
GPU Computing with Orientation Maps
for Extracting Local Invariant Features

Naoyuki Ichimura
National Institute of Advanced Industrial Science and Technology (AIST)

1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
nic@ni.aist.go.jp

Abstract

Local invariant features have been widely used as fun-
damental elements for image matching and object recogni-
tion. Although dense sampling of local features is useful
in achieving an improved performance in image matching
and object recognition, it results in increased computational
costs for feature extraction. The purpose of this paper is to
develop fast computational techniques for extracting local
invariant features through the use of a graphics processing
unit (GPU). In particular, we consider an algorithm that
uses multiresolutional orientation maps to calculate local
descriptors consisting of the histograms of gradient orien-
tations. By using multiresolutional orientation maps and
applying Gaussian filters to them, we can obtain voting val-
ues for the histograms for all the pixels in a scale space
pyramid. We point out that the use of orientation maps
has two advantages in GPU computing. First, it improves
the efficiency of parallel computing by reducing the num-
ber of memory access conflicts in the overlaps among local
regions, and secondly it utilizes a fast implementation of
Gaussian filters that permits the use of shared memory for
the many convolution operations required for orientation
maps. We conclude with experimental results that demon-
strate the usefulness of multiresolutional orientation maps
for fast feature extraction.

1. Introduction

The use of local invariant features is regarded as a
promising method for representing the contents of an im-
age. Local invariant features can be extracted by the fol-
lowing two steps[21, 12, 15, 16]: (i) detecting local regions,
(ii) calculating descriptors. Figure 1 shows an example of
detecting local regions. Descriptors are calculated in the lo-
cal regions shown by the squares. Local invariant features
have two main advantages in describing scenes. The first is
their robustness against occlusions; we can use the features

Figure 1. An example of detecting local regions. Left: an image
obtained from a broadcast of the Tour de France[1]. Right: the
result of detection. The squares represent local regions. We detect
about 6000 regions based on both feature points and edges. Dense
detection such as this is desirable in improving performance in
image matching and object recognition[8, 13, 18, 14].

of visible portions of the scene even if parts of the scene
are occluded. The second advantage is, of course, their in-
variance. By introducing components such as scale space
pyramids, local coordinate systems and norm normalization
into feature extraction, we can make local features invariant
to deformations and to changes in illumination. Because of
these advantages, local invariant features have been widely
used as fundamental elements for image matching and ob-
ject recognition[21, 12, 15, 16, 4, 6, 8, 13, 18, 14, 24, 10].

Feature point extraction has been used for local region
detection in image matching to identify portions of im-
ages where the intensity changes. On the other hand,
several sampling strategies have been adopted for dense
local region detection in object recognition. Nowak et
al.[18] have demonstrated that local regions sampled ran-
domly from a scale space pyramid with regularly posi-
tioned grids show a better performance in object recogni-
tion compared to local regions obtained by feature point
extraction. The main difference is in the number of local
regions: feature point extraction cannot sample at a suffi-
ciently high density to produce good results. Other inves-
tigators have also used dense sampling of local features in
object recognition[6, 8, 13, 14]. Dense sampling can be
used in image matching, because it is useful in improving
the performance for scenes with heavy occlusions and few

978-1-4244-7028-0/10/$26.00 ©2010 IEEE

-180 -135 -90 -45

0 45 90 135

Figure 2. Examples of orientation maps. Left: an edge detection result for the image shown in Fig.1. Right: the orientation maps
corresponding to the eight gradient orientations obtained from the edge image on the left. Each of the maps contains gradient magnitudes
for a quantized orientation.

textures. Dense detection of local regions is, therefore, de-
sirable in both image matching and object recognition.

Because dense sampling increases the computational
costs of feature extraction, we examine fast computational
methods for extracting local invariant features. In particu-
lar, we consider an algorithm for calculating local descrip-
tors consisting of the histograms of gradient orientations.
We can explain the importance of fast computation of de-
scriptors by decomposing the computational costs of feature
extraction into the two steps shown above. The cost for de-
tecting local regions is determined mainly by the resolution
of the image, because convolution operations of filters such
as Gaussian, Laplacian and gradient filters are dominant. In
calculating descriptors, the number of pixels to be processed
is normally much larger than the resolution of an image be-
cause of presence of the overlaps among local regions that
are detected at a high density. Thus the fast computation of
descriptors is a significant factor in feature extraction.

