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ABSTRACT 

For interface-tracking simulation of two-phase flows, we 
propose a new computational method, NS-PFM, combining 
Navier-Stokes (NS) equations with phase-field model (PFM). 
Based on the free energy theory, PFM describes an interface as 
a volumetric zone across which physical properties vary 
continuously. Surface tension is defined as an excessive free 
energy per unit area induced by density gradient. Consequently, 
PFM simplifies the interface-tracking procedure by use of a 
standard technique. The proposed NS-PFM was applied to 
several problems of incompressible, isothermal two-phase flow 
with the same density ratio as that of an air-water system. In 
this method, the Cahn-Hilliard (CH) equation was used for 
predicting interface configuration. It was confirmed through 
numerical simulations that (1) the flux driven by chemical 
potential gradient in the CH equation plays an important role in 
interfacial advection and reconstruction, (2) the NS-PFM gives 
good predictions for pressure increase inside a bubble caused 
by the surface tension, (3) coalescence of liquid film and single 
drop falling through a stagnant gas was well simulated, and (4) 
collapse of liquid column under gravity was predicted in good 
agreement with other available data. Then, another version of 
NS-PFM was proposed and applied to a direct simulation of 
bubble nucleation of a non-ideal fluid in the vicinity of the 
critical point, which demonstrated the capability of NS-PFM to 
capture liquid-vapor interface motion in boiling and 
condensation. 

INTRODUCTION 
For last two decades, much attention has been paid to the 

phase-field model (PFM) as one of the useful tools to well 
understand complex phenomena involving self organization of 

mesoscopic structures in multi-component fluids, such as two-
phase flows (bubbly flow [1], drop breakup [2], Rayleigh-
Taylor instability [3], phase change [4,5], etc.), solidification of 
binary alloys [6] and polymer membrane formation [7]. Based 
on the so-called Cahn-Hilliard theory [8], PFM describes an 
interface as a volumetric transition zone with a finite width 
between pure components (phases), across which all the 
physical properties vary steeply but continuously. A free-
energy functional, which has a double-well potential of fluid 
density and depends on square of local density gradient, allows 
the coexistence of two phases with diffusive interface without 
imposing topological constraints on interface as phase 
boundary. In the free-energy theory, surface tension is defined   
as an excessive energy per unit area induced by the density 
gradient inside diffusive interface, enabling calculation of the 
continuous body force without using interfacial curvature and 
normal vector. As a result, the PFM-based method for two-
phase flows does not necessarily require conventional 
algorithms for the advection and reconstruction of interface and 
continuum surface force model [9-11], unlike front-tracking, 
level-set and volume-of-fluid (VOF) methods [12-14]. This 
feature simplifies interface-tracking calculation on a fixed 
spatial grid. The PFM method therefore has attractive 
advantages over the other methods, easy implementations of 
multi-dimensional interface advection and associated heat and 
mass transfer across the interface [1-5,15]. 

PFM methods are categorized into two types according to 
basic equations; a direct numerical method using Navier-Stokes 
(NS) equations (referred to as NS-PFM hereafter) [3,4], and a 
lattice Boltzmann method (LBM) [1,2,5] which uses 
mesoscopic kinetic equations for the velocity distribution of a 
number density of fictitious fluid particles [16, 17]. Both types 

 1 Copyright © 2005 by ASME 

http://www.aist.go.jp/index_en.html
mailto:naoki-takada@aist.go.jp?subject=ASME%20FEDSM2005-77367
mailto:tomiyama@mech.kobe-u.ac.jp


have been applied only to two-phase flows with a small density 
difference because of numerical instability. To overcome the 
difficulty, Inamuro et al. [1] recently proposed a two-phase 
LBM which is applicable to incompressible two-phase flows 
with the density ratio up to 1,000. 

The purposes of this study are to examine PFM for 
interface-capturing and tracking simulation, and to develop a 
PFM-based computational method for two-phase flows. First, 
we propose a NS-PFM by extending the above-mentioned 
LBM [1] for simulating immiscible, incompressible, isothermal 
two-phase flows with a high density ratio. Comparing with the 
LBM, the proposed method would not only save computational 
cost, but also have flexibility in selection of space and time 
discretizations. In order to verify the NS-PFM, several 
interface-tracking simulations of two-phase flows are carried 
out for fluids with the same density ratio as that of an air-water 
system. Second, we took heat transfer into account in the NS-
PFM for direct numerical simulation of phase change of 
compressible non-ideal fluid in the vicinity of the critical point. 

