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Abstract. It is customary to write performance-critical parts of arith-
metic functions in assembly: this enables finely-tuned algorithms that use
specialized processor instructions. However, such optimizations make for-
mal verification of arithmetic functions technically challenging, mainly
because of many bit-level manipulations of data. In this paper, we pro-
pose an approach for formal verification of arithmetic functions in as-
sembly. It consists in the implementation in the Coq proof assistant of
(1) a Hoare logic for assembly programs augmented with loops and (2) a
certified translator to ready-to-run assembly with jumps. To properly
handle formal verification of bit-level manipulations of data, we propose
an original encoding of machine integers. For concreteness, we use the
SmartMIPS assembly language, an extension of the MIPS instruction set
for smartcards, and we explain the formal verification of an optimized
implementation of the Montgomery multiplication, a de facto-standard
for the implementation of many cryptosystems.

1 Introduction

It is customary to write performance-critical parts of arithmetic functions in
assembly: this enables finely-tuned algorithms that use specialized processor in-
structions. However, such optimizations make formal verification of arithmetic
functions technically challenging. Indeed, the best algorithms for arithmetic func-
tions usually rely on bit-level manipulations of data, whose properties can be
tricky to figure out, especially when it comes to signed integers. But also, the
usage of non-standard specialized processor instructions often calls for adequate
adjustments of standard handbook algorithms, that may endanger the correct-
ness of the algorithm itself. For these reasons, it is important to provide a con-
crete way to formally verify such assembly code.

In this paper, we propose an approach for formal verification of arithmetic
functions in assembly. Our approach is in two steps. It consists in providing in
the Coq proof assistant [3] a certified implementation of (1) a Hoare logic for
assembly programs augmented with loops and (2) a certified translator to ready-
to-run assembly with jumps. We favor this two-steps approach because a Hoare
logic for while-programs is more familiar-looking than non-standard Hoare logics
for programs with jumps (such as [12, 13]).



The Hoare logic we encode enables verification of assembly programs that
manipulate machine integers and bounded memory. To cope with machine in-
tegers, we implement a library where integers are represented as lists of bits
interpreted as unsigned or signed in two’s complement notation. This library en-
ables faithful modeling of the hardware circuitry. To cope with bounded memory,
we encode the separation logic [6] variant of Hoare logic, that extends traditional
Hoare logic with a native notion of mutable memory; because we use machine
integers to access memory, the accessible range of addresses is natively bounded.

The certified translator ensures that assembled programs behave like the
verified programs. Concretely, it injects structured programs (programs with
loops) into the more general set of programs with jumps; the correctness of this
translation is formally proved in Coq.

For concreteness, we use the SmartMIPS assembly language, an application-
specific extension of the MIPS32 4Km processor core that extends the core
instruction set with instructions to enhance cryptographic computations and
improve the performance of virtual machines [5].

To validate our approach, we show how to formally verify several arithmetic
functions, including in particular an optimized implementation of the Mont-
gomery multiplication [2], a de facto-standard for the implementation of many
cryptosystems. This verification requires bit-level predicates to specify the usage
of carries and overflow flags, for which our Hoare logic turns out to be well-suited.

This paper is organized as follows. In Sect. 2, we explain how we encode
machine-integers arithmetic in Coq. In Sect. 3, we explain how we encode sepa-
ration logic for a subset of SmartMIPS. In Sect. 4, we explain the formal verifi-
cation of the Montgomery multiplication. In Sect. 5, we explain how to extract
ready-to-run SmartMIPS programs from our verifications. In Sect. 6, we review
related work. In Sect. 7, we conclude and comment on future work.

2 Machine-Integers Arithmetic

Formal verification of arithmetic functions is usually done w.r.t. high-level math-
ematical specifications. However, at the level of assembly code, many arithmetic
properties of instructions depend on the finiteness of registers and on the phys-
ical representation of data. For example, the (signed) integer “−1” appears to
be larger than any unsigned (and therefore positive) integer; some instructions
trap on integer overflow while others do not, etc. Overlooking such problems
often leads to security breaches, most famously integer-overflow bugs (see [11]
for illustrations). It is therefore important to provide formal means to define the
semantics of instructions together with lemmas that capture their properties in
terms of mathematical (i.e., unbounded) integers.

Our approach to encode machine-integers arithmetic is to closely model the
hardware circuitry using lists of bits (booleans) to represent the contents of
registers and recursive functions to represent the operations on registers. We
choose this approach because it is easy to extend with new, specialized instruc-



tions, compared to encoding machine integers with, say, sign-magnitude integers
modulo.

