
An Intrinsic Encoding of a Subset of C and its Application to

TLS Network Packet Processing

Reynald Affeldt1

1National Institute of Advanced Industrial Science and Technology

e-mail : reynald.affeldt at aist.go.jp

TLS (a.k.a. SSL) is a widespread security pro-

tocol and errors in its implementation have

disastrous consequences. For example, in 2014,

the Heartbleed bug of OpenSSL allowed theft

of private keys, thus compromising any se-

curity guarantee. To ensure the correctness

of the implementation of TLS, programmers

face two difficulties: an official specification

with the ambiguities of natural language and

error-prone low-level parsing of network pack-

ets. We report on the construction in the

Coq proof-assistant [1] of libraries to formally

model, specify, and verify C programs that

process TLS packets. More precisely, we built

an encoding of the core subset of C, a Sepa-

ration logic that enables byte-level reasoning,

and an encoding of a significant part of the of-

ficial specification of TLS [2]. We also verified

a parsing function of an existing implementa-

tion of TLS, namely PolarSSL [3]. We were

able to correct bugs in the C source code and

to spot ambiguities in the RFC.

1 ClientHello parsing: formalization

Our first library is an encoding of the core

subset of C. Its originality is its use of de-

pendent types (a feature of Coq) to provide

an “intrinsic encoding”, i.e., an encoding such

that only correctly-typed C programs can be

represented.

Fig. 1 displays the first lines of the parsing

function that we have formalized (ssl_srv.c,

version 0.14.0). Variables and struct fields

are strings ("ret", "in_hdr", etc.), prefixed

with % when used as an expression or with &→
when used to access fields of structs. Integer

constants ([c]c) are marked as unsigned or

signed for clarity ([c]uc or [c]sc). Vari-

able assignment is marked as :=, or as :=*

when the right-hand side is a pointer to be

dereferenced. Logical operators appear as such

(&, ̸=). The intrinsic encoding guarantees at

formalization-time that all the types agree.

0 Definition ssl_parse_client_hello :=
1 "ret" := ssl_fetch_input (%"ssl",
2 [5]sc) ;
3 If \b %"ret" ̸= [0]sc Then
4 Return
5 Else (
6 "buf" :=∗ %"ssl" &→ "in_hdr" ;
7 "buf0" :=∗ %"buf" ;
8 If \b (%"buf0" & [128]uc) ̸=
9 [0]uc Then

10 "ret" :=
11 [BAD_HS_CLIENT_HELLO]c;
12 Return
13 Else (...

図 1. Formal model of the C function that parses TLS
initialization packets (first lines only)

2 Formalization of the RFC of TLS

TLS enhances network applications by pro-

viding, on top of TCP, a cryptographic layer

consisting of four protocols: packets from the

Record protocol carry packets from the Hand-

shake, Alert, or Change Cipher Spec proto-

cols. The description of all these packet for-

mats in the RFC is semi-formal: a dedicated

syntax is introduced, but its use is not en-

tirely consistent and many conditions remain

described in prose.

Our work thus consisted in providing, as an

alternative to the RFC, archetypal (but exe-

cutable) Coq functions to recognize each kind

of packets. For example, the payload of ini-

tialization packets are recognized by a func-

tion called ClientHello and the full initial-

ization packets (with headers for the Record

and Handshake layers) are recognized by a

function called RecordHandClientHello (where

ClientHello is used of course):

Definition RecordHandClientHello l :=

let (a 1, l 1) := TLSPlainText l in
let ’(a 2, m, l 2) := Handshake l 1 in
let (a 3, l 3) := ClientHello m l 2 in
(a 1 && a 2 && a 3, l 3).

3 Specification with Separation logic

We also formalized in Coq a Separation logic

for the core subset of C that we have intro-

duced in Sect. 1. Unsurprisingly, specifica-

tions of C functions take the form of Hoare

triples with a program and pre/post-conditions:

{ pre } prg { post }

To write pre/post-conditions, we have formal-

ized the connectives of Separation logic (most

notably, the separating conjunction ⋆), which

is handy when it comes to specify the mutable

memory state of imperative programs (see [4]

for details).

4 ClientHello parsing: specification

As for the case study, we verified the function

from Sect. 1 by proving that, given any input

from the network (modeled as a list of bytes

SI), the function either fails (assertion error

in Fig. 2) or succeeds (assertion success) in

checking that the incoming ClientHello packet

is valid. The most important point of the

specification is the use of the formal spec-

ification RecordHandClientHello explained in

Sect. 2 (see the postcondition of Fig. 2).

The precondition (lines 3–6) specifies the

initial state: the initial value of the variable

"ssl" (assertion init_ssl_var) and the initial

state of the heap. The latter is captured by a

Separation logic formula. The postcondition

specifies also that the state of the heap after

parsing has been updated correctly with the

incoming data (lines 10–12). The last part of

the specification is the assumptions (line 2)

made by the programmer(s) of PolarSSL (the

facts that it treats all minor version fields as

“2” for “TLS version 1.1”, and it considers

that the only compression method is “null” [2,

§6.1]).

5 Results of the verification

We found several bugs in the course of ver-

ification that led us to patch the original C

0 Lemma POLAR_parse_client_hello_triple
1 (SI : seq (int 8)) ...
2 PolarSSLAssumptions SI →
3 { init_ssl_var ⋆ init_bu ⋆
4 init_rb ⋆ init_id ⋆
5 init_ses ⋆ init_ciphers ⋆
6 init_ssl_context }
7 ssl_parse_client_hello
8 { error ∨ (success ⋆
9 !!((RecordHandClientHello SI).1)) ⋆

10 final_bu ⋆ final_rb ⋆
11 final_id ⋆ final_ses ⋆
12 init_ciphers ⋆

final_ssl_context }.
図 2. Formal specification of the C function that parses
TLS initialization packets

source code. In particular, checks performed

by the ssl_parse_client_hello function were

not sufficient: ill-formed packets might cause

addressing of uninitialized memory and the

absence of TLS extensions could not be checked.

It should be noted that above implemen-

tation errors and their fixes are similar to the

Heartbleed bug found in OpenSSL (CVE-2014-

0160) or the GnuTLS buggy parsing of ses-

sion IDs (CVE-2014-3466). The programmers

simply forgot to exhaustively check the size

of payloads because their specifications in the

RFC is not explicit enough.

This is our use of a precise model of the

C language coupled with the use of Separa-

tion logic that ensures that we cannot miss

the above errors when performing formal ver-

ification with Coq.

謝辞 This work is partly supported by a Grant-
in-Aid for Scientific Research (24500051).

参考文献
[1] The Coq Development Team. The Coq Proof

Assistant: Reference Manual. INRIA, 2014.

[2] T. Dierks, E. Rescorla. The transport layer
security (TLS) protocol version 1.2. Aug.
2008. IETF RFC 5246.

[3] PolarSSL. Available at http://polarssl.
org

[4] R. Affeldt, K. Sakaguchi. An Intrinsic Encod-
ing of a Subset of C and its Application to
TLS Network Packet Processing. Journal of
Formalized Reasoning 7(1):63–104, 2014

