this encoding approach: there
is a close correspondance with the hardware, thus en-
abling the safe formalization of most properties useful
for verification, and it is easy to extend the abstract
type with new operations defined as recursive func-
tions over lists of bits.

2.1 Hardware Arithmetic

The computer circuitry can be modeled by
recursive functions over lists of bits, and the
properties of these functions can be proved
by induction. In the following, we assume
that bits are represented by the inductive type:
Inductive bit : Set := o : bit | i : bit.

Arithmetic Operations For illustration, let us con-
sider the addition. It can be encoded as a recur-
sive function that does bitwise comparisons and carry
propagation:

(* least significant bit first *)
Fixpoint add_lst’ (a b:list bit) (carry:bit)
{struct a} : list bit := match (a, b) with
(o::a’, o::b’) => carry :: add_lst’ a’ b’ o

| (i::a’, i::b’) => carry :: add_lst’ a’ b’ i
| (_::a’, _::b’) => match carry with

o => i :: add_lst’ a’ b’ o
| i => o :: add_lst’ a’ b’ i

end
| _ => nil
end.

(* most significant bit first *)
Definition add_lst a b carry :=
rev (add_lst’ (rev a) (rev b) carry).

The hardware properties of the addition such as com-
mutativity can be proved by induction:

Lemma add_lst_com : ∀ a b carry,
add_lst a b carry = add_lst b a carry.

Other arithmetic operations and their properties are
encoded similarly.

Signed Integers MIPS distinguishes between un-
signed integers and signed integers in two’s comple-
ment notation. The negation of a signed integer is
defined using ones’ complement and addition:

Definition cplt b :=
match b with i => o | o => i end.

Fixpoint cplt1 (lst:list bit) {struct lst} :
list bit := match lst with

nil => nil
| hd :: tl => cplt hd :: cplt1 tl

end.

Definition cplt2 lst := add_lst (cplt1 lst)
(zero_extend_lst (length lst - 1) (i::nil)) o.

The properties of complement notations are essential
to prove the correctness of arithmetic operations. In
practice, the most important property turns out to
be the relation between the two’s complement of a
list and its tail:

Lemma cplt2_prop : ∀tl, ~(∃k, tl = zeros k) →
∀hd, ~(∃k, hd::tl = i::zeros k) →
cplt2 (hd::tl) = cplt hd :: cplt2 tl.

The conditions state that the list (hd::tl) is neither
zero, nor the “weird number” (i followed by os).

2.2 Programmer’s View

In general, the programmer sees a list of bits
an::...::a0 as the encoding of the integer (an . . . a0)2
(in base 2). Depending on the context, this integer is
unsigned, in which case its decimal value is an2n+· · ·+
a0, or signed in two’s complement notation, in which
case its decimal value is −an2n+an−12n−1+· · ·+a0.
Let us note in Coq [[lst]]u (resp. [[lst]]s) the dec-
imal value of the list of bits lst seen as an unsigned
(resp. signed) integer.

Integers Modulo Because of the finiteness of regis-
ters, list of bits actually implement arithmetic mod-
ulo. As a consequence, the hardware addition be-
haves as the decimal addition only when non-overflow
conditions are met, otherwise the result is only equal
modulo (2^^n stands for the power function 2n):

Lemma add_lst_nat : ∀ n a b,
length a = n → length b = n →
[[a]]u + [[b]]u < 2^^n →
[[add_lst a b o]]u = [[a]]u + [[b]]u.

Lemma add_lst_nat_overflow : ∀ n a b,
length a = n → length b = n →
2^^n ≤ [[a]]u + [[b]]u →
[[add_lst a b o]]u = [[a]]u + [[b]]u - 2^^n.

There are similar properties for other arithmetic op-
erations, and signed integers.

Relation Between Signed and Unsigned Integers

Positive signed integers coincide with unsigned inte-
gers (equivalently, unsigned integers smaller than half
of the modulus coincide with signed integers):

2

Lemma slst2Z_ulst2Z_pos : ∀ n lst,
length lst = n → 0 ≤ [[lst]]s →
[[lst]]s = [[lst]]u.

