Formalization of Shannon's Theorems in SSREFLECT-Coq

Reynald Affeldt Manabu Hagiwara

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Motivations

- "Information theory answers two fundamental questions in communication theory:
 What is the *ultimate data compression* (answer: the entropy *H*), and
 what is the *ultimate transmission rate* of communication (answer: the channel capacity *C*)."
- Formalization of Shannon's theorems
 → formalization of "unconditional security"
 - One-time pad protocol
 - Key distribution protocol over a noisy channel

→ Evaluation of information leakage [Malacaria, POPL 2007; Coble, PETS 2008]

incipit of:

Main Contribution

- New to verification using proof-assistants:
 Formalization of:
 - The *source coding theorem*
 - direct part and converse part
 - The channel coding theorem
 - direct part

- Advanced information-theoretic notions

• Channels, joint typical sequences, codes, etc.

Difficulties and Approach

- Technical proofs
 - Detailed proofs appeared several years after [Shannon, 1948]
 - Quick justifications are not rare (probability theory, analytic arguments)
 - Liberal Σ/Π notations
- (Asymptotic) bounds are never made explicit
 - "this holds for *n* large enough"
- Plethora of concepts
 - The formalization of the many relations between informationtheoretic notions is tempting...

⇒ Take advantage SSREFLECT (In particular, canonical big operators [Bertot et al., TPHOLs 2008])

⇒ Rework the proofs of Shannon's theorems (explicit bounds, streamlined flow)

定理 1.6 (固定長符号化逆定理) (Shannon (1948)) 分布 P を有する DMS と任意の $0 < \lambda < 1$ が与えられたとき,もし符号化率 R が R < H(P)を満足するならば,十分大きなブロック長 k を有する任意の固定長符号 (f, φ) は $e(f, \varphi) \ge \lambda$ を満足する。

いま,分布 P を有する DMS と十分大きなブロック長 k の固定長符号 (f, φ) が与えられたとし,この符号について

$$R = \frac{n}{k} < H(P) \tag{1.15}$$

であるとする。この符号によって符号化したとき正しく復号される \mathcal{X}^{k} の系列 の集合を $A \triangleq \{x \in \mathcal{X}^{k} : \varphi(f(x)) = x\}$ によって定めれば,式 (1.15) から明ら かに

 $|A| \le \exp(n) = \exp(kR) = \exp\{k(H(P) - \varepsilon_o)\}$ (1.16)

が成り立つ。ただし, $arepsilon_o riangleq H(P) - R$ である。

次に、 $0 < \epsilon < \epsilon_o \epsilon$ 満足する任意の ϵ が与えられたとき、集合 A に属する系列が典型系列 $B(k, \epsilon)$ に入っているか否かで分類することで、正しく復号される確率を評価する。すなわち

$$1 - e(f, \varphi) = \sum_{\boldsymbol{x} \in A} P^k(\boldsymbol{x})$$

$$egin{aligned} &= \sum_{oldsymbol{x} \in A \cap B^{e}(k,arepsilon)} P^{k}(oldsymbol{x}) + \sum_{oldsymbol{x} \in A \cap B(k,arepsilon)} P^{k}(oldsymbol{x}) \ &\leq \sum_{oldsymbol{x} \in B^{e}(k,arepsilon)} P^{k}(oldsymbol{x}) + \sum_{oldsymbol{x} \in A \cap B(k,arepsilon)} P^{k}(oldsymbol{x}) \end{aligned}$$

であり、定理 1.2 の (1) と (2) を用いれば、 $k \ge k_o(P, \epsilon)$ のとき

$$\begin{aligned} 1 - e(f, \varphi) &\leq \varepsilon + |A \cap B(k, \varepsilon)| \left\{ \max_{\boldsymbol{x} \in B(k, \varepsilon)} P^k(\boldsymbol{x}) \right\} \\ &\leq \varepsilon + |A| \exp\{-k(H(P) - \varepsilon)\} \end{aligned}$$

が得られる。この式に式 (1.16) を代入して |A| を消去すると,

$$1 - e(f, \varphi) \le \varepsilon + \exp\{-k(\varepsilon_o - \varepsilon)\}$$

となる。ここで、 $\varepsilon < \varepsilon_o$ に注意すれば、kを十分大きくすることで $\exp\{-k(\varepsilon_o - \varepsilon)\} \le \epsilon$ が成り立つので、結局

 $e(f, \varphi) \ge 1 - 2\varepsilon$

が得られ, εを任意に小さく取れるので次の定理を得る。

[植松友彦,「現代シャノン理論タイプによる情報理論」, 培風館, 1998]

Basics: Notations and typical sequences

- Source coding theorem
 - Source code formalization
 - Direct and converse proofs
- Formalization of channel capacity
- Channel coding theorem
 - Code formalization
 - Direct proof by random coding and joint typicality

Distribution

P ₁ (0)	P ₁ (1)	P ₁ (2)	P ₁ (3)
0.3	0.2	0.3	0.2

Record dist := mkDist { pmf :> A \rightarrow R ; (* probability mass function*) pmf0 : $\forall a, 0 \leq pmf a$; pmf1 : $\Sigma_{a \in A}$ pmf a = 1 }.