Example: Hardware Arithmetic Operations We model the hardware addition as
a recursive function that does bitwise comparisons and carry propagation:

Inductive bit : Set := o : bit | i : bit.
(* addition with LSB first *)
Fixpoint add_lst’ (a b:list bit) (carry:bit) : list bit :=
match (a, b) with

(o :: a’, o :: b’) => carry :: add_lst’ a’ b’ o
| (i :: a’, i :: b’) => carry :: add_lst’ a’ b’ i
| (_ :: a’, _ :: b’) => match carry with
o => i :: add_lst’ a’ b’ o | i => o :: add_lst’ a’ b’ i end

| _ => nil
end.

(* addition with MSB first *)
Definition add_lst a b carry := rev (add_lst’ (rev a) (rev b) carry).

Most computers distinguish between unsigned integers and signed integers in
two’s complement notation. The negation of a signed integer is defined using
ones’ complement and addition:

(* bit complement *)
Definition cplt b := match b with i => o | o => i end.
(* ones’ complement *)
Fixpoint cplt1 (lst:list bit) : list bit :=
match lst with nil => nil | hd :: tl => cplt hd :: cplt1 tl end.

(* two’s complement *)
Definition cplt2 lst :=
add_lst (cplt1 lst) (zero_extend_lst (length lst - 1) (i::nil)) o.

Using the addition, we further modeled the unsigned multiplication; using two’s
complement, we further modeled the signed multiplication, and so on.

Physical constraints and implementation choices make hardware arithmetic
operations peculiar. Because of the finiteness of registers, they actually imple-
ment arithmetic modulo. A list of bits (an::...::a0) is interpreted as (an . . . a0)2,
the encoding in base 2 of a mathematical integer; but depending on the context,
this integer is unsigned, in which case its decimal value is an2n + . . . + a0,
or signed in two’s complement notation, in which case its decimal value is
−an2n + an−12n−1 + . . . + a0. It is customary for assembly code to rely on
properties of arithmetic modulo (e.g., to detect overflows) and to freely mix un-
signed and signed integers (e.g., to access memory). Precise characterization of
the properties of the hardware arithmetic operations w.r.t. their mathematical
counterpart is therefore a must-have for formal verification of assembly code.

Example: Overflow Properties of Addition Let us note [[ lst ]]u (resp. [[ lst ]]s)
the decimal value of the list of bits lst seen as an unsigned (resp. signed) integer.
In Coq, these notations are implemented as recursive functions from lists of bits
to mathematical integers. The hardware addition behaves like the mathematical
addition only when non-overflow conditions are met:



Lemma add_lst_nat : ∀ n a b, length a = n → length b = n →
O ≤ [[a]]u + [[b]]u < 2^^n → [[add_lst a b o]]u = [[a]]u + [[b]]u.

Lemma add_lst_Z : forall n a b, length a = S n → length b = S n →
-2^^n ≤ [[a]]s + [[b]]s < 2^^n → [[add_lst a b o]]s = [[a]]s + [[b]]s.

We proved further lemmas that capture the overflow properties of the hardware
addition when overflow conditions are not met, the correctness of subtraction
and multiplications, the relations between unsigned and signed integers, etc.

Because a processor usually manipulates machine integers of different sizes
(e.g., to represent constants or contents of special registers such as accumula-
tors), it is cumbersome to use directly lists of bits: the conditions about their
lengths clutter formal verification. To simplify our development, we encapsulate
all the functions modeling the hardware circuitry and the lemmas capturing their
properties in a Coq module that provides an abstract type for machine integers.
This abstract type is parameterized by the length of the underlying list of bits:
Parameter int : nat → Set. This makes the relation between the lengths of the
input and the output of operations explicit in the type of hardware operations.

Technically, this abstract type is implemented using dependent pairs: a ma-
chine integer of length n is a dependent pair whose first projection is a list of
bits lst and whose second projection is the proof that its length is equal to n:
Inductive int (n:nat) : Set := mk_int : ∀ (lst:list bit), length lst = n→ int n.

An excerpt of the interface of the resulting module is given below:

Parameter add : ∀ n, int n → int n → int n.
Notation "a ⊕ b" := (add a b).
Parameter u2Z : ∀ n, int n → Z. (* lists of bits as unsigned *)
Parameter s2Z : ∀ n, int n → Z. (* lists of bits as signed *)
Parameter add_u2Z : ∀ n (a b:int n), u2Z a + u2Z b < 2^^n →
u2Z (a ⊕ b) = u2Z a + u2Z b.

