EXTRACTING MULTI-SIZE LOCAL DESCRIPTORS BY GPU COMPUTING

Naoyuki Ichimura

National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan

nic@ni.aist.go.jp

ABSTRACT

This paper presents fast computational techniques for extract-
ing local descriptors from multiple local regions associated
with an image feature such as a feature point. Multiple lo-
cal regions with different sizes are detected by multiplying
multiple scale factors to the characteristic scale of the image
feature. The descriptors obtained from multiple local regions
are called multi-size local descriptors. Multi-size local de-
scriptors enable us to use various types of feature represen-
tation and matching schemes based on many different spatial
sizes, which is a promising way to control the balance among
the robustness against for occlusions, the invariance, and the
distinctiveness of the descriptors to the contents of scenes.
Because multi-size local descriptors increases the computa-
tional costs of feature extraction, we introduce parallel com-
putational techniques for extracting the multi-size local de-
scriptors consisting of the histograms of gradient orientations
through the use of a graphics processing unit (GPU). In par-
ticular, we demonstrate that orientation maps are useful for
efficient extraction of the multi-size local descriptors. Using
orientation maps, we can calculate the descriptors by a table
look-up manner. We show implementation details and then
conclude with the experimental results that demonstrate the
usefulness of GPU computing with orientation maps.

Index Terms— local invariant features, local regions, ori-
entation maps, GPU computing

1. INTRODUCTION

The use of local invariant features is regarded as a promis-
ing method for representing the contents of an image. Lo-
cal invariant features can be extracted by the following two
steps[1, 2, 3, 4]: (i) detecting local regions, (ii) calculating
descriptors. Figure 1 shows an example of detecting lo-
cal regions. Descriptors are calculated in the local regions
shown by the squares. Local invariant features have two
main advantages in describing scenes. The first is their ro-
bustness against occlusions; we can use the features of vis-
ible portions of the scene even if parts of the scene are oc-
cluded. The second advantage is, of course, their invari-
ance. By introducing components such as scale space pyra-
mids, local coordinate systems and norm normalization into

978-1-61284-350-6/11/$26.00 ©2011 IEEE

Fig. 1. Examples of detecting local regions for the image
“Tour de France”[13]. (a) A result using a single scale factor.
(b) A result using multiple scale factors. In this examples,
only 5% of all local regions are shown for the sake of clarity.

feature extraction, we can make local features invariant to
deformations and to changes in illumination. Because of
these advantages, local invariant features have been widely
used as fundamental elements for image matching and object
recognition[1, 2, 3,4,5,6,7,8,9, 10, 11, 12].

Local region detection is performed by determining the
positions and sizes of local regions in a scale space pyra-
mid computed from an image. Image features such as feature
points and edges and several sampling strategies have been
adopted to find the positions of pixels which are used as the
centers of local regions[1, 2, 4, 8, 9, 14]. The sizes of local
regions are determined by the scales of images in which the
center pixels are found, i.e., the characteristic scales[15] of
the center pixels. In practice, we determine the sizes of local
regions by multiplying the characteristic scales by a scale fac-
tor. The differences of the characteristic scales of the center
pixels lead to the differences of the sizes of the local regions
as demonstrated in Fig.1(a). Using the characteristic scales
to determine the sizes of local regions enable us to make de-
scriptors invariant to scale changes.

The scale factor has large effect on the robustness against
for occlusions, the invariance, and the distinctiveness of de-
scriptors, because it controls the spatial extent used for image
feature representation. For example, if the contents of an im-
age include many changes in shape and brightness, descrip-
tors obtained from small local regions that are useful to in-
crease the robustness against for occlusions can have enough
invariance and distinctiveness. On the other hand, if there are

little changes in shape and brightness, larger local regions are
required for the invariance and distinctiveness of descriptors.
The scale factor, therefore, should be changed based on the
degree of occlusions and the complexity of the contents of
scenes. However, the scale factor is normally fixed regardless
of the contents of scenes, because it is difficult to predict the
degree and complexity to adjust the scale factor.