NOMENCLATURE 
A long-range interaction of van-der-Waals fluid particles 
a  width of liquid column 
B short-range interaction of van-der-Waals fluid particles 
g gravitational acceleration vector 
g magnitude of gravity (=|g|) 
H height of liquid column or position of drop in z direction 
I second-rank isotropic tensor 
k thermal conductivity 
n2 aspect ratio of liquid column 
P  pressure tensor including surface-tension force 
P’ pressure including excess free energy of interface 
T parameter of free energy function (and/or temperature) 
t time 
u flow velocity vector 
x,y,z  position in Cartesian coordinate system 

Greek Letters 
∆t  time increment 
Γ mobility of index function φ in Cahn-Hilliard equation 
φ  index function to indicate interface profile 
η chemical potential 
κS surface tension parameter 
κφ interface thickness parameter 
µ viscosity of fluid 
ρ  mass density of fluid 
σ  surface tension 

Subscript 
G gas phase 
L liquid phase 

Superscript 
* dimensionless time 

BASIS OF PHASE-FIELD METHOD (NS-PFM) 
In this section, we briefly state basic equations of the 

proposed numerical phase-field methods (NS-PFM) for 
interface-tracking simulations of two-phase flow, in which 
Navier-Stokes (NS) equations are combined with the phase-
field model (PFM). 

Isothermal two-phase fluids with a high density ratio 
The proposed NS-PFM for immiscible, incompressible, 

isothermal gas-liquid flows solves a set of a continuity 
equation, momentum conservation equations, and a Cahn-
Hilliard (CH) equation describing time evolution of diffusive 
interface profile [1, 3, 8], 
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In the CH equation (3), the scalar variable φ is an index to 
describe interface profile [1], which is continuously distributed 
in the whole flow field. In this study, the chemical potential η 
is derived from a van-der-Waals free energy [1, 5] as follows, 
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where κφ is a parameter to control interfacial thickness at T < 
8A/(27B). For simplicity, the mobility Γ was set to be constant. 

The density ρ is defined as a continuous function of φ [1], 
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where φG and φL are arbitrary thresholds for the index φ to 
distinguish the gas and liquid phases. The tensor P is expressed 
as,  

( )2' S SP κ ρ κ ρ ρ= − ∇ + ∇ ⊗∇P I ,       (6) 

where κS denotes the strength of surface tension σ, and P’ is the 
effective pressure including the free-energy increase κS |∇ρ |2. 
The parameter κS is set to be constant in the whole flow field, 
and determined from the definition of σ on a flat interface [8], 

2
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where the direction of x is normal to interface. The viscosity µ 
is interpolated between the phases as a function of ρ [1], 
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   In this NS-PFM, we adopted conventional numerical 
techniques mentioned below. The 2or3D space was discretized 
uniformly with square or cubic cells in a fixed grid, where 
scalar and vector variables were located in staggered 
arrangement. The velocity u and pressure P’ were calculated 
using the projection algorithm. The advection term in Eq.(2) 
was calculated with a 3rd order upwind scheme [18], while that 
in Eq.(3) was calculated with a forth-order central difference 
scheme (CDS). Gradients of scalar variables were calculated 
with a forth-order CDS, while a second-order CDS was applied 
to the viscous term of Eq.(2). Time marching was based on the 
second-order Runge-Kutta’s scheme with a constant ∆t. 

Thermal two-phase flow with phase change
  For simulating thermal two-phase flows, we adopted a full 
set of NS equations for a non-ideal fluid and the van-der-Waals 
equation of state [4,5]. They were solved by using the 
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MacCormack scheme. Time evolution of total energy E of the 
fluid is described by the following equations, 

( ) ( ) ( )S
E E k T
t

κ ρ ρ∂
⎡ ⎤+ ∇⋅ = ∇⋅ − + ⋅ + ∇ − ∇⋅ ∇⎣ ⎦∂

u P τ u u , (9) 