Parameter add_s2Z : ∀ n (a b:int (S n)), -2^^n ≤ s2Z a + s2Z b < 2^^n →
s2Z (a ⊕ b) = s2Z a + s2Z b.

Parameter Z2u : ∀ n, Z → int n.
Parameter Z2s : ∀ n, Z → int n.

Z2u n z (resp. Z2s n z) builds an unsigned (resp. a signed) machine integer of
decimal value z and length n (if possible). These two constructors are used to
defined constants, such as: Definition four32 := Z2u 32 4.

3 A Hoare Logic for SmartMIPS

In this section, we encode a Hoare logic for a subset of SmartMIPS [5]. For this
purpose, the module for machine-integer arithmetic introduced in the previous
section is important: it enables faithful encoding of the semantics of arithmetic
instructions that trap on overflow and the semantics of memory accesses, that
are restricted to finite memory. The subset of SmartMIPS we consider consists
of structured programs, i.e., programs whose syntax only allows for sequences
and while-loops. Hereafter, we call WhileSMIPS this subset. In Sect. 5, we will



certify a translator that injects WhileSMIPS programs into the set of SmartMIPS
programs with jumps, that can be directly assembled and run. We favor this two-
steps approach is that a Hoare logic for while-programs is more familiar-looking
than non-standard Hoare logics for programs with jumps (such as [12, 13]).

3.1 States

The state of a SmartMIPS processor is modeled as a tuple of a store of general-
purpose registers, a store of control registers, an integer multiplier, and a heap
(the mutable memory):
Definition state := gpr.store * cp0.store * multiplier.m * heap.h.

The module gpr is a map from the type gp_reg of general-purpose registers
to (32-bit) words, the module cp0 is a map from the type cp0_reg of control
registers, and heap is a map from natural numbers to words. We restrict ourselves
to a word-addressable heap because it is all we need for arithmetic functions
(see Sect. 4). The module for heap is implemented using a module for finite
maps developed in previous work [16]. Let us comment more in detail on the
implementation of the multiplier module, that makes an extensive use of our
module for machine integers.

The SmartMIPS multiplier is a set of registers called ACX, HI, and LO that
has been designed to enhance cryptographic computations. HI and LO are 32 bits
long; ACX is only known to be at least 8 bits long. We implement the multiplier
as an abstract data type m with three lookup functions acx, hi, and lo that return
respectively a machine integer of length at least 8 bits and machine integers of
length 32. Here follows the corresponding excerpt of the module interface:

Parameter acx_size : nat.
Parameter acx_size_min : 8 ≤ acx_size.
Parameter m : Set.
Parameter acx : m → int acx_size.
Parameter lo : m → int 32.
Parameter hi : m → int 32.
Parameter utoZ : m → Z. (* multiplier as an unsigned *)

The SmartMIPS instruction set features special instructions to take advantage
of the SmartMIPS multiplier. For illustration, let us explain the encoding of
the mflhxu instruction, that is often used in arithmetic functions: it performs
a division of the multiplier by β = 232, whose remainder is put in a general-
purpose register and whose quotient is left in the multiplier. The corresponding
hardware circuitry is essentially a shift: it puts the contents of LO into some
general-purpose register, puts the contents of HI into LO, and zeroes ACX. Here
is how we model this operation:

Definition mflhxu_op m := let (acx’, hi’) := (acx m, hi m) in
(Z2u acx_size 0, (zero_extend 24 acx’, hi’)).

What is important for verification is the properties of mflhxu w.r.t. the decimal
value of the multiplier. Such properties can be derived as lemmas from the
definition of mflhxu_op. For example, the decimal values of the multiplier before



and after mflhxu are related as follows (Zbeta n stands for βn =232n):
Lemma mflhxu_utoZ : ∀ m, utoZ m = utoZ (mflhxu_op m) * Zbeta 1 + u2Z (lo m).

3.2 Axiomatic Semantics

The syntax of WhileSMIPS programs is encoded as the inductive type cmd :

Definition immediate := int 16.
Inductive cmd : Set :=
| add : gp_reg → gp_reg → gp_reg → cmd
| addi : gp_reg → gp_reg → immediate → cmd
| addiu : gp_reg → gp_reg → immediate → cmd
| addu : gp_reg → gp_reg → gp_reg → cmd
| lw : gp_reg → immediate → gp_reg → cmd
| lwxs : gp_reg → gp_reg → gp_reg → cmd
| maddu : gp_reg → gp_reg → cmd
| mflhxu : gp_reg → cmd
| sw : gp_reg → immediate → gp_reg → cmd
| seq : cmd → cmd → cmd
| ifte_beq : gp_reg → gp_reg → cmd → cmd → cmd
| while_bne : gp_reg → gp_reg → cmd → cmd
...