In this paper, we develop a computational techniques for
extracting descriptors from multiple local regions with dif-
ferent sizes which are determined by multiplying multiple
scale factors to the characteristic scale. The descriptors ob-
tained from multiple local regions are called multi-size local
descriptors. Figure 1(b) shows examples of local regions for
multi-size local descriptors. For each center pixel, five local
regions are prepared in this example. Using multi-size local
descriptors obtained from different spatial extents enables us
to control the the balance among the robustness against for
occlusions, the invariance, and the distinctiveness of the de-
scriptors without using a priori knowledge about the contents
of scenes. For example, if the robustness against for occlu-
sions has the priority over the others in image matching and
object recognition, the descriptors obtained from the small-
est local regions would be most useful. If the distinctiveness
is important, utilizing co-occurrence, similarity and/or cor-
relation computed from multi-size local descriptors could be
effective. An exhaustive matching among all the sizes of lo-
cal regions might be a way to increase the invariance. The
multi-size local descriptors, therefore, have advantages over
the descriptors extracted by using a single scale factor.

A problem in extracting multi-size local descriptors is the
increase of computational costs. In order to address the prob-
lem, we introduce parallel computational techniques for ex-
tracting the multi-size local descriptors consisting of the his-
tograms of gradient orientations through the use of a graphics
processing unit (GPU). In particular, we demonstrate that the
data structure called orientation maps[12] are useful for effi-
cient extraction of the multi-size local descriptors on a GPU.

A related work on the multi-size local descriptor is Cheng
et al.[16]. The purpose of their research is to develop a de-
scriptor which is robust to image deformations due to non-
rigid objects and optical systems such as fisheye lens. Al-
though [16] shows that descriptors obtained from multiple
local regions with different sizes are useful for the purpose,
coping with the increase of the computational costs to cal-
culate descriptors remains as an issue. In particular, since
several investigators[6, 7, 8, 9, 10, 12, 14] have demonstrated
the advantages of dense sampling of local features which in-
creases the number of local regions used in image matching
and object recognition, introducing fast computational tech-
niques is very important to extract the multi-size local de-
scriptors from local regions detected densely. We present a
method for extracting the multi-size local descriptors based
on the use of a GPU and orientation maps. Although there are
GPU-based implementations of algorithms for local invariant
features, such as SIFT[17], SURF[18] and HOG[19], algo-

dominant
orientation

)

2R]N
b;.‘
ey
¥

A/

Y/

<

AN
S,
01[0,,
oy
V'
e
08
N

/
7%
.
)

X

2

058
730
—
0%

qu

Fig. 2. The arrangement of cells in a local region. The 4 x 4
cells represented by the circles are arranged in the local re-
gion. The size of a local region is determined by multiplying
the characteristic scale of the center pixel o by the scale factor
s. The local regions with different sizes obtained by changing
the scale factor are used to extract the multi-size local descrip-
tors as shown in the example of Fig.1(b).

rithms for the multi-size local descriptors using orientation
maps have not been considered.

Below, we explain the descriptor, the orientation maps,
and the implementation on a GPU. Then we conclude with a
description of our experimental results.

2. REVIEW OF CALCULATING DESCRIPTORS

In this section, we review algorithms commonly used for cal-
culating descriptors, such as SIFT[2], GLOH[3], HOG[6] and
DAISY[12], that involve the histograms of gradient orienta-
tions.

Multiresolutional analysis by a scale space pyramid is per-
formed for scale invariance. Laplacian of Gaussian (LoG)
filters with various scales, together with down sampling of
an image, are used to detect local regions by extracting fea-
ture points in a scale space pyramid. Scale space extrema are
identified to determine the locations and characteristic scales
of feature points[15]. The locations of the local regions are
the same as those of the feature points. The size of each local
region is determined by multiplying the characteristic scale o
by a scale factor s as shown in Fig.2. Another scale space
pyramid of multiresolutional edge images is generated for the
intensity gradients required to calculate the descriptors. Gaus-
sian filters, gradient filters and down sampling are combined
to obtain multiresolutional edges. Multiresolutional edges
can also be used for local region detection[8, 20]. For ex-
ample, local regions in Fig.1 are detected using both feature
points and edges. The descriptors are calculated in local re-
gions using the intensity gradients obtained from the edge im-
ages corresponding to the characteristic scales.

