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Abstract

This paper describes a method based on deep metric
learning for content-based cross-modal retrieval of a piece
of music and its representative image (i.e., a music audio
signal and its cover art image). We train music and image
encoders so that the embeddings of a positive music-image
pair lie close to each other, while those of a random pair
lie far from each other, in a shared embedding space. Fur-
thermore, we propose a mechanism called self- and cross-
modal feature embedding memory, which stores both the
music and image embeddings of any previous iterations in
memory and enables the encoders to mine informative pairs
for training. To perform such training, we constructed a
dataset containing 78,325 music-image pairs. We demon-
strate the effectiveness of the proposed mechanism on this
dataset: specifically, our mechanism outperforms baseline
methods by ×1.93 ∼ 3.38 for the mean reciprocal rank,
×2.19 ∼ 3.56 for recall@50, and 528 ∼ 891 ranks for the
median rank.

1. Introduction

Can we imagine a piece of music simply by looking at its
cover art? Steve and Sorger described how one of the func-
tional parameters of cover art is to say something about the
music inside [43]. Libeks et al. showed that cover art con-
tains visual features that are helpful for contextualizing mu-
sic [21]. Negus claimed “Different genres of music have be-
come associated with and signify different images, which in
turn connote particular attitudes, values and beliefs. [...] vi-
sual images denote particular sounds.” [30]. In other words,
we can indeed gain information about music just by look-
ing at its cover art. In support of this idea, Vlad Sepetov,
a designer famous for his work with Kendrick Lamar, said,
“I want someone to look at the album cover and appreci-
ate the aesthetic and image and let the artwork guide their
listening experience.” He continued, “... that first look at
the sleeve tells you how you are going to listen to the al-
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Figure 1: Conceptual design of the tasks in this study. Our ob-
jective is to develop a method for cross-modal retrieval of images
that match an input piece of music (or vice versa).

bum.” [3]. Vad explained “Despite the fact that they are
not in the strictest sense making sound themselves, album
covers are profoundly musical. Album covers represent the
music contained inside them and, even further, they medi-
ate our listening experience. Conversely, our viewing ex-
perience is mediated by the music.” [47]. In such ways, a
piece of music and its cover art are designed to be closely
associated with each other. The goal of this paper is to de-
velop a method that can achieve cross-modal retrieval tasks
of music and images by leveraging this association between
a piece of music and its cover art, as illustrated in Figure 1.

Cross-modal music-image retrieval methods benefit var-
ious music information retrieval (MIR) applications. For
example, these methods benefit a musician who has com-
posed a new piece of music to find cover art for that music
from a set of available images. As another example, given
any new image, these methods can create a playlist of songs
that match the image. Moreover, such a cross-modal re-
trieval method could provide insight into the latent relation-
ship between music and images in a vast music collection.

So far, several pioneering methods related to music and
images have been proposed [4, 19, 22, 28, 29, 32, 36–38, 44,
54,58,63,64]. However, those methods take the approach of
using metadata including tags (mood, emotion, video, etc.)
and textual descriptions. That approach entails problems
in that such metadata is not assigned to all music and im-
ages and often varies across datasets or service platforms.
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In addition, it is mentioned that music and images with mi-
nor tags are difficult to retrieve [13, 48]. Accordingly, such
metadata has to be consistently assigned to large amounts
of data, which places a heavy burden on annotators and may
require them to have technical music knowledge. Hence, in
this study, we investigate a content-based music-image re-
trieval approach that leverages only a piece of music and its
cover art without any additional metadata.

To achieve content-based music-image retrieval, we
adopt a deep metric learning (DML) approach [13, 34, 45,
59], as illustrated in Figure 2. In this approach, we train
two encoders that respectively embed pieces of music and
images in a shared embedding space under the assumption
that a pair of a piece of music and an image for the same
song (i.e., an original music-image pair) is positive and a
pair of those for different songs is negative. Then, the en-
coders are trained so that the embeddings (i.e., points in the
shared embedding space) of a positive pair are close to each
other and those of a negative pair are far from each other
in the shared embedding space. Once the encoders are suc-
cessfully trained, we can use them to embed a music query
in the shared embedding space and retrieve images (or vice
versa) that match the query according to the similarities of
the embeddings in the shared embedding space.