Negative signed integers are equal to unsigned inte-
gers modulo:

Lemma slst2Z_ulst2Z_neg : ∀ n lst,
length lst = n → [[lst]]s < 0 →
[[lst]]s = [[lst]]u - 2^^n.

2.3 Abstract Type

We have encapsulated all the functions and prop-
erties about lists of bits in a module that provides
an abstract type for machine integers. This abstract
type appears as a type constructor where the length
of the underlying list of bits is explicit:

Parameter int : nat → Set.

Technically, it is implemented using dependent pairs.
A machine integer of size n is a pair of a list of bits
with the proof that its length is equal to n:

Inductive int (n:nat) : Set := mk_int :
∀ (lst:list bit), length lst = n → int n.

Here follows an excerpt of the module for machine
integers:

Parameter add : ∀ n, int n → int n → int n.
Notation "a ’(+)’ b" := (add a b).

Parameter u2Z : ∀ n, int n → Z.
Parameter add_u2Z : forall n (a b:int n),
u2Z a + u2Z b < 2^^n →
u2Z (a (+) b) = u2Z a + u2Z b.

Parameter add_u2Z_overflow : ∀ n (a b:int n),
2^^n ≤ u2Z a + u2Z b →
u2Z (a (+) b) = u2Z a + u2Z b - 2^^n.

Equipped with this module, one can derive prop-
erties needed for formal verification of assembly pro-
grams. Let us illustrate this point with an exam-
ple. Arithmetic operations may use a mix of un-
signed and signed integers. Depending on the speci-
fication, it may be important to check for overflows.
The lemma below captures for example the condi-
tions under which one can safely add an unsigned
and a signed integer:

Lemma add_u2Z_s2Z : ∀ n (a b:int n),
0 ≤ u2Z a + s2Z b < 2^^n →
u2Z (a (+) b) = u2Z a + s2Z b.

Concretely, this lemma says that it is safe to add
“232−8” with “−4” to find “232−12”, despite the
fact that both values are encoded as (1 · · · 1000)2 and
(1 · · · 100)2, whose addition would overflow if both
considered unsigned.

3 Hoare Logic for SmartMIPS
One difficulty of encoding in Coq a Hoare logic for

assembly is the faithful representation of bitwise in-
structions and low-level data such as machine inte-
gers. In this section, we explain how we use machine-
integer arithmetic defined in the previous section to
encode separation logic, a variant of Hoare logic, for
a subset of the SmartMIPS instruction set.

3.1 States

The state of a SmartMIPS processor is defined as
a tuple of a store of general-purpose registers, a store
of control registers, an integer multiplier, and a heap
(the mutable memory):

Definition state :=
gpr.store * cp0.store * multiplier.m * heap.h.

The module gpr is a finite map from the type gp_reg

of general-purpose registers to (32-bit) words, the
module cp0 is a finite map from the type cp0_reg of
control registers, and heap is a map from natural num-
bers to words. The restriction to a word-addressable
heap is just a convenience for the subset of Smart-
MIPS we target. These modules are implemented
using a module for finite maps developed in [8]. Let
us comment in detail on the implementation of the
multiplier module.

The SmartMIPS multiplier is a set of registers
called ACX, HI, and LO that has been designed to
enhance cryptographic computations. HI and LO are
32 bits long; ACX is only known to be at least 8 bits
long. We implement the multiplier as an abstract
data type m with three lookup functions acx, hi, and
lo that return resp. a machine integer of length at
least 8 bits and machine integers of length 32. At
any time, the contents of the multiplier can be inter-
preted as an unsigned integer by the function utoZ.
Here follows the corresponding excerpt of the module
interface:

Module Type MULTIPLIER.
Parameter acx_size : nat.
Parameter acx_size_min : 8 ≤ acx_size.
Parameter m : Set.
Parameter acx : m → int acx_size.
Parameter lo : m → int 32.
Parameter hi : m → int 32.
Parameter utoZ : m → Z.

The SmartMIPS instruction set features special in-
structions to take advantage of the SmartMIPS mul-
tiplier. For illustration, let us explain the encoding of
a typical instruction. The mflhxu instruction is exten-
sively used in arithmetic functions: it performs a di-
vision of the multiplier by β=232, whose remainder is

3

put in a general-purpose register and whose quotient
is left in the multiplier. The corresponding hardware
circuitry is essentially a shift: it puts the contents of
LO into some general-purpose register, puts the con-
tents of HI into LO, and zeroes ACX. Here is how we
implement the corresponding operation:

Definition mflhxu_op m :=
let (acx’, hi’) := (acx m, hi m) in
(Z2u acx_size 0, (zero_extend 24 acx’, hi’)).

