
Image-Based Rendering by Virtual 1D Cameras

Naoyuki Ichimura

National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan

nic@ni.aist.go.jp,
http://staff.aist.go.jp/naoyuki.ichimura/

Abstract. Image-based rendering (IBR) has been used to synthesize
images corresponding to a new view point from stored images. Rendering
methods based on a three-dimensional plenoptic function are attractive
due to the simplicity of image capture. Only a few specific discussions,
however, have been done for the scaling problem to correct aspect ratio
distortion, which heavily affects the quality of a synthesized image. This
paper presents a rendering algorithm with a scaling scheme, which is
general in that it can handle arbitrary camera paths. We model a virtual
camera by a set of one-dimensional (1D) cameras. The ray representation
of the 1D camera enables us to devise a rendering algorithm for the cases
where the camera paths to create ray databases are arbitrary curves. We
conclude with experimental results that demonstrate the usefulness of
the proposed algorithm.

1 Introduction

Image-based rendering (IBR) has been used to synthesize images corresponding
to a new view point from stored images [1]. Figure 1 shows an example of IBR.
A scene is captured by multiple cameras set on a linear camera path as shown
in Fig. 1 (a). A set of images captured by the cameras is called a ray database,
because storing the images is equivalent to storing the rays associated with the
cameras. A new view is generated by properly extracting the rays in the database,
which correspond to the rays of a virtual camera. Figure 1 (b) shows a new view
obtained by placing a virtual camera at the back of the camera path.

Making a ray database is interpreted as sampling the plenoptic function [2]
shown in Fig. 2 (a). Due to the high dimensionality of the plenoptic function
P (x, y, z, θ, φ, λ, t), which has 7 dimensions of positions, directions, wavelength
and time, sampling the function by arranging cameras in space is extremely diffi-
cult. Practical IBR algorithms have been developed using a 4- or 3-dimensional (4D
or 3D) plenoptic function by providing constraints for the arrangement of cam-
eras, wavelength and time. Typical algorithms using a 4D function P (x, y, θ, φ)
are light field rendering [3] and lumigraph [4], in which cameras are arranged on
the vertical plane defined by the Xw and Y w axes in Fig. 2 (a). Cameras are
arranged on the horizontal plane defined by the Xw and Zw axes in concentric
mosaics [5], bi-centric camera [6,7] and cross-slits projection [8,9,10]; this enables
us to use a 3D function P (x, z, φ).

T. Wada, F. Huang, and S. Lin (Eds.): PSIVT 2009, LNCS 5414, pp. 423–435, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

424 N. Ichimura

virtual
camera

rays of
cameras

stored images
(ray database)

camera
path

(a)

virtual
camera

camera for
a ray database

scene

(b) (c)

Fig. 1. An example of image-based rendering (IBR). (a) A ray database and a virtual
camera. (b) A new view from the virtual camera. Note that the image shows an entire
scene. (c) The difference between the vertical fields of views of a camera used for a ray
database and a virtual camera. The difference is the source of aspect ratio distortion
which would appear in a new view.

Since no cameras are required for the vertical direction, there are two advan-
tages of IBR with a 3D plenoptic function. The first advantage is ease of image
capture. The second one is that new view generation can be simply performed
by mosaicing, where columns (or vertical strips) of pixels of images in a ray
database are concatenated [5,6,7,8,9,10]. On the other hand, there is a serious
drawback as well; the aspect ratio of a new view is changed depending on the
difference between the vertical fields of views of cameras used for a ray database
and the vertical field of view of a virtual camera. Figure 1 (c) shows an exam-
ple of the difference. Since we can determine the position and focal length of a
virtual camera arbitrary, the extent of the scene captured by a virtual camera
could be smaller or larger than that captured by cameras for a ray database. If
a new view is generated by concatenating columns of pixels of images in a ray

Image-Based Rendering by Virtual 1D Cameras 425

database without taking the difference of the fields of views into account, the
aspect ratio of the new view is changed because we only have images captured
from the positions of cameras for a ray database. Thus the distortion due to
the change in the aspect ratio would appear in the new view. This distortion is
called aspect ratio distortion or vertical distortion [5,8], and badly affects the
quality of a synthesized image, especially when forward/backward motions of a
virtual camera are simulated.