Except for control-flow commands (seq , ifte_beq , while_bne , etc.), the type
constructors have the same names as their SmartMIPS counterparts. As usual
with MIPS, instructions with suffix “u” do not trap on overflow and instructions
with prefix “m” use the multiplier. In the excerpt above, SmartMIPS-specific
instructions include lwxs, that loads words using scaled indexed addressing, and
maddu and mflhxu, that use the ACX register.

The assertion language is an instance of separation logic [6], an extension of
Hoare logic with a native notion of heap. We choose separation logic because it
is a general solution to represent mutable data structures such as arrays, that
are used to represent multi-precision integers in arithmetic functions.

Assertions are encoded as truth-functions from states to Prop, the type of
predicates in Coq (this technique of encoding is called shallow embedding):
Definition assert := gpr.store→ cp0.store→ multiplier.m→ heap.h→ Prop.

Using this type, one can easily encode any first-order predicate. For example, the
predicate that is true when variables x and y have the same contents is encoded
as follows (lookup is a function provided by the interface of stores):

Definition x_EQ_y (x y : gp_reg) : assert :=
fun s _ _ _ => gpr.lookup x s = gpr.lookup y s.

To encode separating connectives, we use a module for heaps. In the following,
we omit the definitions of heap-related functions: their names and notations are
self-explanatory and details can be found in [16]. First, we introduce a language
for expressions used in separating connectives:

Inductive expr : Set :=
var_e : gp_reg→ expr | int_e : int 32→ expr | add_e : expr→ expr→ expr | ...



In this language, variables are registers and constants are (32-bit) words. Given
an expression e and a store s, the function eval returns the value of the expres-
sion e in store s.

The mapsto connective e1 7→ e2 holds in a state with a store s and a singleton
heap with address eval e1 s and contents eval e2 s :

Definition mapsto (e e’:expr) : assert := fun s _ _ h =>
∃ p, u2Z (eval e s) = 4 * p ∧ h = heap.singleton p (eval e’ s).

Notation "e1 7→ e2" := (mapsto e1 e2).

The separating conjunction P ? Q holds in a state whose heap can be divided
into two disjoint heaps such that P and Q hold:

Definition sep_con (P Q:assert) : assert := fun s s’ m h =>
∃ h1, ∃ h2, h1 ⊥ h2 ∧ h = h1 ∪ h2 ∧ P s s’ m h1 ∧ Q s s’ m h2.

Notation "P ? Q" := (sep_con P Q).

In practice, the separating conjunction provides a concise way to express that
two data structures reside in disjoint parts of the heap.

Using the separating conjunction, the mapsto connective can be generalized
to arrays of words: (e Z⇒ a::b::...) holds in a state whose heap contains a list
of contiguous words a, b, . . . starting at address eval e s :

Fixpoint mapstos (e:expr) (lst:list (int 32)) : assert :=
match lst with
| nil => empty_heap
| hd::tl => (e 7→ int_e hd) ? (mapstos (add_e e (int_e four32)) tl)

end.
Notation "e Z⇒ lst" := (mapstos e lst).

Hoare triples are encoded as an inductive relation {{ P }} c {{ Q }} (notation
for semax P c Q) between commands and pre/post-conditions encoded as asser-
tions. For illustration, here follows the implementation of the Hoare triples for
the commands add and lw :

Inductive semax : assert → cmd → assert → Prop :=
| semax_add: ∀ Q rd rs rt,
{{ update_store_add rd rs rt Q }} add rd rs rt {{ Q }}

| semax_lw : ∀ P rt offset base,
{{ lookup_heap_lw rt offset base P }} lw rt offset base {{ P }}

| ...

In the preconditions, update_store_add and lookup_heap_lw are predicate trans-
formers. The effect of executing add rd rs rt is to update the contents of the
register rd with the result of the operation (vrs ⊕ vrt) (where vrs and vrt are
the contents of the registers rs and rt), provided the addition in two’s comple-
ment does not overflow:

Definition update_store_add rd rs rt P : assert := fun s s’ m h =>
- 2^^31 ≤ s2Z (gpr.lookup rs s) + s2Z (gpr.lookup rt s) < 2^^31 →
P (gpr.update rd (gpr.lookup rs s ⊕ gpr.lookup rt s) s) s’ m h.