(Z2u builds a machine integer from a relative integer.)
What is important for verification is the properties
of mflhxu w.r.t. the decimal value of the multiplier.
Such properties can be derived as lemmas from the
implementation of mflhxu_op. For example, the dec-
imal values of the multiplier before and after mflhxu

are related as follows (Zbeta n stands for βn =232n):

Lemma mflhxu_utoZ : ∀ m, utoZ m =
utoZ (mflhxu_op m) * Zbeta 1 + u2Z (lo m).

3.2 The Programming Language

We have encoded the syntax and semantics of a
subset of the SmartMIPS instruction set. In short,
this subset is a restriction to structured programs,
which are sufficient to model directly most arithmetic
functions. This section is not detailed because most
encoding techniques are standard (see [8] for exam-
ple).

The syntax of instructions is encoded as an induc-
tive type called cmd whose constructors encode in-
structions. For example, the excerpt below shows
the encoding of the syntax of add (the addition that
traps on overflow):

Inductive cmd : Set :=
add : gp_reg → gp_reg → gp_reg → cmd | ...

Similarly, we have defined other instructions for arith-
metic (addu that does not trap on overflow, addi that
adds a 16-bit constant with a general-purpose regis-
ter, and for bitwise conjunction, etc.), instructions for
memory accesses (lw and sw for loading and storing
words, lwxs for loads using scaled indexed address-
ing), instructions specific to the multiplier (maddu,
msubu, multu, mflhxu, etc.), and instructions for tests
(such as sltu, which is important to simulate carry
flags). The only control-flow operations are while-
loops, if-then-else branchings, and sequences. There
is a discrepancy w.r.t. MIPS assembly: in MIPS, the
first instruction that is syntactically after a condi-
tional branching is actually executed before; in our
encoding, the syntactic order reflects the execution
order.

3.3 Axiomatic Semantics

The axiomatic semantics (the triples) is a relation
between pre/post-conditions and instructions.

Pre/post-conditions are written using assertions,
defined as truth-functions from states to Prop, the
type of predicates in Coq (this technique of encoding
is known as shallow endoding):

Definition assert := gpr.store → cp0.store →
multiplier.m → heap.h → Prop.

For example, the assertion that is always true
is encoded as follows: Definition TT : assert :=

fun s s’ m h => True. One can similarly encode any
first-order predicate.

The axiomatic semantics in itself is encoded as an
inductive type called semax. For example, let us con-
sider the encoding of the triple for the instruction
add:

Inductive semax : assert→cmd→assert→Prop :=
semax_add: ∀ Q rs rt rd,
semax (upd_store_add rd rs rt Q)
(add rd rs rt) Q | ...

In the precondition, upd_store_add is a predicate
transformer that does a substitution and enforces the
overflow check:

Definition upd_store_add rd rs rt P : assert :=
fun s s’ m h => -2^^31 ≤ s2Z (gpr.lookup rs s) +
s2Z (gpr.lookup rt s) < 2^^31 ∧
P (gpr.update rd (gpr.lookup rs s (+)
gpr.lookup rt s) s) s’ m h.

In order to deal with heap-allocated data structures,
we extend the assertion language with connectives
from separation logic. For example, the mapsto con-
nective (var_e x 7→ a::b::...) holds for a heap that
contains an array of contiguous words a, b, . . . start-
ing at the address contained in register x. Another
example of a separating connective is the separating
conjunction: P ? Q holds for a state whose heap can
be divided into two sub-heaps such that P and Q re-
spectively hold for the “sub-states”. In practice, the
separating conjunction provides a concise way to ex-
press that two data structures reside in disjoint parts
of the heap.

4 Multi-precision Arithmetic
Using our encoding in Coq of separation logic for

SmartMIPS, we have written, specified, and verified
the implementations of several multi-precision arith-
metic functions. In this section, we explain the veri-
fication of the Montgomery multiplication.