In order to remove this distortion, we need to find an appropriate factor for
scaling columns of pixels used in mosaicing to compensate for the difference
between the vertical fields of views. Without any scaling, a virtual camera has
to have the same vertical field of view as cameras for a ray database have. This
is unacceptable for practical new view generation, because the position and focal
length of a virtual camera are strictly restricted. The derivation of the scaling
factor has been discussed only for the cases where the camera paths for ray
databases are linear and circular [5,6,7,8,9,10]. The limitation on the camera
paths should be removed to take full advantage of a 3D plenoptic function. The
unstructured Lumigraph rendering [11] which allows an arbitrary configuration
of a set of cameras for a 4D plenoptic function may be used with a 3D plenoptic
function. No explanation for distortion correction, however, has been presented.
To the best of our knowledge, no complete consideration of the scaling factor
exist for the cases where the camera paths are arbitrary curves.

This paper presents a rendering algorithm with a scaling scheme, which is
general in that it can handle arbitrary camera paths. First, we model a virtual
camera by a set of one-dimensional (1D) cameras. Then, we present a rendering
algorithm for the cases where the camera paths to create ray databases are
arbitrary curves. We conclude with experimental results that demonstrate the
usefulness of the proposed algorithm.

2 Modeling Virtual Camera

In this section, we first explain how the rays of a virtual camera are represented
by view planes of 1D cameras. Then, we derive the equation for the view plane.

2.1 Representing Rays of Virtual Camera

In IBR based on a 3D plenoptic function, a new view is generated by concatenat-
ing columns of pixels corresponding to the rays of a virtual camera [5,6,7,8,9,10]
(Fig. 2 (b)). Since a single column of pixels serves as the building block for a new
view, we can bundle the rays of each column to represent a virtual camera by
a set of 1D cameras corresponding to the columns of pixels. Using 1D cameras,
we can model a virtual camera in which all the rays pass through a view point,
i.e., a central camera, as shown in Fig. 2 (b).

We call the plane containing the rays of a 1D camera a view plane. The
position and direction of a view plane determine which a column of pixels needs
to be extracted from a ray database. We derive the equation representing the
position and direction of a view plane in the next section.

426 N. Ichimura

(x,y,z)

� �

�,t
ray

Xw

Yw

Zw

virtual
camera

view plane
of 1D camera

column
of pixels

new view

(a) (b)

Fig. 2. The plenoptic function and a virtual camera. (a) The plenoptic function in
the world coordinate system defined by the Xw, Y w, and Zw axes. Rays are repre-
sented by the 7 dimensional plenoptic function with positions (x,y, z), directions (θ, φ),
wavelength λ and time t. To generate new views by extracting rays sampled as a ray
database, we represent a virtual camera by a set of 1D cameras. (b) The 1D cameras
emulate a central camera in which all rays pass through a view point.

2.2 Deriving View Plane Equation

Figure 2.2 depicts the imaging geometry of a 1D camera. The world coordinate
system is denoted by Xw, Y w and Zw. The index of the position of a camera is
represented by k. The motion of the k-th camera is represented by the rotation
matrix Rk and translation vector tk, which define the camera coordinate system
given by Xk, Y k and Zk. The 1D detector of the camera lies on the Y k–Zk

plane and it produces a 1D image.
We denote the world and camera coordinates of a 3D point P as pw =

(xw, yw, zw)t and pk = (xk, yk, zk)t, respectively. We know that the camera and
world coordinates are related to each other as follows:

pk =
(
Rt

k | − Rt
ktk

) (
pw

1

)
, (1)

where,

Rt
k = (ik, jk, kk)t , tk = (txk, tyk, tzk)t . (2)

The rows of the rotation matrix, ik, jk and kk, define the directions of the axes
of the camera coordinate system, Xk, Y k and Zk.

We can express the camera coordinate xk by expanding Eq. (1) as follows:

xk = ik · pw − ik · tk . (3)

Note that, since the view plane (1D detector) lies on the Y k–Zk plane, we have
xk = 0. Therefore, we have:

ik · pw = ik · tk . (4)

Image-Based Rendering by Virtual 1D Cameras 427

view plane

scene

image plane

1D detector

Zk

Xk

Yk

view ray

Yw
Zw

Xw

R tk k,

P

projected
point

Fig. 3. Imaging geometry of a 1D camera. The world coordinate system is denoted by
the Xw, Y w and Zw axes. The camera coordinate system for the k-th camera is denoted
by the Xk, Y k and Zk axes.The relationship between the world and camera coordinate
systems is given by the rotation matrix Rk and translation vector tk. The world and
camera coordinates of a 3D point P are pw = (xw, yw, zw)t and pk = (xk, yk, zk)t,
respectively. The 1D detector (and hence the view plane) lies on the Y k–Zk plane.