The function lookup_heap_lw checks that the access is word-aligned and the cell-
contents specified:

Definition lookup_heap_lw rt offset base P : assert := fun s s’ m h =>
∃ p, u2Z (gpr.lookup base s ⊕ sign_extend offset) = 4 * p ∧
∃ z, heap.lookup p h = Some z ∧ P (gpr.update rt z s) s’ m h.

4 Application to Multi-precision Arithmetic

Using our encoding of Hoare logic for SmartMIPS, we have written, specified,
and verified several SmartMIPS implementations of multi-precision arithmetic
functions in Coq. In this section, we give an overview of our experiments with a
detailed account of the formal verification of the Montgomery multiplication.

4.1 Specification of Multi-precision Arithmetic Functions

Multi-precision Integers We encode multi-precision integers as lists of machine
integers stored in memory (using the Z⇒ connective defined in Sect. 3.2). In the
following, Nth i A represents the ith element of the list A of machine integers. The
interpretation of a multi-precision integer as a mathematical integer is provided
by a recursive function: Sum k A represents the decimal value of the k first words of
the list A of machine integers (least significant word first) interpreted as unsigned.
The fact that the length of multi-precision integers is explicit is important to
write loop invariants, that often talk about “partial” multi-precision integers, to
represent the decimal values of partial products for example.
Arithmetic Relations Thanks to shallow encoding and our lemmas that relate
machine integers to their decimal values, we can reuse predicates and functions
from the standard Coq library. In the following, a == b [[ n ]] is the Coq version
of a ≡ b[n].

4.2 Formal Verification of the Montgomery Multiplication

The Montgomery multiplication [2] is a modular multiplication. Given three
k-word integers X, Y, and M such that

Sum k X < Sum k M ∧ Sum k Y < Sum k M (1)
the Montgomery multiplication computes a k+1-word integer Z such that

Zbeta k * Sum (k+1) Z == Sum k X * Sum k Y [[ Sum k M ]] (2)
The advantage of the Montgomery multiplication is that it does not require a
multi-precision division, but uses less-expensive shifts instead. The price to pay
is the parasite factor Zbeta k whose elimination requires a second pass.

The implementation of the Montgomery multiplication we deal with (Fig. 1)
is the so-called “Finely Integrated Operand Scanning” (FIOS) variant [4]. In-
tuitively, it resembles the classical algorithm for multi-precision multiplication:
it has two nested loops, the inner-loop incrementally computes partial products
(modulo) that are successively added by the outer-loop. These partial products



modulo are computed in such a way that the least significant word is always
zero, thus guaranteeing that the final result will fit in k+1 words of storage. For
this to be possible, the Montgomery multiplication requires the pre-computation
of the modular inverse alpha of the least significant word of the modulus:

u2Z (Nth 0 M) * u2Z alpha == -1 [[ Zbeta 1 ]] (3)

Definition montgomery
k alpha x y z m j i
X Y M Z one zero quot C t s :=

addiu one zero one16;
addiu C zero zero16;
addiu i zero zero16;
while_bne i k (
lwxs X i x;
lw Y zero16 y;
lw Z zero16 z;
multu X Y;
lw M zero16 m;
maddu Z one;
mflo t;
mfhi s;
multu t alpha;
addiu j zero one16;
mflo quot;
mthi s;
mtlo t;

maddu quot M;
mflhxu Z;
addiu t z zero16;
while_bne j k (
lwxs Y j y;
lwxs Z j z;
maddu X Y;
lwxs M j m;
maddu Z one;
maddu quot M;
addiu j j one16;
mflhxu Z;
addiu t t four16;
sw Z mfour16 t

);
maddu C one;
mflhxu Z;
addiu i i one16;
sw Z zero16 t;
mflhxu C

).

Fig. 1. The Montgomery Multiplication in WhileSMIPS

The SmartMIPS architecture is well-suited to the implementation of the
FIOS variant of the Montgomery multiplication because the addition performed
in the inner-loop (that adds two products of 32-bits integers) fits in the integer
multiplier (of size greater than 72 bits).

The formal Hoare triple that specifies the Montgomery multiplication is dis-
played in Fig. 2. The hypotheses HX, HY, and Halpha correspond to the input-
conditions (1) and (3), as explained above. Other hypotheses are technical: they
prevent overflows and enforce alignments (similar-looking conditions are abbrevi-
ated by “...”). The output-condition (2) appears in the post-condition; observe
that the k+1th word of storage is provided by the register C. The existence in
memory of input-words and output-words is specified by the separation logic
formula.

Formal verification of the Montgomery multiplication is done by forward
reasoning. Let us comment on two key aspects of this verification.