Pⁿ : **Product Distribution**

P ₁ ²	0	1	2	3
0	0.09	0.06	0.09	0.06
1	0.06	0.04	0.06	0.04
2	0.09	0.06	0.09	0.06
3	0.06	0.04	0.06	0.04

Definition Ptuple x := ∏_(i < n) P x_i

Definition Ptuple_dist : dist [finType of n.-tuple A]. apply mkDist with Ptuple. ... Defined.

Probability of an Event

E.g., Pr $P_1 [P_1 \in \{0,1\}] = 0.5$

Definition Pr P E := Σ (a \in A | E a) P a.

Typical Sequences

Intuition: Given a source of symbols, typical sequences are the most probable sequences

P(0)P(1)
$$2/3$$
 $1/3$ \Rightarrow A bitstring with 2/3 of 0's would be typical

Entropy of a distribution P over A:

Definition $\mathcal{H}:=-\Sigma_{(a \in A)} P a * \log (P a)$.

P, n, ε-*typical sequences* are x tuples over A:

Definition typ_seq x := $\exp(-n * (\mathcal{H}P + \varepsilon)) \leq P^n x \leq \exp(-n * (\mathcal{H}P - \varepsilon)).$

Asymptotic Equipartition Property

• Intuition: Long enough tuples are typical

• Properties:

Typical sequences (TS) are the most likely to be observed Lemma Pr_ TS_1 : aep_bound P $\varepsilon \le n+1 \rightarrow Pr P^{n+1}$ [pred i $\in TS P n+1 \varepsilon$] $\ge 1 - \varepsilon$.

 $\begin{aligned} |\mathcal{TS}| &\approx \exp\left(n * \mathcal{HP}\right) \\ &\text{Lemma } \mathcal{TS}_\sup_\inf: aep_bound \ P \ \epsilon \leq n+1 \rightarrow \\ &(1 - \epsilon) * \exp\left(n+1 * (\mathcal{HP} - \epsilon)\right) \leq |\mathcal{TS} \ P \ n+1 \ \epsilon \ | \leq \exp\left(n+1 * (\mathcal{HP} + \epsilon)\right). \end{aligned}$

- Basics: Notations and typical sequences
- Source coding theorem

Source code formalization

- Direct and converse proofs
- Formalization of channel capacity
- Channel coding theorem
 - Code formalization
 - Direct proof by random coding and joint typicality

Formalization of a Source Code

- Basics: Notations and typical sequences
- Source coding theorem

Source code formalization

Direct and converse proofs

- Formalization of channel capacity
- Channel coding theorem
 - Code formalization
 - Direct proof by random coding and joint typicality

Source Coding Theorem - Direct Part

"For any rate $r > \mathcal{H}P$, there is a source code with negligible error":

Source Coding Theorem – Main Idea

Source Coding Theorem – Main Idea

 $\begin{array}{c} k \text{-tunle } \Delta & n \text{-tunle bool} & k \text{-tunle } \Delta \\ \hline \text{Definition } f : encT \ A \ k+1 \ n \ := \ fun \ x \Rightarrow \\ \text{if } x \in S \ then \\ \text{let } i \ := \ index \ x \ (enum \ S) \ in \ Tuple \ (size_nat2bin_b \ i+1 \ n) \\ else \\ [tuple \ of \ nseq \ n \ false]. \\ \hline \begin{array}{c} \text{Definition } \phi \ : \ decT \ A \ k+1 \ n \ := \ fun \ x \Rightarrow \\ \text{let } i \ := \ tuple2N \ x \ in \\ \text{if } i \ is \ 0 \ then \ def \ else \\ if \ i-1 \ < \ S \ | \ then \ nth \ def \ (enum \ S) \ i-1 \ else \ def. \\ \end{array}$

By construction, Lemma $\phi_f i : \phi(f i) = i \leftrightarrow i \in S$.