The above expression, which represents the view plane of a 1D camera with the
position tk and direction Rk passing through the 3D point, is called the v iew
plane equation.

The rotation of a 1D camera is only along the horizontal direction, i.e., around
the Y k axis, for a 3D plenoptic function P (x, z, φ). The vertical component of
the translation is zero because the camera is on the Xw–Zw plane. These facts
lead to the following camera motion:

Rt
k =

⎛

⎝
cosφk 0 − sinφk

0 1 0
sinφk 0 cosφk

⎞

⎠ , tk = (txk, 0, tzk)t
. (5)

where, φk is the rotation angle around the Y k axis of the k-th camera. Using
the camera motion, we have the following equations from Eq. (1):

xk = xw cosφk − zw sin φk − txk cosφk + tzk sin φk , (6)
yk = yw , (7)
zk = xw sinφk + zw cosφk − txk sin φk − tzk cosφk . (8)

Then we have the view plane equation for a 3D plenoptic function P (x, z, φ):

xw cosφk − zw sin φk = txk cosφk − tzk sin φk . (9)

In the next section, we present an IBR algorithm with a general scaling factor
using Eq. (6), (7), (8) and (9).

428 N. Ichimura

3 IBR with General Scaling Factor

We propose an IBR algorithm with a general scaling factor in this section. First,
we present the algorithm and then derive the scaling factor.

3.1 IBR Algorithm

The overview of the proposed algorithm is shown in Fig. 4. There are 3 curves
in the figure, i.e., a camera path, a focal surface and a geometric proxy. Cameras
for a ray database are arranged on the camera path. The focal surface denotes
the positions where a virtual camera adjusts its focus [12]. The geometric proxy
is used as an approximated shape of a scene. All the curves are represented
by polygons whose vertexes are given by the sets of vectors: {cl}L

l=1, {fm}M
m=1

and {gn}N
n=1, respectively. Each vector has the position of a vertex as well as

additional information such as the direction of the camera for a ray database.

�k

Zk

Xk

Zw

Xw

geometric
proxy

focal
surface

camera
path

�i

Zi

Xi

(,)t txk zk

(,)t txi zi

(x ,z)ck ck

(x ,z)fk fk

(x ,z)gk gk

�ik

1D
camerark

rik closest
camera:Ci

P

Fig. 4. The overview of the proposed IBR algorithm. The ray associated with the
1D camera with the position (txk, tzk) and direction φk is rk. The camera Ci, which
is closest to the point of intersection of rk and the camera path, (xck, zck), is found
from a ray database to know its position (txi, tzi) and direction φi. Then the point of
intersection of rk and the focal surface, (xfk, zfk), is computed. The angle of the ray
rik, τik, is obtained by the intersection point and the position of Ci. The position of a
column of pixels corresponding to rik is calculated. After extracting the column at the
position, the column is scaled based on the distances from the point of intersection of
rk and the geometric proxy, (xgk, zgk), to the 1D camera and the closest camera Ci.

Image-Based Rendering by Virtual 1D Cameras 429

The proposed IBR algorithm is summarized as follows:

[Step 1: Setting a view point] The position (txk, tzk) and direction φk of a 1D
camera are given based on a user request. The ray of the camera is expressed
as rk.

[Step 2: Finding the closest camera] The point of intersection of the ray rk and
the camera path is computed. This computation is performed by intersection
check between the view plane of rk obtained by Eq. (9) and the polygons {cl}L

l=1.
The vertex ci, which is closest to the point of intersection (xck, zck), is found
and the camera at the vertex is regarded as the closest camera Ci. The vertex
has the position and direction of Ci, and these are denoted as ci = (txi, tzi, φi)

t.

[Step 3: Finding the intersection point with the focal surface] The point of in-
tersection between the ray rk and the focal surface is computed. This computa-
tion is done by intersection check between the view plane of rk and the polygons
{fm}M

m=1. The point of intersection is shown as (xfk, zfk).