The computational cost for calculating descriptors can be
reduced by detecting the overlaps among local regions, fol-
lowed by the elimination of multiple computations. How-
ever, it is difficult to detect the overlaps because the sizes
and locations of local regions vary from scene to scene. We
adopt a strategy of applying the processes required to com-
pose descriptors for all the pixels in a scale space pyramid.
Using this strategy, we can compute descriptors merely by
looking up the results of the processes for all the pixels and
we thereby avoid the need for overlap detection. An al-
gorithm for the computation of descriptors based on this
strategy has been proposed by Tola et al.[24]. To calcu-
late the descriptors consisting of the histograms of gradient
orientations, the algorithm uses orientation maps contain-
ing the gradient magnitudes for quantized gradient orienta-
tions. Figure 2 shows some examples of orientation maps.
Gaussian filters with various scales are applied to orien-
tation maps to aggregate the gradient magnitudes locally.
The convolution operations performed by the Gaussian fil-
ters are equivalent to the computation of the voting values
for the histograms of gradient orientations. We can, there-

fore, obtain the descriptors merely by looking up convolved
orientation maps, which greatly reduces the number of mul-
tiple computations in the overlaps among local regions.

Because the strategy explained above involves exchang-
ing the costs of computing descriptors in the overlaps
among local regions for the costs of convolutions of Gaus-
sian filters for orientation maps, we need to pay attention to
the balance between these two sets of costs. In the wide-
baseline stereo matching technique of Tola et al.[24], the
computational cost for the Gaussian filters is smaller than
that for calculating the descriptors without using orientation
maps, because the descriptors of all the pixels in an image
are required. This is not the case for local invariant features
used in image matching and object recognition, where mul-
tiresolutional analysis using a scale space pyramid is per-
formed to cope with large changes in scale. Because we
generate orientation maps from the edge detection result of
every scale, a large number of convolution operations need
to be performed on many orientation maps. In addition, de-
scriptors for all the pixels in a scale space pyramid are not
always necessary in image matching and object recognition.
It is not, therefore, clear that the use of orientation maps is
efficient in extracting local invariant features.

We present a method for feature extraction based on the
use of a graphics processing unit (GPU) to show the effec-
tiveness of orientation maps. Although several investiga-
tors have adopted a GPU to implement algorithms for local
invariant features, such as SIFT[9, 22], SURF[23, 3] and
HOG[20], algorithms using orientation maps have not been
considered. We point out that the use of orientation maps
has two advantages in GPU computing. First, it improves
the efficiency of parallel computing by reducing the num-
ber of memory access conflicts in the overlaps among lo-
cal regions, and secondly it utilizes a fast implementation
of Gaussian filters that permits the use of shared memory
for the many convolution operations required for orienta-
tion maps.

Below, we explain the descriptor, the orientation maps,
and the implementation on a GPU. Then we conclude with

scale

octave

Figure 3. Examples of multiresolutional edge images. Computing
the orientation maps for each edge image as shown in Fig.2, we
can obtain multiresolutional orientation maps. Because there are
five octaves and three scales in an octave in this scale space pyra-
mid, the number of multiresolutional orientation maps is 120 for
the eight gradient orientations. Gaussian filters with various scales
should be applied to all the maps to calculate descriptors.

a description of our experimental results.

2. Review of Calculating Descriptors

In this section, we review algorithms commonly used
for calculating descriptors, such as SIFT[12], GLOH[15],
HOG[6] and DAISY[24], that involve the histograms of
gradient orientations.

Multiresolutional analysis by a scale space pyramid
is performed for scale invariance. Laplacian of Gaus-
sian (LoG) filters with various scales, together with down
sampling of an image, are used to detect local regions by
extracting feature points in a scale space pyramid. Scale
space extrema are identified to determine the locations and
characteristic scales of feature points[11]. The locations of
the local regions are the same as those of the feature points.
The size of each local region is determined by multiplying
the characteristic scale by a certain factor. Another scale
space pyramid is generated for the intensity gradients re-
quired to calculate the descriptors. Gaussian filters, gradient
filters and down sampling are combined to obtain multires-
olutional edges. Examples of multiresolutional edge im-
ages are shown in Fig.3. Multiresolutional edges can also
be used for local region detection[13, 17]. For example, lo-
cal regions in Fig.1 are detected using both feature points
and edges. The descriptors are calculated in local regions
using the intensity gradients obtained from the edge images
corresponding to the characteristic scales.