( ) 221
2 2

SE cT A κρ ρ ρ ρ= + − + ∇u ,      (10) 

where c is the specific heat, τ is the viscous stress in Eq.(2), and 
the tensor P in Eq.(6) is obtained by substituting P’ expressed 
as follows, 
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NUMECAL RESULTS OF TWO-PHASE FLOW 
This section describes numerical results of two-phase flow 

obtained with the proposed NS-PFM. All of the simulations 
have been carried out on a fixed spatial grid with uniform mesh 
width ∆x=∆y=∆z=1.0 in Cartesian coordinate system. As for 
incompressible two-phase flow, density and viscosity ratios 
ρL/ρG and µL/µG were set at 801.7 and 73.76 respectively, 
which correspond to those of air-water system at 1 atm. and at 
room temperature. The other parameters were set as follows; 
A=B=1, T=0.293, κφ =0.1, and φG , φL = either 0.2751 or 0.3802, 
|g|=g=2×10-3, Γ=12, ρL=1, ρG=1.247×10-3, ∆t=0.0125. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benchmark test on advection of interface
Two benchmark problems on advection of interface were 

solved in two dimensions. First benchmark shown in Fig.1 was 
linear transfer of single circular-shaped interface in a periodic 
uniform flow with Courant number C=u∆t/∆x=4×10-3, obtained 
with only Eq.(3) at u=v=0.1, ∆t=0.04, κφ=0.04, Γ=0 and 1. 
When Γ=1, the interface profile with an initial diameter d=32∆x 
has been retained adequately without oscillation until time 

t*=ut/d=6.25. Second benchmark was rotation transfer at 
C=0.025, 0.05 and 0.1, ∆t=0.025, κφ =0.1, and Γ=6 (Fig.2). The 
fluid volume was conserved within ±1% error till t*=20 (Fig.3). 
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Fig.3 Volume conservation in 2D rotation by a circular vortex.

Surface tension force on gas-liquid interface
    The surface tension force of the NS-PFM was examined in 
simulation of single bubble neutrally-buoyant in a stagnant 
liquid. As shown in Fig.4, as the pressure built up uniformly 
inside the bubble, spurious flow was induced inside interface 
zone by discretization error of local density gradient in Eq.(6), 
which is inevitable in the phase-field approach [1, 15, 16]. 
However, its magnitude was found to be negligible in the 
following simulations. The excessive pressure was proportional 
to interfacial curvature, which agreed well with theoretical 

Fig.2 Interface profile drawn as a contour line of the index 
function φ at t*=Uθt/d=12.5 in 2D rotation simulation. 
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Fig.1 Two-dimensional linear transfer of circular-shaped 

two-phase interface. (a) Initial condition, and the 
profiles after transfer for (b) Γ = 1 and (c) Γ = 0. 

Fig.4 2D neutrally-buoyant bubble in stagnant liquid.
(a) Pressure field (b) Velocity field

Fig.5 Pressure increase inside bubble neutrally- buoyant in 
stagnant liquid at ρL /ρG =801.7and σ =4.31×10-4. 
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prediction by the Laplace’s law (solid line drawn in Fig.5). 

Collapse of liquid column under gravity
    To examine the accuracy of the interface-tracking 
capability, collapse of liquid column in a gas under gravity was 
calculated by the NS-PFM and compared with available 
experimental and numerical data [14,19,20]. The simulation has 
been conducted at an aspect ratio of column n2= H/a=2 in a 

two-dimensional rectangular domain surrounded with non-slip 
solid walls. In both cases of spatial resolution (Table1), initial 
column width a was assumed to be equivalent to 146mm in air-
water system. Fig.6 shows initial density profiles across 
diffusive interface on the bottom wall surface. The numerical 
solutions at ∆x=∆y=1 in Eqs.(3)-(5) (symbols) agreed with the 
theoretical prediction (solid line). As shown in Fig.7, interfacial 
shapes in both high and low resolutions agreed well with each 
other at each dimensionless time. Time series of horizontal 
leading-edge position X and velocity U of column (solid and 
broken lines in Fig.8 and Fig.9) on a surface of bottom wall 
also agreed well with other predictions [14,19,20].  

 Table1  Parameters in simulation of collapse of liquid column.