For the proof of the source coding theorem, S := TS, def exists because we have chosen "k big enough"

Source Coding Theorem - Converse Part

"For any rate $r < \mathcal{H}P$, all source codes have non-negligible error":

 $\begin{array}{l} \textbf{Theorem source_coding_converse}: \forall \ \lambda, 0 < \lambda < 1 \rightarrow \\ \forall \ r: \ Q^+, 0 < r < \mathcal{H}P \rightarrow \\ \forall \ n \ k \ (sc: scode \ A \ k+1 \ n), \ r = SrcRate \ sc \rightarrow \\ \hline \textbf{SrcConverseBound P (num r) (den r) n } \lambda \leq k+1 \rightarrow \\ e_{src}(P, sc) \geq \lambda. \end{array}$

Definition ε := Rmin ((1 - λ) / 2) (($\mathcal{H}P - r$) / 2). Definition δ := Rmin (($\mathcal{H}P - r$) / 2) (ε / 2). Definition SrcConverseBound := Rmax (n / r) (Rmax (aep_bound P δ) (-((log δ) / ($\mathcal{H}P - r - \delta$)))).

- Basics: Notations and typical sequences
- Source coding theorem
 - Source code formalization
 - Direct and converse proofs
- Formalization of channel capacity
 - Channel coding theorem
 - Code formalization
 - Direct proof by random coding and joint typicality

Formalization of a Channel

• E.g., binary symmetric channel:

• General case, channel = *probability transition matrix*:

$$\begin{bmatrix} y_1 | x_1 & y_2 | x_1 & \dots & y_{|Y|} | x_1 \\ y_1 | x_2 & y_2 | x_2 & \dots & y_{|Y|} | x_2 \\ \vdots & \vdots & & \vdots \\ y_1 | x_{|X|} & y_1 | x_{|X|} & \dots & y_{|Y|} | x_{|X|} \end{bmatrix}$$

Definition channel := $X \rightarrow \text{dist } Y$.

Illustration: the Binary Symmetric Channel

Lemma IPW : $I(P ; BSC p) = \mathcal{H}(P , BSC p) - \mathcal{H}_2 p$.

Theorem BSC_capacity : capacity (BSC p) $(1 - \mathcal{H}_2 p)$.

- Basics: Notations and typical sequences
- Source coding theorem
 - Source code formalization
 - Direct and converse proofs
- Formalization of channel capacity
- Channel coding theorem
 - Code formalization

Direct proof by random coding and joint typicality

Formalization of a Channel Code

- Basics: Notations and typical sequences
- Source coding theorem
 - Source code formalization
 - Direct and converse proofs
- Formalization of channel capacity
- Channel coding theorem
 - Code formalization

Direct proof by random coding and joint typicality

Channel Coding Theorem

"For any rate **r < capacity**, there is a code with negligible error":

Proof by "random coding": we fix the decoding function φ and investigate all the encoding functions f

Lemma random_coding (P : dist X) w ε (ϕ : encT X M n \rightarrow decT Y M n) : $\Sigma_{(f : encT X M n)}$ (wgth P f * e_{cha} (w , mkCode f (ϕ f))) < $\varepsilon \rightarrow$ \exists f, e_{cha} (w , mkCode f (ϕ f)) < ε .

Joint Typical Sequences

• P, w, ε, n - *joint typical sequence*:

Definition jtyp_seq n (xy : n.-tuple (X * Y)) ε := typ_seq P ε (uzip1 xy) \land typ_seq (d(P, w)) ε (uzip2 xy) \land typ_seq (d(P; w)) ε xy.

• Properties:

With high probability, the input and the observed output are jointly typical

Typical of the input Typical of the output Typical of the joint distribution

With high probability, unrelated input/output are not jointly typical

Decoding by Joint Typicality

Definition jtdec P w ε (f : encT X M n) : decT Y M n :=

[ffun y \Rightarrow [pick m]

 $((f m, y) \in \mathcal{JTSP w n \epsilon}) \land$

 $(\forall m', m' \neq m \rightarrow (f m', y) \notin \mathcal{JTSP} w n \varepsilon))]]$

Pick up a message m...

such that (f m, y) is *JTS* and...

it is the only one in $\mathcal{T}\!\mathcal{T}\!\mathcal{S}$

Conclusion

- Summary:
 - Formalization of the source coding theorem and of the (direct part of the) channel coding theorem
- Recent work (with Jonas Senizergues, ENS Cachan/AIST):
 - Converse of the channel coding theorem (with Pinsker's inequality admitted)
- Related work:
 - Mostly in HOL, based on [Hurd, PhD, 2002]
 - Probability theory
 - Expectation properties [Hasan et al., JAR 2008]
 - Weak law of large numbers [Hasan et al., ITP 2010]
 - Information theory
 - Formalization of the AEP [Mhamdi et al., ITP 2011]
 - Formalization of information leakage [Coble, PETS 2008]
- Current work:
 - Coding theory (Hamming, linear, cyclic codes → Reed-Solomon, LDPC codes?)