[Step 4: Computing the angle of the ray] The ray of Ci passing through the point
(xfk, zfk), i.e., rik shown in Fig. 4, corresponds to the column of pixels required
for generating a new view. The view plane of rik is obtained by Eq. (9) as follows:

xfk cos (φi + τik) − zfk sin (φi + τik)
= txi cos (φi + τik) − tzi sin (φi + τik) . (10)

where, τik is the angle of rik, which is needed to extract the required column of
pixels. This angle is expressed as:

τik = Tan−1
(

a − tan φi

1 + a tan φi

)
, a =

xfk − txi

zfk − tzi
. (11)

[Step 5: Finding the position of the column of pixels] The position of the col-
umn of pixels for mosaicing, dik, is obtained as follows:

dik = fi tan τik . (12)

where, fi is the focal length of Ci.

[Step 6: Finding the intersection point with the proxy] The point of intersection
P between the ray rk and the geometric proxy is computed. This computation is
performed by intersection check between the view plane of rk and the polygons
{gn}N

n=1. The point of intersection is shown as (xgk, zgk).

[Step 7: Scaling the column of pixels] The column of pixels at the position dik is
scaled using the scaling factor sk.

sk =
fk

fi

zik

zk
, (13)

where,
zik = xgk sinφ

′

i + zgk cosφ
′

i − txi sin φ
′

i − tzi cosφ
′

i , (14)

φ
′

i = φi + τ
′

ik , (15)

430 N. Ichimura

τ
′

ik = Tan−1

(
a

′ − tanφi

1 + a′ tan φi

)

, a
′
=

xgk − txi

zgk − tzi
, (16)

zk = xgk sinφk + zgk cosφk − txk sin φk − tzk cosφk , (17)

fk is the focal length of the 1D camera and τ
′

ik is the angle of the ray connecting
the position of the closest camera and the intersection point P. The use of the
angle implies that the scaling factor is determined by the position of the geo-
metric proxy; the position of the focal surface is ignored in scaling.

[Step 8: Averaging the columns of pixels] Step1 to Step7 are applied not only
to the closest camera but also to multiple cameras near the intersection point
(xck, zck). Then the weighted average of the scaled columns of pixels is calcu-
lated. The number of cameras that plays the role of the aperture of a virtual
camera [12] is 3 for this algorithm. The weights for averaging are given by the
Gaussian distribution N (0, 4).

[Step 9: Mosaicing] Step1 to Step 8 are applied to all 1D cameras in a virtual
camera. By concatenating the averaged columns of pixels, we can generate a new
view.

The scaling factor sk of Eq. (13) is derived in the next section.

3.2 Deriving Scaling Factor

Assume that a 1D camera and the closest camera Ci observe the same point P
on a geometric proxy with the coordinates (xgk, zgk). The points projected on
the cameras are denoted by v and v

′
, respectively. The ratio between v and v

′

is the required scaling factor. Using the perspective projection of the cameras,
we can express the ratio as follows:

v

v′ =
fkyk

zk

zik

fiyik
. (18)

where, yk, zk and yik, zik are the camera coordinates of P for a 1D camera and
Ci, respectively.

From Eq. (7), we know that yk = yik = yw. Thus, Eq. (18) is equivalent to
Eq. (13). We can represent zik and zk as shown in Eq. (14) to (17) using Eq. (8),
(11). Therefore, the scaling factor represented by Eq. (13) to (17) is obtained.

The scaling factor for polar coordinates is useful for the IBR algorithm using
the circular camera path for a ray database [5,7,8,9,10]. The scaling factor is
derived in Appendix A.

It is important to note that no assumption is imposed on the shape of the
camera path in the above derivation. The derived scaling factor is, therefore,
general in that it can be applied to the cases where camera paths are arbitrary
curves.

Image-Based Rendering by Virtual 1D Cameras 431

4 Experimental Results

In this section, we show experimental results of the proposed algorithm. The
main purpose of the experiments was to confirm the effect of the proposed scaling
scheme.

Figure 5 shows a ray database created by using 3D rendering software, POV-
Ray [13]. We rendered 900 frames including the 3 frames in the figure. Note that
the camera path for the database was a sine curve, which leads to the changes
in the depths between the cameras and the scene. The virtual camera was the
central one, as shown in Fig. 2 (b). Since the distance between the virtual camera

virtual
camera
motion

camera
path

Zw

Xw

Fig. 5. The ray database obtained by POV-Ray [13]. The camera path was a sine
curve. The virtual camera was the central one, as shown in Fig. 2 (a), and it was
moved forward.