4

4.1 A Library for Specifications

For specification of arithmetic functions, we need
to introduce new predicates and functions. In par-
ticular, the writing of loop invariants requires predi-
cates to talk about “partial” multi-precision integers,
to represent the decimal values of partial products
for example. For this purpose, we use the Sum func-
tion: (Sum k A) represents the decimal value of the k

first words of the list of machine integers A. Another
useful definition is equality modulo; in the following,
a==b[[n]] is a Coq definition for a ≡ b[n].

For the rest, we can simply reuse predicates and
functions from the standard Coq library. For exam-
ple, in the following, (Nth 0 M) represents the first
element of the list of words M. More importantly, we
can reuse the standard predicates for relative integers
to specify overflow conditions; this is a benefit of our
use of shallow encoding and our lemmas that relate
machine integers to their decimal values.

4.2 Montgomery Multiplication

The Montgomery multiplication is a modular mul-
tiplication that is used in many implementations of
public-key crytposystems. Given three k-word in-
tegers X, Y, and M such that Sum k X * Sum k Y <

Sum k M, the Montgomery multiplication computes a
k+1-word integer Z such that:

Zbeta k * Sum (k+1) Z == Sum k X * Sum k Y [[Sum k M]]

The advantage of the Montgomery multiplication is
that it does not require a multi-precision division,
but uses shifts instead. For this to be possible, it is
necessary to pre-compute the modular inverse alpha

of the least significant word of the modulus:

u2Z (Nth 0 M) * u2Z alpha == -1 [[Zbeta 1]]

The implementation of the Montgomery multi-
plication we dealt with is the “Finely Integrated
Operand Scanning” (FIOS) variant [4]. Its main
characteristic is to have only one inner-loop, in which
it adds two products of 32-bit words. In general,
this addition is problematic because it does not fit
in the integer multiplier, but in SmartMIPS, the in-
teger multiplier is large enough.

The complete triple specifying the Montgomery
multiplication is displayed in Fig. 4.2.

5 Experiments
The table below summarize the sizes of verified

functions and of the corresponding proof scripts:

Arithmetic Size of proof scripts (lines)
function (insns) total assertions tactics

(ratio) (average)
addition (11) 853 199 (23%) 654 (59)

subtraction (22) 1546 359 (23%) 1187 (54)
multiplication (20) 1698 436 (26%) 1262 (63)
Montgomery (36) 3758 946 (25%) 2812 (78)

Proof scripts tend to be long because of the size of
assertions: pre/post-conditions occupy around 25%
of proof scripts. Since assertions only change a lit-
tle from step to step, appropriate tactics for forward
reasoning should get rid of this overhead. The verifi-
cation of each step requires in average 70 calls to tac-
tics. Some steps are inherently difficult because low-
level manipulations of multi-precision integers require
many syntactic maniputations of goals and hypothe-
ses. Yet, many parts of proof scripts are repetitive
(trivial goals, obvious rewriting, etc.) and we al-
ready have a good deal of small-scale tactics. As a
mid-term goal, it should be possible to use in average
no more than 20 calls to tactics per step.

6 Related Work
Much work about encoding of assembly in proof

assistants has been done for proof-carrying code
(e.g., [7]). In this work, the encoded semantics al-
lows for unstructured control-flow but details such as
machine integers are not treated. For this reason,
these encodings cannot be directly reused for formal
verification of arithmetic functions, whose algorithms
require precise specifications regarding overflow con-
ditions and carry propagation.

The limitation to structured programs concretely
means that arbitrary jumps cannot be represented
directly. Ideally, we should encode a more general
assembly language with arbitrary jumps in which to
embed the subset presented in this paper. Such logics
already exist (e.g., [9]).

Other encodings of machine integers in Coq have
recently been proposed. Leroy has implemented a
library for integers modulo 232 using the relative in-
tegers of Coq instead of lists ot bits [10]. Chlipala
has implemented a library similar to ours based on
dependent vectors [11].

7 Conclusion
We have proposed an encoding in Coq of separation

logic for a subset of SmartMIPS. Using this encoding,
we have formally verified the implementation of sev-
eral arithmetic functions, including the Montgomery
multiplication, a function used in the implementation

5

of many cryptosystems. At the heart of our encod-
ing is a module for machine integers that makes it
possible to prove formally the lemmas, such as over-
flow conditions, needed for verification of assembly
programs.