Cell

Figure 4. Left: local regions with overlaps. Right: the cells in
a local region. If we use convolved orientation maps, we need
only look up the values at the centers of the cells shown as small
circles. All the positions in the cells should be accessed without
the use of orientation maps. This increases the number of memory
access conflicts in the overlaps among local regions and reduces
the efficiency of parallel computing.

We now explain how the descriptors are calculated. A
local region is divided into cells as shown in Fig.4. The his-
togram of the gradient orientations of the pixels in each cell
is computed. The voting values for the histogram are the
gradient magnitudes of the pixels weighted by a Gaussian
function located at the center of the local region or cell. The
histogram of the cell is shifted for rotation invariance based
on the direction of a local coordinate system attached to the
local region. The local coordinate system can be set using
the dominant orientation proposed in SIFT[12]. A vector
is then constructed by concatenating the histograms of the
cells. A descriptor is obtained by normalizing the vector for
illumination invariance. Since gradient orientations are re-
lated to the directions of edges, the descriptor represents the
shape information in the cells. The usefulness of this rep-
resentation in image matching and object recognition has
been confirmed[12, 15, 16, 4, 6, 8, 13, 18, 14, 24, 10].

3. Parallel Computing by GPU

Before presenting the method using orientation maps for
calculating the descriptors explained in Section 2, we out-
line the process of parallel computing by a GPU to clar-
ify the necessity for orientation maps. CUDA(Compute
Unified Device Architecture), which was developed by
NVIDIA[5], is applied to feature extraction. A layer is used
in the hardware model of CUDA: there are streaming multi-
processors (SMs), and each SM has multiple cores. The
data to be processed by the GPU are represented by a layer
in accordance with the hardware model. The data are di-
vided into blocks associated with threads, and the blocks are
assigned to SMs. The threads for the data in a block are exe-
cuted in parallel by the cores. As a result, the GPU performs
parallel computing. For image filtering and local region de-
tection in feature extraction, an image is divided into rectan-
gular blocks, and parallel computing is performed with the
cores carrying out computation for the pixels in one block.
For the descriptors, we can group multiple local regions into
a block and perform the computations for the local regions

in parallel.
To achieve fast parallel computation, it is important to

use the appropriate type of memory in the GPU. Although
shared memory has the shortest latency, its capacity is lim-
ited, e.g., 16KB. Global memory, on the other hand, has
a much larger capacity, e.g., 1GB, but its latency is much
greater. In image filtering, we can put all the pixels in a
block into shared memory by adjusting the size of the block.
Since neighboring regions for image filtering overlap, each
pixel in a block needs to be accessed many times by various
threads. Therefore, reuse of data in shared memory is very
useful for achieving fast computation by avoiding access to
global memory. Furthermore, latency arising from memory
access conflicts in the overlaps is alleviated by the use of
shared memory. In contrast with the case of image filter-
ing, it is intractable to reuse data through the use of shared
memory for computing descriptors. Because the overlaps
among local regions depend on scenes, the overlaps are not
organized unlike those among neighboring regions in im-
age filtering. As it is difficult to determine the sizes and
shapes of the overlaps among local regions, it is not easy
to reuse the data in the overlaps using shared memory of
a limited capacity. We, therefore, calculate the descriptors
in global memory. Although the memory latency is tried to
hide by activating a large number of threads in CUDA, the
effectiveness of this scheme is reduced as a result of latency
caused by memory access conflicts in the overlaps among
local regions. These memory access conflicts decrease the
efficiency of parallel computing by the GPU. In the next
section, we show that the computational efficiency can be
improved by the use of orientation maps.

4. Calculating Descriptors Using Orientation
Maps

The gradient orientations and gradient magnitudes of all
the pixels in a scale space pyramid are obtained by gradient
filters. Using two dimensional arrays corresponding to the
bins of the histogram of gradient orientations, we can sepa-
rate the gradient magnitudes based on the gradient orienta-
tions. The two dimensional arrays containing the gradient
magnitudes are called orientation maps[24]. Examples of
orientation maps are shown in Fig.2.