The key to successful DML is to mine informative pairs
so that a loss function returns meaningful feedback to the
encoders [39,50,53]. The bottleneck of DML in the content-
based approach is that encoders can mine a few positive in-
stances; that is, only an original music-image pair can be
a positive pair under that assumption. To overcome this
bottleneck, we propose a self- and cross-modal feature em-
bedding memory (SCFEM) mechanism that was inspired
by existing feature memory mechanisms [51, 60]. The pro-
posed mechanism stores and directly uses both the music
and image feature embeddings of any previous iterations in
memory. Because our mechanism enables the encoders to
mine more informative positive pairs in addition to infor-
mative negative pairs from the memories than the existing
mechanisms [51, 60], our mechanism is especially effective
in content-based cross-modal retrieval tasks. That is, as-
suming that every pair between the embeddings of a piece
of music and an image at a current iteration and their own
stored embeddings is positive, our mechanism enables the
encoders to obtain additional informative positive pairs.

To address the lack of datasets including both pieces of
music and their cover art, we constructed a private dataset,
called the Music Cover Art (MCA) dataset, that contains
78,325 music-image pairs (30 s audio previews for trial lis-
tening and their cover art). We then quantitatively evalu-
ated the effectiveness of our mechanism on this dataset in
terms of the mean reciprocal rank [7], recall@k, and me-
dian rank [45]. The results showed that our mechanism out-
performed various baseline methods.
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Figure 2: Overview of our approach. We train encoders so that
the embeddings of the music and image for the same song are close
to each other, while those for different songs are far from each
other, in a shared embedding space. By calculating the similari-
ties between embeddings in the shared embedding space, we can
retrieve an image matching a given piece of music, or vice versa.

2. Related Work
2.1. Cross-Modal Music-Image Retrieval

Multimodal retrieval related to music and images has
shown its potential in MIR tasks [2, 9, 27]. However, cross-
modal retrieval for music and images is in the early stages
of research. Mattek and Casay conducted an experiment
on aesthetics in which participants were shown ten pieces
of music and ten images and asked to assess their associa-
tion [26]. An important aspect of that study was that it iden-
tified a cross-modal effect between music and images. In
our study, we also focus on this association between music
and images, especially cover art, to develop a cross-modal
retrieval method for music and images.

Several studies proposed methods that used metadata in-
cluding tags such as emotion and mood, and some text such
as lyrics and descriptions [4,19,22,28,29,32,36–38,44,54,
58, 63, 64]. The problem is that such metadata is not neces-
sarily assigned to all music and images. This problem may
lead to the inability to perform cross-modal music-image
retrieval due to the missing metadata, while a piece of mu-
sic and an image are closely associated with each other.
In addition, music and images may be assigned metadata
that is not common to them. That is, different datasets or
service platforms often assign varying kinds of metadata
individually, e.g., some metadata is assigned only to mu-
sic (or images). Moreover, the addition of such metadata
to a large amount of data places a heavy burden on anno-
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Figure 3: Explanatory diagrams of feature memory mechanisms for the case of a positive (i.e., original) music-image pair. Existing
mechanisms build at most one informative positive pair, whereas our proposed mechanism can build several informative positive pairs by
leveraging self- and cross-modal feature embeddings. Cross-batch memory (XBM) [51] cannot mine a positive pair because it only stores
embeddings of a previous iteration at a current epoch, not a past epoch.

tators and may require them to have technical knowledge
of music. Accordingly, content-based cross-modal retrieval
of music and images without using metadata has been pro-
posed [13, 34, 45, 59]. Hong et al. proposed a soft intra-
modal structure constraint in which the embeddings of in-
stances with similar music (or images) become close to each
other in a shared embedding space for content-based video-
music retrieval (CBVMR) [13]. Yi et al. proposed a cross-
modal variational autoencoder that matches the latent vari-
ables of a micro video, which includes a video, a piece
of music, and short texts [59]. Prétet et al. investigated
the effects of feature extraction modules proposed in CB-
VMR [13] by replacing well-known modules with original
ones [34]. Surı́s et al. proposed a transformer-based encoder
that locates the embeddings of a music video computed by
the contrastive language image pre-training (CLIP) [35] and
the disentangled music representation learning [18] close to
each other [45]. In this paper, we introduce a novel feature
memory mechanism for cross-modal music-image retrieval.