Let A be the value of the multiplier before entering the inner-loop and A % n

the remainder of the division of A by 2^^n. The Montgomery multiplication com-
putes quot = ((A % 32)� alpha) % 32 and adds quot� M0 to the multiplier (� is the
unsigned multiplication, definition not displayed in this paper). The lemma be-



Lemma montgomery_specif : ∀ nk (Hk: O < nk) nx ny nm nz
(Hnx: 4 * nx + 4 * nk < Zbeta 1) (Hny: ...) (Hnm: ...) (Hnz: ...)
X Y M (Hx: length X = nk) (Hy: ...) (Hm: ...)
(HX: Sum nk X < Sum nk M) (HY: Sum nk Y < Sum nk M)
vx vy vm vz (Hvx: u2Z vx = 4 * nx) (Hvy: ...) (Hvm: ...) (Hvz: ...)
valpha (Halpha: u2Z (Nth 0 M) * u2Z valpha == -1 [[ Zbeta 1 ]]),

{{ fun s s’ m_ h => ∃ Z,
length Z = nk ∧ list_of_zeros Z ∧
gpr.lookup x s = vx ∧ gpr.lookup y s = vy ∧
gpr.lookup z s = vz ∧ gpr.lookup m s = vm ∧
u2Z (gpr.lookup k s) = nk ∧ gpr.lookup alpha s = valpha ∧
(var_e x Z⇒ X) ? (var_e y Z⇒ Y) ? (var_e z Z⇒ Z) ? (var_e m Z⇒ M) s s’ m_ h ∧
multiplier.is_null m_ }}

montgomery k alpha x y z m j i X_ Y_ M_ Z_ one gpr_zero quot C t s

{{ fun s s’ m_ h => ∃ Z, length Z = nk ∧
(var_e x Z⇒ X) ? (var_e y Z⇒ Y) ? (var_e z Z⇒ Z) ? (var_e m Z⇒ M) s s’ m_ h ∧
Zbeta nk * Sum (nk+1) (Z ++ gpr.lookup C s :: nil) ==
Sum nk X * Sum nk Y [[ Sum nk M ]] ∧

Sum (nk+1) (Z ++ gpr.lookup C s :: nil) < 2 * Sum nk M }}.

Fig. 2. Formal Specification of the Montgomery Multiplication

low captures the fact that the resulting multiplier is a multiple of β, and thus
the least significant word of the partial product is always zero:

Import multiplier.
Lemma montgomery_lemma : ∀ alpha M0 (A:int 64) m,
u2Z M0 * u2Z alpha == -1 [[Zbeta 1]]→ utoZ m < Zbeta 2→ utoZ m = u2Z A→
lo (maddu_op (((A % 32 � alpha) % 32) � M0) m) = zero32.

As usual, the heart of the verification is to produce the right invariant for the
inner-loop. In the case of the FIOS variant of the Montgomery multiplication,
the difficulty comes from the fact that the zeroed word of storage is used to
“shift-in” the second least-significant word (LSW) of the partial product. More
precisely, at the jth iteration of the inner-loop, the algorithm uses the jth LSW
of the current partial product to compute the j−1th LSW of the new partial
product. To write this invariant, we use a function for “multi-precision integers
with a hole”. Multi-precision integers with a hole are like multi-precision integers
except that there is one word that we ignore in computing the represented value:

Definition Sum_hole l len hole (lst:list (int l)) :=
Sum (len - 1) (del_nth hole lst).

Using this function, the relation between the multiplier and the multi-precision
integers in memory is written:

Zbeta (ni + 1) * Sum_hole (nk + 1) (nj - 1) (Z ++ gpr.lookup C s :: nil) +
multiplier.utoZ m * Zbeta (ni + nj) ==

Sum ni X * Sum nk Y + Sum nj Y * u2Z (nth ni X zero32) * Zbeta ni +
Sum nj M * u2Z (gpr.lookup quot s) * Zbeta ni [[ Sum nk M ]]



where ni, nj, and nk are the contents of the i, j, and k registers, and s is the
current store of general-purpose registers.

4.3 Experimental Results

Besides the Montgomery multiplication, we have verified SmartMIPS imple-
mentations of several classical algorithms for multi-precision arithmetic. The
code is available online [17]; the table below summarizes the sizes of programs
and proof scripts. For proof scripts, we distinguish between the number of lines
used to write assertions (all pre/post-conditions, including intermediate forward-
reasoning steps) and the number of lines used for proof construction (calls to
Coq tactics, including custom tactics, and application of lemmas).