Applying a Gaussian filter to orientation maps, we can
aggregate weighted gradient magnitudes locally. The extent
of aggregation is determined by the scale of the Gaussian
filter. If we choose the scale so that the extent of aggrega-
tion fits the size of a cell for the descriptors, the convolution
operations performed by the Gaussian filter are equivalent
to the computation of the voting values for the histograms
of gradient orientations. This allows us to calculate the de-
scriptors merely by looking up the locations of convolved
orientation maps corresponding to the centers of cells, as
exemplified by the red points in the right-hand illustration

Input
Image

Corner
Detector

Gradient
Filter

Local Region
Detection

DescriptorsLoG
Filter

Orientation
Maps

Scale Space
Pyramid

(Gaussian
Filter)

Figure 5. The flowchart of the feature extraction algorithm that
we implement. Local regions are detected based on both fea-
ture points and edges. The local descriptors consisting of the his-
tograms of gradient orientations are calculated using orientation
maps.

in Fig.4. Using orientation maps, therefore, greatly reduces
the number of conflicts in memory access among local re-
gions, because no exhaustive access to the pixels in cells is
required.

To extract local invariant features, we generate multires-
olutional orientation maps from multiresolutional edge im-
ages for scale invariance. The number of multiresolutional
orientation maps is determined by the number of bins in
the histograms of gradient orientations and by the numbers
of octaves and scales in a scale space pyramid. For exam-
ple, when we use the gradient orientations and scale space
pyramid shown in Fig.2 and 3, the number of orientation
maps is 120, as there are eight bins, five octaves and three
scales. Because many convolution operations need to be
performed on large numbers of orientation maps as in this
example, it is important to examine whether the computa-
tional cost of Gaussian filters for multiresolutional orienta-
tion maps can actually be exchanged for that of descriptors
calculated without the use of orientation maps.

Since Gaussian filters can be efficiently implemented by
utilizing shared memory, as we have explained in Sec.3, the
introduction of multiresolutional orientation maps and the
GPU could be useful for fast computation of the descriptors.
We implement a feature extraction algorithm on the GPU to
confirm the usefulness of this approach; this is discussed in
the next section.

5. Implementation on GPU

The data to be processed by the GPU are divided into
blocks associated with threads in CUDA. The numbers
of blocks and threads are called the execution configura-
tion (EC). The number of blocks can be specified by the
width and/or the height of a block.

Figure5 is the flowchart of the feature extraction algo-
rithm that we implement. First, a scale space pyramid is
generated from an input image by Gaussian filters with var-
ious scales. A gradient filter, approximated LoG filters and
corner detectors are then applied to the scale space pyra-
mid for local regions and orientation maps to calculate the
descriptors consisting of the histograms of gradient orienta-

tions. Blow, we present details of feature extraction includ-
ing additional processes that are not shown in Fig.5. Be-
cause the appropriate choice of ECs is an important factor
in achieving fast computation, we show their specific val-
ues.

Image transfer: An input image is transferred from the
host (CPU) to the GPU.

Y Component: An intensity image is computed if the in-
put image has colors. The global memory is used. The size
of a block is 16×32. Threads are assigned to all the pixels
in a block.

Down sampling: Down sampling for a scale space pyra-
mid is performed in the global memory. The EC is the same
as that for the Y Component.

Gaussian filter: We generate a scale space pyramid us-
ing Gaussian filters. The initial scale of the pyramid is 1.6
and the interval of scales is 21/s, where s is the number of
scales in an octave. The sizes of the Gaussian filters are
determined by truncating the domain using the threshold of
10−3 for the range . We place the coefficients of the Gaus-
sian filters into constant memory that has short latency and
is read-only in execution of the program. The image data
in a block are copied to the shared memory for reuse. The
separability of a Gaussian function is exploited. The width
of a block in filtering for the rows of the image is 128, and
threads are assigned to all the pixels in a block. The size
of a block in filtering for the columns is 48×16. Since the
maximum number of threads in a block is limited, we di-
vide a block into sub-blocks with the height of eight. We
then assign threads to all the pixels in a sub-block. Filtering
for the pixels in the remaining sub-blocks is carried out se-
quentially by the assigned threads.