2.2. Feature Memory Mechanism

A feature memory mechanism, which stores past embed-
dings during training and enables encoders to mine infor-
mative pairs from stored embeddings, has demonstrated its
potential in a variety of computer vision tasks [11, 14, 17,
20, 49, 51, 55–57, 60, 66]. Several studies have incorporated
this feature memory mechanism into cross-modal retrieval
methods, e.g., source code and binary code [61], an RGB
image and an infrared image [23], and a food image and
a cooking recipe [40]. To the best of our knowledge, the
effectiveness of feature memory mechanisms has not been
demonstrated in cross-modal retrieval of music and images.

As illustrated in Figure 3, the primary mechanisms for
handling past embeddings are as follows: (1) updating em-
beddings by moving averages [55, 66, 67]; (2) compensat-
ing embeddings to adapt them to the latest network parame-
ters [15]; (3) direct use of past embeddings [51,60]; and (4)
calculation of a representative embedding from those in the

same class [8, 14, 17]. The problem is that content-based
cross-modal retrieval tasks are more restrictive than other
tasks in mining informative instances from a feature em-
bedding memory. In the content-based approach, only an
original music-image pair becomes a positive pair, resulting
in an imbalanced number of positive and negative instances
in a feature embedding memory. Therefore, it is difficult to
build informative positive pairs with existing feature mem-
ory mechanisms [51, 55, 60, 66, 67], and those mechanisms
cannot benefit from using classes [8,14,15,17]. In contrast,
our proposed mechanism can store more past embeddings
than existing mechanisms can, which facilitates the build-
ing of informative positive pairs between the embeddings at
a current iteration and their own stored embeddings.

3. Method
This section describes the proposed method that lever-

ages pair-based DML. Our goal is to design two encoders
that embed each piece of music and each image into a
shared embedding space, and to optimize the encoders so
that the embeddings of a positive music-image pair lie close
to each other and those of a negative pair lie far from each
other in the shared embedding space.

3.1. Problem Specification

We use a complex spectrogram of a piece of music
as the input of a music encoder, following previous stud-
ies [24,52,65], and an RGB image as the input of an image
encoder. Let X = {xn ∈ RDx}Nn=1 and Y = {yn ∈
RDy}Nn=1 be a set of complex spectrograms and a set of
images corresponding to X, respectively, where Dx is the
number of dimensions of each complex spectrogram, Dy

is the number of dimensions of each image, and N is the
number of songs.

Next, let ZX = {zxn ∈ RDz}Nn=1 and ZY = {zyn ∈
RDz}Nn=1 be sets of embeddings of complex spectrograms
and images, respectively, where Dz is the number of dimen-
sions of each embedding. Let S be a space of dimension
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Dz, namely, a music-image shared embedding space.
We train the music encoder fM(·;θ) that maps X to ZX

(i.e., xn
fM7−−→ zxn) and the image encoder fI(·;ϕ) that maps

Y to ZY (i.e., yn
fI7−→ zyn) so that the embeddings zxn and

zyn are close in S. Here, θ and ϕ are the parameters of the
respective encoders.

3.2. Learning Framework

We first describe a basic learning framework that uses
pair-based DML. Then, we introduce the key component of
our SCFEM mechanism, as illustrated in Figure 4.

3.2.1 Joint Embedding Technique

A practical approach to develop a cross-modal retrieval
method is to use pair-based DML such that any positive
pairs lie close to each other and any negative pairs lie far
from each other in a shared embedding space [13,34,45,59].

For pair-based DML, the general pair weighting (GPW)
framework [50] provided the GPW formulation F(B) for
analyzing a pair-based loss function L(B) as follows:

F(B) =
1

m

m∑
i=1

m∑
j=1

∂L(B)

∂Bij

∣∣∣∣
l

Bij

=
1

m

m∑
i=1

 ∑
(xi,yj)∈N

wB
ijBij −

∑
(xi,yj)∈P

wB
ijBij

 . (1)

Here, m is a mini-batch size; P and N are a set of posi-
tive pairs and a set of negative pairs, respectively; wB

ij =∣∣∣ ∂L(B)
∂Bij

∣∣∣
l

∣∣∣ is a weight at the l-th iteration; and B is a sim-

ilarity matrix whose element (i, j) is defined as the cosine
similarity between zxi and zyj (i.e., Bij = sim(zxi , z

y
j ) =

zxi
Tzyj /|zxi ||z

y
j |). Eq. (1) indicates that it is important to

appropriately design the mini-batch size m that controls the
number of possible pairs, the weight wB

ij that is assigned to
Bij , and the sets of pairs P and N , which should consist of
informative pairs for training.