(a)

(b)

Fig. 6. The new views obtained from the virtual camera with the motion shown in
Fig. 5. (a) without scaling. (b) with scaling. Left,Right: the new views corresponding to
the different positions of the virtual camera. Note the changes in the aspect ratios of the
objects in (a). The deformation of the left image in (b) demonstrates the compensation
of the change in depth of the camera path in Fig. 5 by the scaling factor.

432 N. Ichimura

camera
path

virtual
camera
motion

Zw
Xw

camera path

structure

(a) (b)

Fig. 7. The ray database for a remain in the Kingdom of Cambodia. (a) The virtual
camera was the central one and it was moved downward from the center of the scene.
(b) The camera path and the rough structure of the scene were estimated by using
Voodoo Camera Tracker [14]. Note that the rough structure is enough for a geometric
proxy.

and the scene has to be changed significantly in order to confirm the usefulness
of the scaling factor, the virtual camera was moved forward.

The focal surface and geometric proxy were planes and these were placed
at the same position as the average depth of the scene. The focal lengths of
the cameras for the ray database and the virtual camera were fi = 480 and
fk = 960[pixel], respectively. The change in the depth of the camera path, the
position of a virtual camera and the difference between the focal lengths yielded
the aspect ratio distortion.

The new views are shown in Fig. 6. Figure 6 (a) is the result obtained without
scaling and Fig. 6 (b) is the result obtained with scaling. The left and right
images of the figures correspond to the different positions of the virtual camera.
Without scaling, the aspect ratios of the objects were changed as the virtual
camera was moved. On the other hand, the aspect ratio distortion was corrected
by scaling. The deformation of the left image in Fig. 6 (b) demonstrates that
the scaling of the columns of pixels compensated for the change in the depth of
the camera path.

We now present the results for IBR using real images. Figure 7 (a) shows the
ray database using the images of a remain in the Kingdom of Cambodia. We used
330 frames, including the 3 frames in the figure. The positions and directions of
the cameras for the frames were estimated by using Voodoo Camera Tracker [14],
software for a structure from motion algorithm, as shown in Fig. 7 (b). Since the
camera motion was controlled by a dolly, the camera moved on a plane. This
fact enables us to use the 3D plenoptic function. The virtual camera was the
central one and it was moved downward from the center of the scene as depicted
in Fig. 7 (a).

Image-Based Rendering by Virtual 1D Cameras 433

(a)

(b)

Fig. 8. The new views obtained from the virtual camera with the motion shown in
Fig. 7. (a) without distortion correction. (b) with distortion correction. Note the serious
aspect ratio distortions in the new views of (a).

The fixed focal length of the camera for the ray database and the 3D structure
of the scene were also estimated by the software. The focal surface and geometric
proxy were planes and these were placed at the same position as the average
depth of the scene. The focal lengths of the cameras for the ray database and
the virtual camera were fi = 46 and fk = 91[pixel], respectively. The focal length
fk was determined to cover the entire scene at the initial position of the virtual
camera.

Figure 8 shows the new views. Since no aspect ratio correction was done in
Fig. 8 (a), the new views had the serious aspect ratio distortion which deteri-

434 N. Ichimura

orated the quality of the new views. For example, the width of the gate in the
scene did not change although the virtual camera was moved. In Fig. 8 (b) using
the proposed scaling scheme, the width of the gate gradually changed as the
virtual camera was moved owing to the compensation of the aspect ratio. The
quality of the new views was sufficient to emulate the virtually generated camera
motion.

In summary, the experimental results with large changes in the distances
between the virtual cameras and the scenes demonstrate that our algorithm can
correct aspect ratio distortions.

5 Summary

We have proposed an IBR algorithm with a scaling scheme based on the modeling
of a virtual camera using 1D cameras. The scaling scheme is general in that it can
handle arbitrary camera paths. We demonstrated the usefulness of the proposed
IBR algorithm by the experiments in which new views were generated using
several ray databases. We believe that the scaling scheme presented here will
facilitate the use of IBR based on a 3D plenoptic function.