Multi-precision Number of asm Size of proof scripts (lines)
function instructions total assertions (ratio) individual steps (average)

addition 11 835 203 (24%) 632 (57)
subtraction 22 1473 340 (23%) 1133 (52)

multiplication 20 1634 413 (25%) 1221 (61)
Montgomery 37 3881 955 (25%) 2926 (79)

Although assertions occupy around 24% of the proof scripts, this is not a nui-
sance because they only change a little from one reasoning step to the other, and
it anyway helps to understand the verification. Appropriate tactics for forward
reasoning could get rid of this overhead.

In average, each atomic Hoare triple is proved with 62 Coq commands. Some
parts are inherently difficult because of low-level manipulations of multi-precision
integers, that require many syntactic manipulations of goals and hypotheses
and are difficult to automate satisfactorily. Yet, many parts of proof scripts are
repetitive (trivial goals, obvious rewriting, etc.) and we already have a good
deal of small-scale custom tactics. As a mid-term goal, we think it should be
possible and desirable to use no more than 20 Coq commands per reasoning
step.

5 Program Extraction

In this section, we explain how to safely extract ready-to-run SmartMIPS pro-
grams from our Coq verifications. In Sect. 3.2, we have defined an axiomatic se-
mantics for WhileSMIPS, a subset of structured SmartMIPS programs. Though
it is sufficient to specify and verify arithmetic functions and many other pro-
grams, we cannot directly assemble and run verified programs: we first need to
translate them into the set of SmartMIPS programs with jumps, and ensure
that this translation is correct. For this purpose, we equip both WhileSMIPS
and SmartMIPS programs with an operational semantics.



5.1 SmartMIPS Operational Semantics

The MIPS documentation [5] gives the semantics of SmartMIPS in terms of a
virtual machine that represents the processor. It has an explicit program counter
and its execution is described by a small-step semantics. We encode this small-
step semantics in Coq. For the sake of simplicity, we restrict ourselves to word-
aligned memory accesses, we ignore exceptions and pipelining optimizations3.
Syntax We split SmartMIPS instructions into the set of instructions that modify
the state and just increment the program counter (type cmd0), and the set of
instructions that only modify the control-flow (type branch). We do not display in
this paper the syntax of state-modifying instructions because it is similar to cmd

(Sect. 3.2), without the control-flow commands (we just suffix type constructors
with “0” to distinguish them). The syntax of branching instructions is encoded
as the inductive type branch :

Definition label := nat.
Inductive branch : Set :=
jmp : label → branch | beq : gp_reg → gp_reg → label → branch | ...

jmp inconditionnally jumps to a given label, and beq , etc. conditionally jump to
some label. A SmartMIPS instruction is either a cmd0 or a branch instruction
(the dummy instruction no insn below is just a technical convenience) and a
SmartMIPS program is a list of instructions (without explicit structure, the
positions of instructions in this list serving as labels):

Inductive insn : Set :=
cmd_insn : cmd0 → insn | branch_insn : branch → insn | no_insn : insn.
Definition prog := list insn.

Operational Semantics The operational semantics of cmd0 instructions is encoded
as an inductive type st -- c --> st’ that represents the execution of the instruc-
tion c from state st to state st’. For illustration, here follows the semantics
of add :

Inductive exec0 : option state → cmd0 → option state → Prop :=
| exec0_add : ∀ s s’ vrt vrs m h rd rs rt,
gpr.lookup rs s = vrs → gpr.lookup rt s = vrt →
-2^^31 ≤ s2Z vrt + s2Z vrs < 2^^31 →
Some (s,s’,m,h) -- add0 rd rs rt --> Some (gpr.update rd (vrs⊕ vrt) s,s’,m,h)

| ...

The operational semantics of branch instructions is encoded as an inductive type
n |> (pc,st) >> c >> (pc’,st’) that represents the execution of the branch c from
program counter pc and state st to program counter pc’ and state st’ (under
the constraint that the destination label is smaller than n). Note that st and
st’ can be different when the jump destination is not valid (leading to an error
state). For illustration, here follows the semantics of jmp :
3 In MIPS, the first instruction following a conditional branching is unconditionally

executed. In other words, the first instruction that is syntactically after a conditional
branching is executed before. In this paper, we ignore this issue.



Inductive exec_branch (max:label)
: branch → label * option state → label * option state → Prop :=

| exec_jmp : ∀ pc st j, max ≥ j ->
max |> (pc, Some st) >> jmp j >> (j, Some st)

| ...