In order to verify programs involving several func-
tions, we are currently working on an encoding of
function calls and returns. We are also planning to
encode the semantics of MIPS exceptions, so as to
enable verification of embedded systems.

Acknowledgments The authors thank Pascal Pail-
lier at Gemplus/Gemalto for providing explanations
about the Montgomery multiplication.

References
[1] MIPS Technologies. MIPS32 4KS Processor

Core Family Software User’s Manual.

[2] C. A. R. Hoare. An Axiomatic Basis for Com-
puter Programming. Communications of the
ACM, 12(10):576–585, 1969.

[3] The Coq Proof assistant. http://coq.inria.
fr.

[4] Ç. Kaya Koç, T. Acar, and B. S. Kaliski Jr. An-
alyzing and Comparing Montgomery Multiplica-
tion Algorithms. IEEE Micro 16(3):26–23, 1996.

[5] IEEE Computer Society. 17th IEEE Symposium
on Logic in Computer Science (LICS 2002).

[6] J. C. Reynolds. Separation Logic: A Logic for
Shared Mutable Data Structures. In [5].

[7] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier,
and Z. Ni. A Syntactic Approach to Founda-
tional Proof-Carrying Code. In [5].

[8] N. Marti, R. Affeldt, and A. Yonezawa. Formal
Verification of the Heap Manager of an Operat-
ing System using Separation Logic. In 8th In-
ternational Conference on Formal Engineering
Methods (ICFEM 2006).

[9] G. Tan and A. W. Appel. A Compositional Logic
for Control Flow. In 7th International Confer-
ence on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI 2006).

[10] X. Leroy. Formal certification of a compiler back-
end. In 33rd ACM Symposium on Principles of
Programming Languages (POPL 2006).

[11] A. Chlipala. Modular Development of Certified
Program Verifiers with a Proof Assistant. In
11th ACM International Conference on Func-
tional Programming (ICFP 2006).

6

Lemma montgomery_specif : ∀ nk (Hk:nk > O) nx ny nm nz
(Hnx: 4 * nx + 4 * nk < Zbeta 1) (Hny: 4 * ny + 4 * nk < Zbeta 1)
(Hnm: 4 * nm + 4 * nk < Zbeta 1) (Hnz: 4 * nz + 4 * nk < Zbeta 1)
X Y M (Hx: length X = nk) (Hy: length Y = nk) (Hm: length M = nk)
(HX: Sum nk X < Sum nk M) (HY: Sum nk Y < Sum nk M)
vx vy vm vz (Hvx: u2Z vx = 4*nx) (Hvy: u2Z vy = 4*ny) (Hvm: u2Z vm = 4*nm) (Hvz: u2Z vz = 4*nz)
valpha (Halpha: u2Z (Nth 0 M) * u2Z valpha == -1 [[Zbeta 1]]),

{{ fun s s’ m_ h => ∃ Z, length Z = nk ∧
list_of_zeros Z ∧ multiplier.is_null m_ ∧
gpr.lookup x s = vx ∧ gpr.lookup y s = vy ∧
gpr.lookup z s = vz ∧ gpr.lookup m s = vm ∧
u2Z (gpr.lookup k s) = nk ∧ gpr.lookup alpha s = valpha ∧
((var_e x 7→ X) ? (var_e y 7→ Y) ? (var_e z 7→ Z) ? (var_e m 7→ M)) s s’ m_ h }}

montgomery k alpha x y z m int_ ext X_ Y_ M_ Z_ one gpr_zero quot C t s

{{ fun s s’ m_ h => ∃ Z, length Z = nk ∧
((var_e x 7→ X) ? (var_e y 7→ Y) ? (var_e z 7→ Z) ? (var_e m 7→ M)) s s’ m_ h ∧
Zbeta nk * Sum (nk+1) (Z ++ gpr.lookup C s::nil) == Sum nk X * Sum nk Y [[Sum nk M]] ∧
Sum (nk+1) (Z ++ gpr.lookup C s::nil) < 2 * Sum nk M }}.

Figure 1: Formal Specification of the Montgomery Multiplication

7