For pair-based cross-modal DML, we can build two
types of pairs [13,34,45,59]: one in which a piece of music
is used as an anchor, and another in which an image is used
as an anchor. Thus, Eq. (1) can be rewritten as follows:

F(B) =
1

m

m∑
i=1

 ∑
(xi,yj)∈N

wB
ijBij +

∑
(yi,xj)∈N

ŵB
ijB̂ij


− 1

m

m∑
i=1

 ∑
(xi,yj)∈P

wB
ijBij +

∑
(yi,xj)∈P

ŵB
ijB̂ij

 ,

(2)

where ŵB
ij =

∣∣∣ ∂L(B)

∂B̂ij

∣∣∣
l

∣∣∣ and B̂ij = sim(zyi , z
x
j ).
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Figure 4: Explanatory diagrams of our proposed mechanism,
which trains encoders by comparing each anchor with embeddings
in memory. The embeddings at the current iteration are stored in
the memory. The mechanism enables us to define loss functions
using both self- and cross-modal feature embedding memory.

The policy of our problem specification is the same as
that of existing content-based cross-modal retrieval meth-
ods [13, 34, 45, 59]. The difference is that we address the
tasks in the music-image domain, whereas theirs are in the
music-video domain. For this problem specification, us-
ing contrastive learning [5, 11, 31, 42] is an effective ap-
proach [45]. Here, we use a contrastive loss function called
InfoNCE [31] as follows:

Lbatch(B) =− 1

m

m∑
i=1

log
eBi+/τ∑m
j=1 e

Bij/τ

− 1

m

m∑
i=1

log
eB̂i+/τ∑m
j=1 e

B̂ij/τ
, (3)

where τ is a hyperparameter called temperature scaling that
controls the scale of the loss function and + indicates a pos-
itive instance of an anchor. Each term in the r.h.s. of Eq.
(3) indicates each type of pairs considered in Eq. (2). The
weight wB

ij is derived from Eqs. (2) and (3) as follows:

wB
ij =

{
1
τ − χB

ij ((xi,yj) ∈ P) ,

χB
ij ((xi,yj) ∈ N ) ,

(4)

where χB
ij = eBij/τ/{τ(eBi+/τ +

∑
(xi,yj)∈N eBij/τ )}.

The weight ŵB
ij can be derived as well as wB

ij .
We then estimate optimal parameters θ∗ and ϕ∗ by min-

imizing the loss function Lbatch as follows:

θ∗,ϕ∗ = argmin
θ,ϕ

Lbatch . (5)

3.2.2 Self- and Cross-Modal Feature Embedding
Memory

Inspired by the “slow drift” phenomenon [51], we propose
a new mechanism called self- and cross-modal feature em-
bedding memory (SCFEM). This mechanism can be seam-
lessly integrated into a pair-based DML framework as a
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module, and can perform with a small amount of compu-
tational resources even though our mechanism can handle a
sufficiently large number of instances larger than the mini-
batch size at each training iteration.

Let Mx,My ∈ RN×Dz×E be a music feature embed-
ding memory and an image feature embedding memory, re-
spectively, where E is the number of epochs to be stored
in the feature embedding memories. Our mechanism first
requires initialization of feature embedding memories Mx

and My at the beginning of training. Our mechanism can
be triggered once the encoders are warmed up (i.e., training
has stabilized at a local optimal parameters of the encoders).
At each iteration, embeddings are stored in the feature em-
bedding memories. When the number of stored embeddings
exceeds the size of feature embedding memories, the earli-
est embeddings stored in the feature embedding memories
are replaced with the embeddings at the current iteration.

Here, the important aspect of the proposed mechanism
is that we can define two loss functions—one using a self-
modal feature embedding memory, and the other using a
cross-modal feature embedding memory—because of the
availability of both the music and image feature embed-
ding memories. That is, the proposed mechanism enables
the encoders to mine informative pairs from both the mu-
sic and image feature embedding memories. Let Lself and
Lcross be loss functions using self- and cross-modal feature
embedding memory, respectively. As in Eq. (3), the loss
function Lself can be written as follows:

