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ABSTRACT 

In this paper, we present simulation results of two- and 
three-dimensional motions of drops in a shear flow based on 
the lattice Boltzmann method (LBM), where a macroscopic 
fluid flow results from averaging collisions and propagations of 
mesoscopic particles. The binary fluid model in LBM used here 
can reproduce two-phase interface in a self-organizing way by 
repulsive interaction between particles consistent with the van 
der Waals-Cahn-Hilliard free energy theory. A finite difference 
scheme is applied to the lattice-Boltzmann equations governing 
time evolution of velocity distributions of particle number 
density. When a drop is suspended in an immiscible second 
liquid with the same mass and viscosity between moving 
parallel plates, the numerical results of deformation of drop 
agree with theoretical solutions and previous numerical results 
obtained by the volume-of-fluid (VOF) method. Breakup 
motions of drops in LBM are also reasonable in comparison 
with the critical Reynolds and capillary numbers predicted by 
the VOF method. In the simulations of two-drop interaction, it 
is shown that the breakup motion depends on not only number 
density of drops but also initial positioning of their volumetric 
center away from a halfway cross section between the plates. 

 
INTRODUCTION 

In recent years, the lattice Boltzmann method, LBM [1][2], 
has been developed as an alternative approach for simulating 
incompressible fluid flows and modeling physics of fluids, on 
statistical-thermodynamic assumptions that a fluid involves 
mesoscopic particles repeating collisions and propagations, and 
that the distributions of particles converge to a state of local 
equilibrium. The main advantages of the LBM, originated from 
the lattice gas cellular automaton method[3], are relatively easy 
implementation of boundary condition for solid surface with 
geometrical complexity, high efficiency on parallel computing, 
and self-organizing reproduction of interface. These are 
provided by the kinetic equations of particles that possesses 
linear convection (or streaming) operator in velocity space, 
local collision operator and repulsive interaction between 
particles. The LBM describes macroscopic variables by 
averaging the motion of particles from which the Navier-Stokes 

(NS) equations can be recovered through the chapman-Enskog 
expansion technique. Unlike conventional numerical methods 
based on the discretizations of the incompressible NS equations, 
the pressure in the LBM is calculated by using only the 
equation of sate, without solving the Poisson equation which 
requires time-consuming treatment.  

The gas-liquid model [4] has been proposed to simulate 
isothermal phase changes consistent with the thermodynamic 
theory of van der Waals-Cahn-Hillard free energy. After that, 
the free-energy approach was also applied to the binary fluid 
model [5][6], called BF model hereafter. In an enhanced gas-
liquid model [7], the Galilean invariance is improved 
remarkably. A novel thermal model [8][9] can simulate non-
ideal two-phase fluid flows with phase change and heat transfer. 
The concept of the free-energy approach in the above-
mentioned models is the same as that in the second gradient 
method (SGM) for the direct numerical simulation of liquid-
vapor flows using the NS equations [10]. In both of the LBM 
and the SGM, an interface corresponds to a volumetric transient 
zone across which physical properties of fluid (i.e. density and 
viscosity) vary continuously, and the surface tension is 
reproduced from the energy contribution due to density 
gradient without the continuous surface force model. 

So far, to examine applicability of the LBM in numerical 
analysis of two-phase fluid motions under gravity, we have 
considered the buoyancy effect on characterized with the non-
dimensional numbers, and developed the three-dimensional BF 
model [11][12]. The results of two-dimensional bubble motions 
by the LBM agreed with those by the volume-of-fluid (VOF) 
method [13], and the surface tension in the 3D model obeyed 
the Laplace’s law. It has been also verified that the BF model 
reproduces two-bubble coalescence and the effect of wall 
boundary on lateral motion of bubble in a vertical tube [14]. 

In this paper, we present numerical results of 2D and 3D 
motions of drops in a shear flow between moving parallel 
plates by using the lattice-Boltzmann BF model, with the 
immiscible two-phase scheme and the independent parameters 
for surface tension and interfacial thickness [15]. The purpose 
is to investigate deformation and rupture of two-phase interface 
under simple shear stress for generating fine drops. It is 
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important to understand deformation and breakup mechanisms 
of drops fundamentally in designing industrial- and 
environmental-use fluid devices. In the next section, the basis 
of the lattice-Boltzmann binary fluid model is described. After 
explaining a three-dimensional velocity distribution model and 
the improvement schemes for the BF model, the numerical 
results of drop deformation and breakup are shown in 
comparison with those by the VOF method [16] and theoretical 
solutions [17]. In addition to the above verification, the results 
of three-dimensional two-drop interaction are also presented. 
All of the simulations have been conducted under the 
conditions that both of mass density and viscosity ratios are 1.0 
in isothermal two-phase fluids.  