Gradient filter: The intensity gradients of the scale space
pyramid are computed by the 5×5 gradient operator[2]. The
use of memory and the EC are the same as those for filtering
for the columns in the Gaussian filter, except that the size
of a block is 16×16.

ALoG-CD filter: Two filters are applied to the scale space
pyramid to detect local regions through feature points. First,
we apply an approximated LoG (ALoG) filter shown in
Fig.6 to all the scales. We reduce the computational cost
for contrast detection based on the LoG filter using only
the pixel values at the center and on the circle. Secondly,
fast corner detectors (CD)[25] with various scales are used
to remove feature points on edges that may cause aperture
problems. The corner detector also requires only the pixel
values at the center and on the circle. The memory usage
and the EC are the same as those for the Gradient filter.

Feature point: Feature points and their characteristic
scales[11] are obtained by identifying 3×3×3 extrema in
the scale space pyramid generated by the ALoG-CD filter.
We search for extrema in each octave. Feature points are
selected by thresholding for the responses of the approx-
imated LoG filters and the corner detectors. The thresh-

��

Figure 6. An approximated LoG filter. The left-hand illustration
represents the values of an LoG operator in the right-hand illus-
tration as an intensity. We approximate the response of the LoG
filter by the difference between the pixel value at the center and
the mean of the pixel values on a circle with a radius of 2σ, where
σ is the scale of a Gaussian filter applied to an image in a scale
space pyramid. The position of the circle corresponds to the local
maximum of the LoG function.

olds are 10 and 100, respectively. All the processes are per-
formed in the global memory. The size of a block is 16×32
and threads are assigned to all the pixels in a block. The
positions and scales of feature points are the correspond-
ing values for local regions. We organize the positions and
scales as a feature list. Since no synchronization of threads
over blocks is allowed, parallel processing to generate the
feature list cannot be realized because the number of fea-
tures is present as a common variable in all the threads.
Consequently, we use the CPU to generate the feature list
which entails data transfer between the GPU and the CPU.

Edge sampling: We sample the pixels in the scale space
pyramid generated by the gradient filter by extracting spa-
tial 3×3 extrema of gradient magnitudes. A threshold of 10
is used to select the extrema. The global memory is used,
and the EC is the same as that for the Feature point. The
positions and scales of the extrema are added to the feature
list using the CPU.

Dominant orientation: The dominant orientations[12] of
the local regions in the feature list are computed for rota-
tion invariance. The size of each local region is obtained
by multiplying its characteristic scale by a factor of five.
The global memory is used. We group 16 local regions as
a block and assign threads for all the regions. Multiresolu-
tional orientation maps are used for the dominant orienta-
tions, in the same manner as the histogram computation for
the descriptors.

Orientation map: Multiresolutional orientation maps
with the eight quantized directions shown in Fig.2 are cal-
culated from the scale space pyramid obtained by the gradi-
ent filter. The orientation maps are generated in the global
memory. The EC is the same as that for the Feature point.
As shown in Appendix A, a weighed scheme is used to re-
duce the boundary effect. The scales of Gaussian filters ap-
plied to the multiresolutional orientation maps are 1.2 times
larger than those used in the Gaussian filter. The scales
correspond to the sizes of the cells in local regions, as ex-

plained in Appendix B. The memory usage and the EC are
the same as those for the Gaussian filter.

Descriptor: We calculate the descriptors in local regions
with the sizes obtained by multiplying their characteristic
scales by a factor of 20. The global memory is used. The
EC is the same as that for the Dominant orientation. Local
regions are divided into 4×4 cells as shown in Fig.4. Us-
ing convolved orientation maps enables us to calculate the
histograms of gradient orientations from the centers of the
cells. When orientation maps are not generated, all the pix-
els in the cells are used to calculate the histograms. We shift
the histograms based on the dominant orientations of local
regions for rotation invariance, as explained in Appendix C.
The descriptors are obtained by normalizing vectors that
consist of the histograms of the cells for illumination in-
variance.

In the next section, we present the measurements of the
computational times for the implementations with and with-
out orientation maps on the GPU and the CPU.