PFM
(∆x=1)

air&water
(m) µ G (gas) µ L

(liquid)
1 10∆x 7.11×10-5 1.43×10-7 1.06×10-5

2 18∆x 2.30×10-4 3.47×10-7 2.56×10-5

Case#
Aspect
ratio

n 2=H /a

Width of column a Surface
tension σ

2 1.46×10-1

Viscosities

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Snapshots of diffuse-interfacial profile and flow velocity 
field in collapse of liquid column with initial width a at 
dimensionless time t* (∆t= 0.0125). 
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Fig.6 Initial profile of fluid density ρ across liquid-column 
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Fig.8 Time series of horizontal leading-edge position X of 2D 
collapsing liquid column with width a, height H, and 
aspect ratio n2 under gravity g in present and other data.
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Coalescence of free-fall drop and stagnant liquid film

 

As the third example, we simulated three-dimensional 
coalescence of single drop falling through a stagnant gas into a 
liquid film sustained on a horizontal solid wall under gravity. 
The diameter of the drop d=20∆x in the simulation was 
equivalent to 10mm in actual air-water system. As seen in 
Fig.10, pressure builds up at a spot between the drop and liquid 
film at dimensionless time t*=0.879 just before contact, while it 
moved along the surface of bottom plane at t*=1.001 after the 
drop penetrated by half into the liquid film. After fully merged, 
a ring-shaped vortex was generated by gas jet ejecting from the 
gap between the drop and film, when an annular single wave 
propagated outward. In each case of height of drop H=35, 45, 
55, and 65, the pressure reached its maximum value before 
t*=1, which was approximately equivalent to initial potential 

energy of the drop (see Fig.11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bubble nucleation in non-ideal fluid
This subsection describes a direct numerical simulation of 

bubble nucleation in a van-der-Waals fluid. The NS-PFM was 
applied to a case with a condition of A=B=c=1, κS=0.01, 
k=µ =0.2, g=0, and ∆t=0.2 in two dimensions. The stagnant 
liquid of density ρL =0.405 at temperature T0=0.293 in the 
square area 502 ∆x∆y was surrounded with periodic boundaries 
on both sides, free outflow at the top and non-slip wall on the 
bottom. A heated section with a constant temperature TH 

=T0+1.465×10-2 and width LH =10∆x was located on the bottom 
wall set at TW=T0. As shown in Fig.12, a bubble nucleation took 
place on the heated section. The velocity and temperature 
gradient in gas phase with ρG =0.265 gradually reduced as the 
bubble grew into a mushroom-shape. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t*= 0.879(a)
( t = 18000∆t )

P’=0.11

P’=0.115

ρ = (ρG+ρL)/2

ρ = (ρG+ρL)/2

Interface:

Fig.11 Time series of maximum pressure in coalescence of 
liquid film and free-fall single drop with diameter dD and 
initial height position H under gravity g in a stagnant gas.
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Fig.12 Interface profile, velocity and temperature fields around 
2D bubble nucleated on heater with width LH=10∆x in a 
van-der-Waals fluid at time t (∆x=∆y=1,∆t=0.2).

(e) t = 20,000∆t (f) t = 50,000∆t

T =0.2935

5∆y

5∆x

0.29350.2942 0.2942y

x

0.2935
0.2935

0.2935
0.2942

0.2942

0.2935 0.2935
0.2942

0.2942

t*= 1.407(e)
( t = 28800∆t )

0.11

Fig.10 Snapshots of interfacial profile, cross-sectional flow 
velocity and pressure fields in coalescence of drop a
liquid film at dimensionless time t*. 

nd 

 5 Copyright © 2005 by ASME 



CONCLUSIONS 
To simulate the interface motion in two-phase flows, we 

proposed two versions of phase-field method, NS-PFM, 
combining Navier-Stokes (NS) equations with phase-field 
model (PFM) based on the free-energy theory. 

The first version of NS-PFM was applied to several flow 
problems of incompressible, isothermal two-phase fluid with a 
high density ratio equivalent to that of air-water system. From 
the numerical results, it was confirmed that (1) the volume flux 
driven by a local chemical potential gradient in the Cahn-
Hilliard equation plays an important role in (a) volume 
conservation, (b) self-organizing reconstruction of gas-liquid 
interface, and (c) reduction of numerical diffusion and 
oscillation, (2) this method gives good predictions of pressure 
increase inside a bubble caused by the surface tension force, (3) 
a single liquid drop falling through a stagnant gas and merging 
into a stagnant liquid film was simulated adequately, and (4) 
collapse of liquid column under gravity was predicted in good 
agreement with well-known experimental and numerical data. 
Another type of NS-PFM was used for a direct numerical 
simulation of nucleation in non-ideal fluid in the vicinity of 
critical point. It was demonstrated that the proposed NS-PFM is 
able to successfully reproduce liquid-vapor interface motion 
with heat transfer in boiling and condensation. 
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