NOMENCLATURE 
c  minimum speed of particles 
Ca capillary number 

Dd  diameter of drop 
e  velocity vector of fluid particles 
f  velocity distribution function of total number density of 

particles 
g velocity distribution function of number density 

difference of particles between two components 
n  total number density of two-component particles 
P pressure 
r  position vector 
Re Reynolds number 
T   temperature of fluid 
u  flow velocity 

Greek Letters 
∆n particle number density difference between components 
∆t  time increment 

µ∆  chemical potential difference 
Γ  mobility parameter 
κ  capillary coefficient 
σ   surface tension 
ν  kinetic viscosity of fluid 

1τ  relaxation time of collision operator for f  

2τ  relaxation time of collision operator for g  

Subscript 
a label to distinguish fluid particles by their velocity  
i  direction along lattice link line 
l  index of particle speed in three dimensions 
α,β index of Cartesian coordinate 

Superscript 
eq state of equilibrium 

LATTICE-BOLTZMANN BINARY FLUID MODEL 
To model interfacial dynamics of two-phase fluids, the 

binary fluid (BF) model [5] associates a repulsive interaction 
between two kinds of fluid particle components A and B with 
the free energy theory. In the BF model, two independent 
macroscopic variables are introduced to compute pressure and 
phase distribution, total number density BA nnn += , and its 
difference =∆n  BA nn − , which are related with two sets of the 
velocity distribution function of particle number density, af  and 

ag , respectively. The subscript a  denotes the label to 
distinguish the particles by their velocity vectors ae . The 
variables, n , n∆ , and flow velocity u are defined with the 
functions as follows,  

∑∑ ==
a

eq
aa a ffn ,            (1) 

∑∑ ==∆
a

eq
aa a ggn ,           (2) 
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a a

eq
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a a

eq
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where the superscript eq denotes an equilibrium distribution. 
The total density n  is proportional to pressure and 
approximately constant in whole flow field, while the density 
difference n∆  takes either positive or negative values in each 
phase and then represent phase distributions. 

The time evolution of discrete velocity distributions of 
particle number density is governed by the lattice Boltzmann 
equations (LBE). The differential forms of LBE in the BF 
model are written as follows, 
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where r is the position vector, 1τ  and 2τ  are the relaxation 
times. After collision at a site r, the particles with ea move to its 
neighbors r+ea during unit time period. The terms on the right 
hand sides of Eqs.(5) and (6), so-called lattice BGK collision 
operators [2], indicate the relaxation process toward states of 
local equilibrium eq

af  and eq
ag . The macroscopic variables, n , 

n∆ , and un , are conserved at each site in every collision step. 
The thermodynamic behavior of binary fluid system in the 

BF model is governed by a simple free energy Ψ  including the 
energy contribution from density gradient [6], 
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where κ  is the capillary coefficient to control surface tension 
and interfacial thickness, and TC is critical temperature. When 
T<TC, an isothermal fluid system in the BF model goes through 
two-phase separation and coexistence, where each phase 
corresponds to component-A-rich or B-rich region. 

The function Ψ  Eq.(7) is related with the pressure tensor 
αβP  and the chemical potential difference µ∆ ,  
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where the Greek subscripts are Cartesian coordinate indices and 
αβδ is the symbol of Kronecker's delta. These thermodynamic 

quantities are embedded into the equilibrium velocity 
distributions eq

af  and eq
ag  through the following relations, 

( )( )∑ −−=
a aa

eq
a ueuefP ββαααβ

,                            (12) 

( )( )ββαααβµδ ueueg aaa
eq
a −−=Γ∆ ∑ ,                        (13) 

where Γ  is parameter of mobility.  
The macroscopic dynamics of binary fluids can be derived 

from the LBE (5) and (6) through the Chapman-Enskog’s 
multi-scale expansion technique [2]. The former is related with 
the continuum equation and the equation of motion of two-
phase fluid with unit mass density, while the latter leads to the 
convection-diffusion equation for the function n∆ .  

3D EQUILIBRIUM DISTRIBUTION OF PARTICLES 
In this study, three-dimensional particle velocity 

distribution adopts an isotropic velocity set including rest 
component, as shown in Fig.1 [10]. Subscript a of the 
distribution functions is replaced with l and i. The former l =1,2 
is identification index of two speeds c(l+1)1/l,  while i is index 
of the velocity directions: i=1 to 6 for l=1, i=1 to 8 for l=2. 
Generally, c =1 is used because of normalization of speed.  