6. Experimental Results

We used an Intel Quadcore Xeon (3.16GHz/12MBL2)
CPU and a NVIDIA GeForce GTX 280 GPU for the exper-
iments. The local invariant features were calculated on the
Xeon and GeForce, and another GPU, an NVIDIA Quadro
FX4600, was used solely for the purpose of display. The
GPU for computing has 240 cores, and its compute capabil-
ity is 1.3[19]. A single core was used in computing on the
CPU. Single precision floating-point (float) arithmetic was
used in all the implementations.

We compared the computational times for feature extrac-
tion for the “Tour de France” image shown in Fig.1[1] and
the first image in the set called “Graffiti” obtained from the
feature detector evaluation sequences[7]. The resolution of
the Tour de France image was 720×480. The resolution of
the Graffiti image was reduced to permit the measurement
of computational time for the QVGA size. The numbers
of octaves was five for the Tour de France image and four
for the Graffiti image. As the number of scales in an octave
was three, we generated 120 and 96 multiresolutional orien-
tation maps, respectively, with the eight quantized gradient
orientations.

Table 1 lists the computational times. In this table,
“CPU–C” and “GPU–C” are the implementations without
using orientation maps on the CPU and the GPU, respec-
tively, whereas “CPU” and “GPU” stand for the correspond-
ing implementations using orientation maps. By compar-
ing the computational times for “Dominant orientation”,
“Orientation map” and “Descriptor” among the implemen-
tations, we can see that both the introduction of orientation
maps and the use of the GPU are very effective in terms of
fast feature extraction. Although the effectiveness depends
on the resolution of the image and the contents of the scene,

the method is more than 30 times as fast as the conventional
method on the CPU.

The sizes of local regions were determined by the fac-
tor for the characteristic scales. The factor was 20 in the
experiments shown in Tab.1. We can change the area of
the overlaps among local regions by altering this factor.
This means that the computational dependency among lo-
cal regions varies with the factor. The use of a smaller
factor reduces the number of memory access conflicts in
the overlaps, which increases the efficiency of the parallel
computing. The top illustration in Fig.7 shows the changes
in the ratio of the computational times of the CPU and the
GPU as a function of the factor for the Tour de France im-
age. The ratio of the computational times reflects the ef-
ficiency of parallel computing because the computational
cost is the same for both the CPU and the GPU. When
no orientation maps were used, the efficiency of parallel
computing fell as the factor was increased. On the other
hand, the efficiency was obviously maintained when orien-
tation maps were used. One reason for this improvement
is the reduction in the number of memory access conflicts
in the overlaps, and another one is the fast implementation
of the Gaussian filters for the multiresolutional orientation
maps. The bottom illustration in Fig.7 shows the advan-
tage of the parallel implementation of the Gaussian filters
with the shared memory in comparison with the CPU-based
implementation. Because the areas of the cells increase as
the factor is increased, we need Gaussian filters with larger
scales, which yield a large number of convolution opera-
tions. However, no degradation of the efficiency of the par-
allel computation was observed as a result of data reuse in
the shared memory. Similar results were obtained for the
Graffiti image.

In summary, we have shown that the use of multires-
olutional orientation maps for calculating the descriptors
has two advantages in GPU computing: an improvement in
the efficiency of parallel computing as a result of a reduc-
tion in the number of memory access conflicts in the over-
laps among local regions, and the utilization of the fast im-
plementation of Gaussian filters using the shared memory
for large numbers of convolution operations for orientation
maps.

7. Conclusions

In this paper, we have considered GPU computing with
multiresolutional orientation maps for calculating the local
descriptors consisting of the histograms of gradient orienta-
tions. Aggregating gradient magnitudes for quantized gra-
dient orientations through the use of Gaussian filters, we can
reduce memory access for the overlaps among local regions,
thereby increasing the efficiency of parallel computing by
the GPU. The fast implementation for a large number of
convolution operations that is required for aggregation can

Table 1. Computational times for extracting local invariant features. The units are microseconds. We measured the mean time for 100
trials, because a non-realtime OS (Linux) was used. The total times include the computational times for processes other than the tasks that
were examined, e.g., memory allocation.