We now explain how the descriptors are calculated. First,
cells are arranged in a local region as depicted in Fig.2. Then,
the histogram of the gradient orientations of the pixels in each

Fig. 3. Examples of orientation maps. Left: an edge detec-
tion result for the image shown in Fig.1. Right: the orien-
tation maps corresponding to the eight gradient orientations
obtained from the edge image on the left. Each of the maps
contains gradient magnitudes for a quantized orientation.

cell is computed. The voting values for the histogram are
the gradient magnitudes of the pixels weighted by a Gaus-
sian function located at the center of the local region or cell.
The histogram of the cell is shifted for rotation invariance
based on the direction of a local coordinate system attached
to the local region. The local coordinate system can be set
using the dominant orientation proposed in SIFT[2]. A vec-
tor is then constructed by concatenating the histograms of the
cells. A descriptor is obtained by normalizing the vector for
illumination invariance. Since gradient orientations are re-
lated to the directions of edges, the descriptor represents the
shape information in the cells. The usefulness of this repre-
sentation in image matching and object recognition has been
confirmed[2, 3,4, 5,6,7,8,9, 10, 11, 12].

3. CALCULATING MULTI-SIZE DESCRIPTORS
USING ORIENTATION MAPS

The gradient orientations and gradient magnitudes of all the
pixels in a scale space pyramid are obtained by gradient fil-
ters. Using two dimensional arrays corresponding to the bins
of the histogram of gradient orientations, we can separate
the gradient magnitudes based on the gradient orientations.
The two dimensional arrays containing the gradient magni-
tudes are called orientation maps[12]. Examples of orienta-
tion maps are shown in Fig.3.

Applying a Gaussian filter to orientation maps, we can ag-
gregate weighted gradient magnitudes locally. The extent of
aggregation is determined by the scale of the Gaussian filter.
If we choose the scale so that the extent of aggregation fits
the size of a cell for the descriptors, the convolution opera-

Gradient Orientation
Filter Maps
Scale Space —
lnput* Pyramid ALoG Local Region Multi-size
Image ™| (Gaussian Filter Detection Descriptors
Filter)
Corner
Detector

Fig. 4. The flowchart of the feature extraction algorithm that
we implement. Local regions are detected based on both fea-
ture points and edges. The multi-size local descriptors con-
sisting of the histograms of gradient orientations are calcu-
lated using orientation maps.

tions performed by the Gaussian filter are equivalent to the
computation of the voting values for the histograms of gra-
dient orientations. This allows us to calculate the descriptors
merely by looking up the locations of convolved orientation
maps corresponding to the centers of cells. No exhaustive
access to the pixels in cells is required thanks to orientation
maps.

In the conventional methods such as [2, 3, 6], all the pixels
in cells should be accessed to calculate the descriptors. Thus
if we just port the conventional method to extract multi-size
local descriptors, the computational cost is proportional to the
number of pixels in multiple local regions. On the other hand,
if the method using orientation maps is exploited, the compu-
tational cost for extracting multi-size local descriptors is pro-
portional to the number of cells which is much smaller than
the number of pixels. This difference is the key to reduce the
computational cost.

An issue in using orientation maps is that many convo-
lution operations need to be performed on large numbers of
“multiresolutional” orientation maps generated from a scale
space pyramid. Thus it is important to examine whether the
computational cost of Gaussian filters for multiresolutional
orientation maps can actually be exchanged for that of the de-
scriptors calculated without the use of orientation maps.

Since Gaussian filters can be efficiently implemented by
utilizing the shared memory in a GPU, the introduction of
orientation maps and a GPU could be useful for fast compu-
tation of the descriptors. We implement a feature extraction
algorithm on the GPU, NVIDIA GTX 480, to confirm the use-
fulness of this approach; this is discussed in the next section.