The equilibrium distributions eq
ilf , and eq

ilg ,  are represented 
on the limit of low Mach number by the following forms, 
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where Eqs.(15) and (17) correspond to the distribution 
functions for rest particles. The dimensionless parameters Al, Bl, 
Cl, and Dl, and the tensor )(lGαβ  are determined under the 
constraints to derive the Navier-Stokes equations with the 
pressure tensor Eq.(12) from the LBE, Eq.(5) [11]. Al (l=1,2),  
A0 and )(lGαβ  (l=1,2) take the following forms respectively, 
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In Eq.(18), sl denotes the number density ratio of particles with 
speed 2c and 3 c, in a rest equilibrium state at temperature, 

( ) 2
218 cssT += .                    (21) 

The following set of parameters are used in this study:  B1 = 
1/24, B2 = 1/12, C1 = 1/32, C2 = 1/16, D0 = -7/24, D1 = -1/48, D2 
= -1/24, E1 = 1/32, F1  = -1/32, E2  = 1/16, and F2   = 0.  

IMPROVEMENT OF BINARY FLUID MODEL 
This section describes the schemes in the BF model to 

simulate the motions of immiscible two-phase fluids under 
more flexible control of surface tension and interfacial 
thickness [13][14]. First, the convection term in the LBE for the 
function ag , Eq.(6), is replaced with new version of the local 
equilibrium one ga

eq to reduce the diffusivity of n∆  due to 
phase change inherent in the original BF model[5], as follows, 
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where 2τ takes values equal to time increment t∆ . 
Second, two independent parameters κ 1 and κ 2 are 

introduced into the pressure tensor and the chemical potential 
difference, Eqs.(9) and (11) respectively, instead of a common 
capillary coefficient κ . Surface tension σ  is obtained from the 
following mechanical definition on a flat interface 
perpendicular to x axis in Cartesian coordinate, 
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where PN=Pxx and PL=Pyy=Pzz. An interfacial profile along x 
axis ( )xn∆  is determined on the constraint that the chemical 
potential has to be constant all over  flow region when the 
system reaches a state of thermodynamic equilibrium, that is, 
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where 0n∆  is positive value given in component-A-rich regions. 
Equation (24) means there is no net variation of number of 
particles in each phase. Figure 2 shows the theoretical 
predictions of the function n∆  across a flat interface, which are 
obtained from solving Eq.(24) numerically. The interface, 
volumetric transient zone, becomes thinner and the gradient of 

n∆  increases as κ 2 decreases. Substituting these results into 
Eq.(23), it is proved that the surface tension σ  is inversely 
proportional to κ 2 and the thickness, as shown in Table.1.  

In addition to the above schemes, the differential forms of 
the LBE (5) and (22) are discretized with the finite difference-
based lattice Boltzmann method (FDLBM) [18]. The FDLBM 
can overcome numerical instability at high Reynolds number 
easily by time and physical space discretizations with arbitrary 
mesh configuration not to depend on particle velocity set so 
that the Courant number becomes smaller than 1 flexibly. In 
this study, we applied a third-order-accurate upwind difference 
scheme and the second-order-accurate Runge-Kutta’s scheme 
with constant t∆   to the convection term and the time marching 
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in the LBE. In the FDLBM, kinetic viscosity ν takes the 
following forms in the two-dimensional 7-velocity distribution 
[4] and the 3D 15-velocity distribution [10] respectively, 
      2

14
1 cτν = ,                 (26) 

2
128 cB τν = .                                          (27) 

NUMERICAL RESULTS OF DROP MOTION 
In this section, we present numerical results of motions of 

two- and three-dimensional drops in a simple Couette flow by 
the lattice-Boltzmann BF model. First of all, the results of drop 
deformation and breakup are shown in comparison with the 
previous numerical ones by the VOF method [16] and the 
solution of small deformation theory [17]. As shown in Fig.3, 
in the initial conditions, a circular- or spherical-shaped drop 
with diameter dD =16 is suspended in a second immiscible 
liquid with the same density and viscosity on a halfway line 
between parallel plates moving with constant speed WU  in the 
opposite directions. In the Cartesian coordinate, the shear flow 
fields, which are discretized uniformly by square or cubic mesh 
with widths x∆ = y∆ = z∆ =1, possess plate separation H and 
spatial periodicities xL  and yL . The extrapolation boundary 
condition [19] for af  and 

ag is applied to the plate boundaries. 