Image Tour de France Graffiti
Image size 720×480 320×240

Task/Implement CPU–C CPU GPU–C GPU CPU–C CPU GPU–C GPU

Image transfer N/A N/A 2.563 2.597 N/A N/A 0.600 0.600
Y component 3.922 3.747 0.108 0.107 0.934 0.938 0.062 0.061

Down sampling 0.854 0.866 0.140 0.140 0.207 0.165 0.083 0.082
Gaussian filter 263.740 277.149 8.766 8.716 56.435 58.623 4.854 4.830

ALoG-CD filter 308.480 309.437 13.639 13.639 63.758 63.805 3.812 3.817
Gradient filter 219.952 220.617 4.394 4.405 45.636 45.759 1.358 1.360
Feature point 158.199 160.817 7.538 7.546 34.718 35.501 1.957 1.948

Edge sampling 11.179 12.486 7.312 7.335 3.541 3.885 1.833 1.836
Dominant 196.260 92.575 5.977 3.548 119.797 77.340 3.145 1.392orientation

Orientation map N/A 1509.556 N/A 45.076 N/A 308.565 N/A 24.079
Descriptor 2091.589 51.782 122.483 10.772 954.991 21.989 76.171 5.119

Total 3255.619 2640.544 176.641 107.536 1280.372 616.980 96.381 47.619

#feature 5731 2706

 16
 18
 20
 22
 24
 26
 28
 30

 5 10 15 20 25 30

C
P

U
/G

P
U

 T
im

e
R

at
io

factor for characteristic scales

Total w OMAP
Total w/o OMAP

 20

 25

 30

 35

 40

 5 10 15 20 25 30

C
P

U
/G

P
U

 T
im

e
R

at
io

factor for characteristic scales

 OMAP

Figure 7. The changes in the ratio of the computational times of the
CPU and the GPU as a function of the factor for the characteristic
scales. This result was obtained from the Tour de France image.
“OMAP” stands for orientation maps. Top: the ratio of the total
times. Bottom: the ratio of the times for calculating orientation
maps.

be realized by reuse of data by means of the shared memory.
The usefulness of GPU computing in extracting local in-
variant features was confirmed by the experimental results.

We believe that the considerations on GPU computing pre-
sented here will facilitate the development of local descrip-
tors that can be efficiently calculated in parallel, because the
strategy of applying the processes required to compose de-
scriptors for all the pixels in a scale space pyramid can be
applied to other information for descriptors such as colors,
and to other method for arranging the cells in a scale space
pyramid.

References

[1] An image of the Tour de France. The image was obtained
from the broadcast of J SPORTS.

[2] S. Ando. Consistent gradient operators. IEEE Trans. PAMI,
22(3):252–265, 2000.

[3] N. Cornelis and L. V. Gool. Fast scale invariant feature de-
tection and matching on programmable graphics hardware.
In Proc. Workshop on Computer Vision on GPU’s (in con-
junction with CVPR08), 2008.

[4] C. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In Proc. Work-
shop on Statistical Learning in Computer Vision, pages 1–22,
2004.

[5] CUDA Zone.
http://www.nvidia.com/object/cuda home new.html.

[6] N. Dalal and B. Triggs. Histograms of orientated gradients
for human detection. In Proc. Int. Conf. Comp. Vis. Patt.
Recog., volume 1, pages 886–893, 2005.

[7] Feature detector evaluation sequences.
http://lear.inrialpes.fr/people/mikolajczyk/Database/.

[8] L. Fei-Fei and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In Proc. Int. Conf. Comp.
Vis. Patt. Recog., volume 2, pages 524–531, 2005.

[9] S. Heymann, K. Müller, A. Smolic, B. Fröhlich, and T. Wie-
gand. SIFT implementation and optimization for general-
purpose GPU. In Proc. Int. Conf. in Central Europe on Com-
puter Graphics, Visualization and Computer Vision (WSCG),
pages 317–322, 2007.

[10] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Effi-
cient subwindow search: A branch and bound framework for
object localization. IEEE Trans. PAMI, 31(12):2129–2142,
2009.

[11] T. Lindeberg. Feature detection with automatic scale selec-
tion. Int. J. Comp. Vis., 30(2):79–116, 1998.

[12] D. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comp. Vis., 60(2):91–110, 2004.

[13] X. Ma and W. E. Grimson. Edge-based rich representation
for vehicle classification. In Proc. Int. Conf. Comp. Vis., vol-
ume 2, pages 1185–1192, 2005.