The operational semantics of SmartMIPS programs is encoded as an inductive
type prg ||- (pc,st) --> (pc’,st’) that represents the execution of program prg

from program counter pc and state st to program counter pc’ and state st’:

Inductive exec_asm (prg:prog)
: label * option state → label * option state → Prop :=

| exec_asm_cmd0 : ∀ pc c st st’, Nth pc prg = cmd_insn c →
Some st -- c --> Some st’ →
prg ||-- (pc, Some st) --> (pc+1, Some st’)

| exec_asm_branch : ∀ pc j st pc’ st’, Nth pc prg = branch_insn j →
length prg |> (pc, Some st) >> j >> (pc’, st’) →
prg ||-- (pc, Some st) --> (pc’, st’)

| ...

For the composition of instructions to be possible, this inductive type also has
type constructors (not displayed here for lack of space) that express the reflex-
ivity and transitivity of the operational semantics.

5.2 Translation from WhileSMIPS to SmartMIPS

The role of the translator is simply to translate the control-flow commands of
WhileSMIPS into SmartMIPS:

Fixpoint translate (lbl:label) (c:cmd) : prog :=
match c with
| while_bne r1 r2 c => let prg := translate (lbl + 1) c in

branch_insn (beq r1 r2 (lbl + length prg + 2)) :: prg ++
branch_insn (jmp lbl) :: nil

...
end.

The correctness proof of this translator consists in showing that, for any state,
the final state of the execution of a WhileSMIPS progam and the final state
of the execution of its translated SmartMIPS version are the same. To do this
proof, we still need to equip WhileSMIPS programs with an operational seman-
tics. The latter is encoded as a inductive type exec st c st’ that represents the
execution of the command c from state st to state st’ (big-step operational se-
mantics, similar to [16]). To ensure that this operational semantics agrees with
the axiomatic semantics of Sect 3.2, we show that the latter is sound and com-
plete w.r.t. the former (formal proofs are similar to [10]). Finally, using the
big-step semantics of WhileSMIPS and the small-step semantics of SmartMIPS
programs, the correctness of the translator is proved by induction:

Lemma translate_correct: ∀ c st p c’ st’,
translate (length p) c = c’ →
exec (Some st) c (Some st’) →
p ++ c’ ||-- (length p, Some st) --> (length (p ++ c’), Some st’).



6 Related Work

Much work about formal encoding of assembly languages in proof assistants
has been done with application to proof-carrying code (PCC) in mind [7–9].
Although the encoded semantics often allows for programs with arbitrary jumps,
details such as machine integers are usually not treated. This makes it difficult to
reuse existing implementations of PCC frameworks to formally verify arithmetic
functions, whose algorithms require bit-level specifications.

There exist other encodings of machine integers in Coq. Leroy has encoded
such a library for integers modulo 232 as part of the development of a certified
compiler [14]. His encoding uses the relative integers of Coq (the Z type) instead
of lists ot bits. We found it difficult to reuse directly his implementation because
the length of integers (32) is hard-wired and we needed a similar library for
several lengths. Chlipala has encoded a library similar to ours but based on
dependent vectors [15]. We think that our implementation based on an abstract
type is more flexible than dependent vectors because it separates the issues of
formal proofs and dependent types.

In this paper, we use a combination of a Hoare logic for structured Smart-
MIPS with a certified translator to SmartMIPS programs with jumps. Another
approach would have been to encode a (more intricate) Hoare logic for low-
level programs with jumps (such as [12, 13]) and to specialize it to structured
programs to carry out verifications. We chose the former approach because our
primary concern was the formal verification of concrete examples of arithmetic
functions, whose implementations turn out to fit well in structured SmartMIPS.

7 Conclusion

In this paper, we proposed an approach to formal verification of arithmetic
functions in assembly based on the combined use of a certified implementation
of a Hoare logic for assembly programs with loops and a certified translator
to assembly programs with jumps. This approach enables formal verification of
ready-to-run assembly programs with a familiar-looking Hoare logic. At the heart
of our implementation is a module for machine integers that makes it possible to
prove formally the lemmas, such as overflow conditions, needed for verification
of assembly programs. Using this approach, we have formally verified several
arithmetic functions written in SmartMIPS assembly, including an optimized
implementation of the Montgomery multiplication, a de facto-standard for the
implementation of many cryptosystems.
Future Work In order to verify more arithmetic functions, we are extending our
library with a semantics for function calls and returns, and with predicates to
deal with signed multi-precision integers. We also plan to encode a semantics for
exceptions to enable verification of embedded systems.
Acknowledgments This work is partially supported by the Grant in Aid of Special
Coordination Funds for Promoting Science and Technology, Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan. The authors are grateful
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