The simulations were carried out under several conditions 
of non-dimensional numbers, Reynolds and capillary numbers 
Re and Ca, including two competing forces: viscous shear 
stress and the Laplace pressure Dd/2σ . They are defined by, 

       
2

2






= DdRe

ν
γ& ,  

σ
νγ
2

DdCa
&

= ,                         (28),(29) 

where γ&  is imposed shear rate, HUW /2 , and ν  is kinetic 
viscosity given by Eqs.(26) and (27). Surface tension σ  is 
determined with Eqs.(23) and (24) in advance. Before shear 
flow simulations, the surface tension of the improved BF model 
has been verified numerically through formation of a two-
dimensional drop in stagnant liquid. Figure 3 shows pressure 
increment P∆ inside circular-shaped drop with radius R  2/Dd= . 

nTP =0 is pressure outside drop, where values n =1 and T =0.5 
are used in all of other simulations as well. The results by the 
lattice-Boltzmann BF model agree well with theoretical 

predictions by the Laplace’s law DdP /2σ=∆ in 2D and 
Eqs.(23) and (24). In the simulations mentioned hereafter, 2κ  is 
set to be 0.01 at the same values of n , n∆  andT  as the above. 

In the first simulations of time-dependent shear flow, where 
matrix and drop liquids are stagnant initially, two parameters 
were used to measure the deformation attained by the drop in 
steady state at the low Reynolds numbers Re =0.333 in 2D and 
0.0625 in 3D. The first one is the Taylor deformation parameter 

( ) ( )BLBLD +−= / , where L and B are the half-length and half-
breadth of the drop, respectively (Fig.5). The second one is the 
orientation angle θ  of the drop with the axis of shear strain. 
      The results of two parameters of drop deformation by the 
LBM are shown in Fig.6 and Fig.7, together with the previous 
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ones [16][17]. The computational domain is rectangular box 
with H =128, xL =64, and yL =32 in Fig.4. The Taylor 
deformation parameters in the 3D LBM simulations agree with 
the theoretical solutions and numerical results obtained with the 
VOF method. On the other hand, in the higher capillary 
numbers, the deviation of the 2D results from the theoretical 
prediction is smaller than that of the 3D results. In terms of the 
orientation angle, there are good agreements between numerical 
results by the LBM and the VOF method in three dimensions. 
     The second simulation is breakup of drop with dD =16, 
which were carried out in the computational domain with 
H = L x=64 and

yL =32. Figure 8 depicts the diagram of drop 
breakup in the capillary-Reynolds plane. Compared with the 
results obtained with the VOF method, the LBM reproduces 
almost equal results to predict the critical capillary and 
Reynolds numbers in three dimensions. On the other hand, it is 
shown that the two-dimensional drop tends to break up at 
higher Reynolds number than the 3D drop at given capillary 
number. Figure 9 shows the interfacial profiles and the flow 
velocity fields on a x-z cross section at y=16 for Ca=0.3 and 
Re=0.01, 0.1, 0.5 and 0.6. As Re increases, the drop 
deformation becomes larger in the same way as the VOF 
method [16]. Although the values of the deformation parameter 
D became smaller than those in the previous simulations 
(Table.2), the LBM reproduced the increase of D with Re and 
the breakup of drop at Re =0.75, as shown in Fig.10. 
      The last numerical results, shown in Fig.11, are concerned 
with the two-drop interaction in the three-dimensional shear 
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Fig.9. Steady-state solutions of interfacial profile and flow 
velocity on a cross section in x-z plane through the center 
of the drop at Ca=0.3. 
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(a) t*=105.7 (b) t*=109.9 



 6 Copyright © 2003 by ASME 

flow at Ca =0.3 and Re =1.0, using the same computational 
domain size and dD as the above breakup simulations. In Case 
(a), when initially placed on a halfway x-y plane between plates, 
the drops do not break up to keep ellipsoidal-shaped. In contrast, 
they move in the opposite directions with each other to break 
up finally in Case (b), where their initial volumetric centers are 
placed away from the halfway plane by dD. These results 
indicate that the critical Ca and Re for breakup of drops by 
shear stress depend on not only the spatial periodicity or 
number density of drops but also initial positioning of them to 
encourage the deformations as moving them with different 
speeds or directions. 

CONCLUSIONS 
We carried out numerical simulations of motions of two- 

and three-dimensional drops in a shear flow based on the 
lattice-Boltzmann binary fluid model, which is consistent with 
the van der Waals-Cahn-Hilliard free energy theory. The model 
is improved for immiscible fluids with the finite difference 
scheme and the independent parameters to control surface 
tension and interfacial thickness. When a drop is suspended in a 
second liquid with the same mass and viscosity between 
moving parallel plates, the three-dimensional results of drop 
deformation in Stokes flow regime agreed with theoretical 
solutions and previous numerical results. The critical Reynolds 
and capillary numbers for breakup of drops were also 
reasonable, compared with the previous predictions. In the 
simulations of 3D two-drop interaction, it was shown that the 
breakup motion depends on not only number density of drops 
but also the initial positioning of their volumetric center away 
from a halfway cross section between the plates. 
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