4. IMPLEMENTATION ON GPU

We apply CUDA(Compute Unified Device Architecture),
which was developed by NVIDIA[21], to feature extraction.
The data to be processed by the GPU are divided into blocks
associated with threads in CUDA. The numbers of blocks and
threads are called the execution configuration (EC). The num-
ber of blocks can be specified by the width and/or the height
of a block.

Figure 4 is the flowchart of the feature extraction algo-
rithm that we implement. First, a scale space pyramid is gen-
erated from an input image by Gaussian filters with various
scales. A gradient filter, approximated LoG filters and corner
detectors are then applied to the scale space pyramid for lo-
cal regions and orientation maps to calculate the descriptors
consisting of the histograms of gradient orientations. Blow,
we present details of feature extraction including additional
processes that are not shown in Fig.4. Because the appropri-
ate choices of the memory in the GPU and ECs are important
factors in achieving fast computation, we show their specific
type and values.

Image transfer: An input image is transferred from the
host (CPU) to the GPU.

Y Component: An intensity image is computed if the input
image has colors. The global memory is used. The size of
a block is 16x32. Threads are assigned to all the pixels in a
block.

Down sampling: Down sampling for a scale space pyramid
is performed in the global memory. The EC is the same as
that for the Y Component.

Gaussian filter: We generate a scale space pyramid using
Gaussian filters. The initial scale of the pyramid is 1.6 and
the interval of scales is 21/™, where n is the number of scales
in an octave. The sizes of the Gaussian filters are determined
by truncating the domain using the threshold of 10~ for the
range . We place the coefficients of the Gaussian filters into
the constant memory that has short latency and is read-only
in execution of the program. The image data in a block are
copied to the shared memory for reuse. The separability of a
Gaussian function is exploited. The width of a block in filter-
ing for the rows of the image is 128, and threads are assigned
to all the pixels in a block. The size of a block in filtering for
the columns is 48 x 16. Since the maximum number of threads
in a block is limited, we divide a block into sub-blocks with
the height of eight. We then assign threads to all the pixels
in a sub-block. Filtering for the pixels in the remaining sub-
blocks is carried out sequentially by the assigned threads.

Gradient filter: The intensity gradients of the scale space
pyramid are computed by the 55 gradient operator[22]. The
use of memory and the EC are the same as those for filtering
for the columns in the Gaussian filter, except that the size of
ablockis 16x16.

ALoG-CD filter: Two filters are applied to the scale space
pyramid to detect local regions through feature points. First,
we apply an approximated LoG (ALoG) filter to all the scales.
The ALoG filter reduces the computational cost for contrast
detection using only the pixel values at the center and on
the circle corresponding to the center and circular extrema of
the LoG function, respectively. Secondly, fast corner detec-
tors (CD)[23] with various scales are used to remove feature
points on edges that may cause aperture problems. The corner
detector also requires only the pixel values at the center and
on the circle. The memory usage and the EC are the same as
those for the Gradient filter.

Feature point: Feature points and their characteristic
scales[15] are obtained by identifying 3 x3 x 3 extrema in the
scale space pyramid generated by the ALoG-CD filter. We
search for extrema in each octave. Feature points are selected
by thresholding for the responses of the ALoG filters and the
corner detectors. The thresholds are 10 and 100, respectively.
All the processes are performed in the global memory. The
size of a block is 16x32 and threads are assigned to all the
pixels in a block. The positions and scales of feature points
are the corresponding values for local regions. We organize
the positions and scales as a feature list.

Edge sampling: We sample the pixels in the scale space
pyramid generated by the gradient filter by extracting spatial
3x3 extrema of gradient magnitudes. A threshold of 10 is
used to select the extrema. The global memory is used, and
the EC is the same as that for the Feature point. The posi-
tions and scales of the extrema are added to the feature list.