[14] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object
class detection with a generative model. In Proc. Int. Conf.
Comp. Vis. Patt. Recog., volume 1, pages 26–36, 2006.

[15] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE Trans. PAMI, 27(10):1615–1630,
2005.

[16] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A
comparison of affine region detectors. Int. J. Comp. Vis.,
65(1/2):43–72, 2005.

[17] K. Mikolajczyk, A. Zisserman, and C. Schmid. Shape recog-
nition with edge-based features. In Proc. Britich Machine
Vis. Conf., volume 2, pages 779–788, 2003.

[18] E. Nowak, F. Jurie, and B. Triggs. Sampling strategies
for bag-of-features image classification. In Proc. European
Conf. Comp. Vis., pages 490–503, 2006.

[19] NVIDIA CUDA Programming Guide, Version 2.0, Sec.5.1.2,
2008.

[20] V. A. Prisacariu and I. Reid. fastHOG – a real-time GPU
implementation of HOG –. Technical Report 2310/09, De-
partment of Engineering Science, Oxford University, 2009.

[21] C. Schmid and R. Mohr. Local greyvalue invariants for im-
age retrieval. IEEE Trans. PAMI, 19(5):530–535, 1997.

[22] SiftGPU. http://www.cs.unc.edu/˜ccwu/siftgpu/.
[23] T. B. Terriberry, L. M. French, and J. Helmsen. GPU accel-

erating speeded-up robust features. In Proc. Int. Symp. on 3D
Data Processing, Visualization and Transmission (3DPVT),
pages 355–362, 2008.

[24] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for
dense matching. In Proc. Int. Conf. Comp. Vis. Patt. Recog.,
2008.

[25] M. Trajkovic and M. Hedley. Fast corner detection. Image
and Vision Computing, 16:75–87, 1998.

A. Generating Orientation Maps

The left-hand illustration in Fig.8 shows voting from a pixel
with a gradient orientation θ and a gradient magnitude g to ori-
entation maps. The gradient orientation is assigned to a bin with
a median τ and width d. Basically, the gradient magnitude g is
voted to the bin. However, as a result of quantization of a gradient

� �

�

��

Figure 8. Left: Weighting for quantized gradient orientations to
generate orientation maps. Right: Determining the scales of the
Gaussian filters for orientation maps.

orientation, the method is not robust to deformation and changes
in illumination, because if the distance between θ and one of the
boundaries of the bin is small, variability in a scene causes an
abrupt change in the bin assignment of θ. This boundary effect
badly affects the invariant properties of local features based on a
histogram. To avoid abrupt changes in the histogram of gradient
orientations, a weighted voting scheme is used. We vote g to the
bin with the median τ by multiplying it by the following weight:

w1 = 1 − |θ − τ | /d . (1)

The quantity (1 − w1) g is voted to the left or right bin based on
the sign of (θ − τ). We generate orientation maps by applying the
voting scheme to all the pixels in the scale space pyramid of edges.

B. Determining the Scales of Gaussian Filters
for Orientation Maps

Here we describe a method for determining the scales of Gaus-
sian filters for orientation maps. Although the 4×4 cells in Fig.4
are used, the following method can be adapted to other arrange-
ments of cells.

The scale of an orientation map is denoted by σ. The factor a
is multiplied by σ to compute the size of a local region. Because
the local region is divided into 4×4 cells, the width of a cell is
aσ/4. The scale of a Gaussian filter σo is determined by setting
the value of the independent variable of the Gaussian function at
the position of a circumscribed circle of a cell as shown in Fig.4.
The value should be chosen carefully, because the scale σo directly
governs aggregation for the gradient magnitudes in a cell. We use
the value 3σo, and thus the diameter of the circumscribed circle
is 6σo. Using the width of a cell and the diameter, we have the
following scale:

σo =
√

2aσ/24 . (2)

In measuring the computational times shown in Tab.1, a factor of
a = 20 was used, which leads to the scales of the Gaussian filters
for the multiresolutional orientation maps as σo ≈ 1.2σ.

C. Shifting Histograms

The histograms of cells are shifted for rotation invariance based
on the dominant orientation of the local region. The weighted
voting scheme explained in Appendix A is exploited using the
weights determined from the ratio of the overlaps between the
shifted histogram and the bins.