References

1. Shum, H.Y., Chan, S.C., Kang, S.B.: Image-Based Rendering. Springer, Heidelberg
(2007)

2. Adelson, E.H., Bergen, J.R.: The Plenoptic Function and the Elements of Early
Vision, pp. 3–20. MIT Press, Cambridge (1991)

3. Levoy, M., Hanrahan, P.: Light field rendering. In: Proc. SIGGRAPH 1996, pp.
31–42 (1996)

4. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proc.
SIGGRAPH 1996, pp. 43–54 (1996)

5. Shum, H.Y., He, L.W.: Rendering with concentric mosaics. In: Proc. SIGGRAPH
1999, pp. 299–306 (1999)

6. Weinshall, D., Lee, M.S., Brodsky, T., Trajkovic, M.: New view generation with
a bi-centric camera. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.)
ECCV 2002. LNCS, vol. 2350, pp. 614–628. Springer, Heidelberg (2002)

7. Bakstein, H., Pajdla, T., Vecerka, D.: Rendering almost perspective views from a
sparse set of omnidirectional images. In: Proc. BMVC, pp. 241–250 (2003)

8. Zomet, A., Feldman, D., Peleg, S., Weinshall, D.: Mosaicing new views: The cross-
slits projection. IEEE Trans. PAMI 25(6), 741–753 (2003)

9. Bakstein, H., Pajdla, T.: Rendering novel views from a set of omnidirectoinal mo-
saic images. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
Workshop (CVPRW 2003), pp. 74–79 (2003)

10. Bakstein, H., Pajdla, T.: Omnidirectional image-based rendering. In: Proc. Com-
puter Vision Winter Workshop (CVWW 2006), pp. 99–104 (2006)

11. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumi-
graph rendering. In: Proc. SIGGRAPH 2001, pp. 425–432 (2001)

12. Isaksen, A., McMillan, L., Gortler, S.J.: Dynamically reparameterized light fields.
In: Proc. SIGGRAPH 2000, pp. 297–306 (2000)

13. http://www.povray.org/
14. http://www.digilab.uni-hannover.de/docs/manual.html

http://www.povray.org/
http://www.digilab.uni-hannover.de/docs/manual.html

Image-Based Rendering by Virtual 1D Cameras 435

A Scaling Factor for Polar Coordinate System

The camera coordinates zik and zk of Eq. (14) and (17) are expressed as follows:

zik = dk

�
1 −

�
Ri

dk
sin
�
ξi − φ

′
i

��2

− Ri cos
�
ξi − φ

′
i

�
, (19)

zk = dk

�
1 −

�
Rk

dk
sin (βk − φk)

�2

− Rk cos (βk − φk) , (20)

where,

dk =
�

x2
gk + z2

gk , (21)

Ri =
�

t2xi + t2zi, tan ξi = txi/tzi , (22)

Rk =
�

t2xk + t2zk, tan βk = txk/tzk . (23)

Using the expression, we can derive the scaling factor of Eq. (13). This scaling factor
is useful for the IBR algorithms using the polar coordinate system to represent the
rotation of cameras for a ray database [5,7,8,9,10]. For example, if the camera path is
circular, Ri in Eq. (22) is the radius of the circle and ξi the angle of the closest camera
Ci.

We show the derivation of Eq. (19) as follows. Equation (14) is denoted as:

zik = dk

�
sin αk sin φ

′
i + cos αk cos φ

′
i

�
− Ri

�
sin ξi sin φ

′
i + cos ξi cos φ

′
i

�
,

= dk

�
1 − sin

�
αk − φ

′
i

�2 − Ri cos
�
ξi − φ

′
i

�
. (24)

where, φ
′
i, dk and Ri are given by Eq. (15), (21) and (22), and tan αk = xgk/zgk.

The view plane of the ray of Ci passing through the coordinates (xgk, zgk) is given by
Eq. (9):

xgk cos φ
′
i − zgk sin φ

′
i = txi cos φ

′
i − tzi sin φ

′
i . (25)

From the expression, we have:

sin
�
αk − φ

′
i

�
=

Ri

dk
sin
�
ξi − φ

′
i

�
. (26)

Substituting Eq. (26) in Eq. (24), we obtain Eq. (19).
We can obtain Eq. (20) for the camera coordinate zk by applying the same procedure

as that used for Eq. (19).

	Introduction
	Modeling Virtual Camera
	Representing Rays of Virtual Camera
	Deriving View Plane Equation

	IBR with General Scaling Factor
	IBR Algorithm
	Deriving Scaling Factor

	Experimental Results
	Summary
	Scaling Factor for Polar Coordinate System

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