Orientation map: Multiresolutional orientation maps with
the eight quantized directions shown in Fig.3 are calculated
from the scale space pyramid obtained by the gradient fil-
ter. The orientation maps are generated in the global memory.
The EC is the same as that for the Feature point. The scales
of Gaussian filters applied to the multiresolutional orientation
maps which correspond to the sizes of the cells in local re-
gions are determined as explained in Appendix A. The mem-
ory usage and the EC are the same as those for the Gaussian
filter.

Dominant orientation: The dominant orientations[2] of the
local regions in the feature list are computed for rotation in-
variance. The size of each local region is obtained by multi-
plying its characteristic scale by a factor of five. The global
memory is used. We group 30 local regions as a block and
assign threads for all the regions. Multiresolutional orienta-
tion maps are used for the dominant orientations, in the same
manner as the histogram computation for the descriptors.

Descriptor: We calculate the multi-size local descriptors in
the local regions with the different sizes obtained by changing
the scale factor as follows:

s=50(0.1L+1.0), — N; <L <N, (1

where, sg is a base factor and N, and N; are the number of
smaller and larger scale factors than the base factor, respec-
tively. Local regions are divided into 4 x4 cells as shown in
Fig.2. The global memory is used. The EC is the same as
that for the Dominant orientation. We shift the histograms
of gradient orientations based on the dominant orientations of
local regions for rotation invariance. The descriptors are ob-
tained by normalizing vectors that consist of the histograms
of the cells for illumination invariance.

In the next section, we present the measurements of the
computational times for the implementations with and with-
out orientation maps on the GPU and the CPU.

Table 1. The computational times of the implementations for
the Tour de France image. The units are microseconds. We
measured the mean time for 100 trials, because a non-realtime
OS (Linux) was used. The Total times include the computa-
tional times for processes other than the tasks that were ex-
amined, e.g., memory allocation.

Image Tour de France
Image size 720x480
| Task/Implement | CPU-1 | GPU-1 | GPU-5 | GPU-CI |
Image transfer N/A 0.721 0.722 0.722
Y component 3.417 0.106 0.107 0.106
Down sampling 0.764 0.140 0.143 0.135
Gaussian filter 253.320 4.386 4.409 4412
ALoG-CD filter | 299.756 6.081 6.083 6.065
Gradient filter 202.901 2971 2.974 2.968
Feature point 159.468 6.701 6.744 6.755
Edge sampling 8.433 6.933 6.983 6.913
Dominant 68232 | 1.850 | 1.866 | 4.563
Orientation map | 1239.976 | 22.749 | 23.995 N/A
Descriptor 41.328 2.807 14.303 51.532
| Total | 2279.042 | 56.851 | 69.734 | 85.581 |
| #descriptors [5656 | 5736 | 5786x5 | 5731 |

5. EXPERIMENTAL RESULTS

We measured the computational times for feature extraction
for the images “Tour de France” shown in Fig.1[13] and the
first image in the set called “Graffiti” obtained from the fea-
ture detector evaluation sequences[24]. The resolution of
the Tour de France image was 720x480. The resolution of
the Graffiti image was reduced to permit the measurement
of computational time for the QVGA size. The numbers of
octaves was five for the Tour de France image and four for
the Graffiti image. As the number of scales in an octave was
three, we applied to the Gaussian filters to 120 and 96 mul-
tiresolutional orientation maps, respectively, with the eight
quantized gradient orientations.

We used an Intel Quadcore Xeon (3.16GHz/12MBL2)
CPU and an NVIDIA GeForce GTX 480 GPU for the ex-
periments. The local invariant features were calculated on the
Xeon and GeForce, and another GPU, an NVIDIA Quadro
FX4600, was used solely for the purpose of display. The
GPU for computing has 480 CUDA cores, and its compute
capability is 2.0[25]. A single core was used in computing
on the CPU. Single precision floating-point (float) arithmetic
was used in all the implementations. The base factor sy in
Eq.(1) was 20.

Table 1 lists the computational times for the tasks ex-
plained in Section 4 for the Tour de France image. In this
table, “CPU-1" is the implementation using the single base
factor on the CPU, whereas “GPU-1" and “GPU-5" stand for
the corresponding implementations using the single base fac-
tor and five scale factors (Ny = N; = 2 in Eq.(1)) on the

@ Multi-size 5 Multi-size ——
£ 90 w/o OMAP (#factor=1) T £ w/0 OMAP (#factor=1) -
= =40
2o £
=80 =35
£75 g
570 %0
3 3
2 65 4
25
§ 60 s
© o
55 20

2 4 6 8 10 12
#scale factors

(a) (b)
Fig. 5. The changes in the total computational times as
a function of the number of scale factors. (a) Tour de
France(720x480). (b) Graffiti(320 x 240).

o

2 4 6 8 10 12
#scale factors

Fig. 6. Examples of logo localization[26]. The local invariant
features for localization were extracted using the five scale
factors.

GPU. “GPU-C1” is the implementation without using orien-
tation maps and using the single base factor on the GPU, in
which all the pixels in the cells should be accessed to calcu-
late the histograms. By comparing the computational times
for “Dominant orientation”, “Orientation map” and “Descrip-
tor” among the implementations, we can see that both the in-
troduction of the use of the GPU and orientation maps are
very effective in terms of fast feature extraction. Although
the effectiveness depends on the contents of the scene, the in-
troduced computational technique is more than 30 times as
fast as the implementation on the CPU even if we use the five
scale factors. Similar results were obtained for the Graffiti
image.

Figure 5 shows the changes in the total computational
times for feature extraction on the GPU as a function of the
number of the scale factors. We set Ng = N; in Eq.(1) and
used the value in [1,5]. The dotted horizontal line in the
graphs show the computational time of the implementation
without using the orientation maps and using the single base
factor. These results clearly demonstrate the advantage of the
method using the orientation maps for fast extraction of the
multi-size local descriptors.

In summary, we have shown that the introduction of GPU
computing and orientation maps is very promising to calcu-
late the multi-size local descriptors. The extracted features
can be applied to applications such as object localization as
demonstrated in Fig.6. The similarities between the five de-
scriptors obtained from each local region were computed to
find matching points, which was useful to gain the robustness
against for occlusions.

6. CONCLUSIONS

In this paper, we have considered GPU computing with ori-
entation maps for calculating the multi-size local descriptors
consisting of the histograms of gradient orientations. The fast
implementation for a large number of convolution operations
that is required for aggregating gradient magnitudes for quan-
tized gradient orientations through the use of Gaussian filters
can be realized by a GPU. The usefulness of the introduction
of the GPU and orientation maps was confirmed by the exper-
imental results. We believe that the considerations on GPU
computing presented here will facilitate the use of multi-size
local descriptors for many applications.

7. REFERENCES

[1] C.Schmid and R. Mohr, “Local greyvalue invariants for image
retrieval,” IEEE Trans. PAMI, vol. 19, no. 5, pp. 530-535,
1997.

[2] D.Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comp. Vis., vol. 60, no. 2, pp. 91-110, 2004.

[3] K. Mikolajczyk and C. Schmid, “A performance evaluation
of local descriptors,” IEEE Trans. PAMI, vol. 27, no. 10, pp.
1615-1630, 2005.

[4] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, “A com-
parison of affine region detectors,” Int. J. Comp. Vis., vol. 65,
no. 1/2, pp. 43-72, 2005.

[5] C. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual categorization with bags of keypoints,” in Proc. Work-
shop on Statistical Learning in Computer Vision, 2004, pp. 1—-
22.

[6] N.Dalal and B. Triggs, “Histograms of orientated gradients for
human detection,” in Proc. Int. Conf. Comp. Vis. Patt. Recog.,
2005, vol. 1, pp. 886-893.

[7] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for
learning natural scene categories,” in Proc. Int. Conf. Comp.
Vis. Patt. Recog., 2005, vol. 2, pp. 524-531.

[8] X.Ma and W. E. Grimson, “Edge-based rich representation for
vehicle classification,” in Proc. Int. Conf. Comp. Vis., 2005,
vol. 2, pp. 1185-1192.

[9] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for
bag-of-features image classification,” in Proc. European Conf.
Comp. Vis., 2006, pp. 490-503.

[10] K. Mikolajczyk, B. Leibe, and B. Schiele, “Multiple object
class detection with a generative model,” in Proc. Int. Conf.
Comp. Vis. Patt. Recog., 2006, vol. 1, pp. 26-36.

[11] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Efficient
subwindow search: A branch and bound framework for object
localization,” IEEE Trans. PAMI, vol. 31, no. 12, pp. 2129—
2142, 2009.

[12] E. Tola, , V. Lepetit, and P. Fua, “DAISY: An efficient dense
descriptor applied to wide-baseline stereo,” IEEE Trans. PAMI,
vol. 32, no. 5, pp. 815-830, 2010.

[13] The image was obtained from the broadcast of the Tour de
France.

[14] F. Jurie and B. Triggs, “Creating efficient codebooks for visual
recognition,” in Proc. Int. Conf. Comp. Vis., 2005, vol. 1, pp.
604-610.

[15] T. Lindeberg, “Feature detection with automatic scale selec-
tion,” Int. J. Comp. Vis., vol. 30, no. 2, pp. 79-116, 1998.

[16] H. Cheng, Z. Liu, N. Zheng, and J. Yang, “A deformable local
image descriptor,” in Proc. Int. Conf. Comp. Vis. Patt. Recog.,
2008.

[17] SiftGPU: http://www.cs.unc.edu/"ccwu/siftgpu/.

[18] N. Cornelis and L. V. Gool, “Fast scale invariant feature de-
tection and matching on programmable graphics hardware,” in
Proc. Workshop on Computer Vision on GPU’s (in conjunction
with CVPROS), 2008.

[19] V. A. Prisacariu and I. Reid, “fastHOG - a real-time GPU
implementation of HOG —,” Tech. Rep. 2310/09, Department
of Engineering Science, Oxford University, 2009.

[20] K. Mikolajczyk, A. Zisserman, and C. Schmid, “Shape recog-
nition with edge-based features,” in Proc. Britich Machine Vis.
Conf., 2003, vol. 2, pp. 779-788.

[21] CUDA Zone:
http://www.nvidia.com/object/cuda_home_new.html.

[22] S. Ando, “Consistent gradient operators,” IEEE Trans. PAMI,
vol. 22, no. 3, pp. 252-265, 2000.

[23] M. Trajkovic and M. Hedley, “Fast corner detection,” Image
and Vision Computing, vol. 16, pp. 75-87, 1998.

[24] Feature detector evaluation sequences:
http://lear.inrialpes.fr/people/mikolajczyk/Database/.

[25] NVIDIA CUDA Programming Guide, Version 3.2, p.14, 2010.

[26] The right image was obtained from the broadcast of F1.

A. DETERMINING THE SCALES OF GAUSSIAN
FILTERS FOR ORIENTATION MAPS

Here we describe a method for determining the scales of
Gaussian filters for orientation maps. Although the 4 x4 cells
in Fig.2 are used, the following method can be adapted to
other arrangements of cells.

The scale of an orientation map is denoted by o. The
factor s is multiplied by o to compute the size of a local re-
gion. Because the local region is divided into 4x4 squares,
the width of a square is s’ /4. The scale of a Gaussian filter o,
is determined by setting the value of the independent variable
of the Gaussian function at the position of a circumscribed
circler cell shown in Fig.2. The value should be chosen care-
fully, because the scale o, directly governs aggregation for
the gradient magnitudes in a cell. We use the value 30,, and
thus the diameter of the circler cell is 60,. Using the width of
the square and the diameter, we have the following scale:

0o = \/550/24 . 2)

In measuring the computational times shown in Tab.1, the
maximum scale factor obtained from Eq.(1) was used to com-
pute o,.