Lself (S) =− 1

m

m∑
i=1

E−1∑
e=0

log
wee

Sx
i+/τ∑N

j=1 e
Sx
ij/τ

− 1

m

m∑
i=1

E−1∑
e=0

log
wee

Sy
i+/τ∑N

j=1 e
Sy
ij/τ

, (6)

where S is a similarity matrix whose element (i, j) is de-
fined as the cosine similarity between an instance of a mini-
batch and an instance stored in the self-modal feature em-
bedding memory (i.e., Sx

ij = sim(zx,ti , zx,t−e
j ∈ Mx) and

Sy
ij = sim(zy,ti , zy,t−e

j ∈ My)), and {we}E−1
e=0 is a set of

weights. Similarly to Lself , the loss function Lcross can be
written as follows:

Lcross(C) =− 1

m

m∑
i=1

E−1∑
e=0

log
wee

Ci+/τ∑N
j=1 e

Cij/τ

− 1

m

m∑
i=1

E−1∑
e=0

log
wee

Ĉi+/τ∑N
j=1 e

Ĉij/τ
. (7)

where C is a similarity matrix whose element (i, j) is de-
fined as the cosine similarity between an instance of a mini-
batch and an instance stored in the cross-modal feature em-
bedding memory (i.e., Cij = sim(zx,ti , zy,t−e

j ∈ My) and

Ĉij = sim(zy,ti , zx,t−e
j ∈ Mx)). See the supplementary

material for a detailed analysis of loss functions Lself and
Lcross using the GPW formulation.

Finally, by including both loss functions, Lself and
Lcross , in Eq. (5), we can thus estimate the optimal pa-
rameters θ∗ and ϕ∗ as follow:

θ∗,ϕ∗ = argmin
θ,ϕ

(Lbatch + λselfLself + λcrossLcross) ,

(8)
where λself and λcross are weights that balance the loss
functions.

3.3. Cross-Modal Music-Image Retrieval

Once the training of the encoders has been completed,
we can estimate the similarity of a given pair of a piece of
music and a cover art image as follow. First, we calculate
the complex spectrogram of a given piece of music. We
then use the trained encoders to obtain embeddings of the
complex spectrogram and the cover art image. Finally, we
compute the similarity between the obtained embeddings.
A high similarity indicates that a given pair is matched.

4. Experiments and Results
This section describes comparison experiments to eval-

uate the effectiveness of our mechanism. To quantitatively
evaluate the performance of each method, we set up two
tasks: query-by-music, in which a piece of music is used
as a query to retrieve a corresponding image; and query-by-
image, in which an image is used as a query to retrieve a
corresponding piece of music. This section also describes a
qualitative analysis of the obtained embeddings.

4.1. Experimental Setup

4.1.1 Dataset

We constructed the private MCA dataset that contains pairs
of a music excerpt (approximately 30 s audio signal with
44.1 kHz sampling rate) for trial listening and its cover
art (square shaped RGB image). These music excerpts
(typically, representative music sections) had already been
cropped on an Internet music service from which the ex-
cerpts were crawled as is often done by other studies [1,45,
59]. The corresponding cover art images were crawled at
the same time. We collected songs so that each song was
associated with a different cover art image and cover art
image was associated with a different song (i.e., one-to-one
correspondence between music and image). This dataset
contains 78,325 songs by 40,151 artists and encompasses
a variety of music genres (over 250, according to the ser-
vice). We randomly split the dataset into training, valida-
tion, and test sets with an eight-one-one ratio (i.e., train-
ing set: 62,659 songs; validation set: 7,833 songs; test set:
7,833 songs).
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Query-by-music Query-by-image
MRR R@50 R@100 Median rank MRR R@50 R@100 Median rank

Random 1.22× 10−3 0.64 1.28 3917 1.22× 10−3 0.64 1.28 3917
CBVMR [13] 1.34× 10−3 0.75 1.52 3686 1.27× 10−3 0.61 1.39 3656

Baseline (HRFormer [62]) 3.37× 10−3 2.09 4.05 1957 3.42× 10−3 2.08 4.06 1926
w/ Data Augmentation 3.82× 10−3 2.84 5.57 1614 3.81× 10−3 2.56 5.22 1626
+ w/ XBM [51] 4.23× 10−3 2.78 5.86 1594 5.04× 10−3 3.22 6.09 1600
+ w/ SCFEM (Ours) 1.14× 10−2 7.45 12.3 1066 9.75× 10−3 7.06 11.8 1059

Table 1: Results for MRR, R@k, and the median rank on the test set of the MCA dataset in the query-by-music and query-by-image
settings, with k set to 50 and 100, respectively.

4.1.2 Implementation Details

Music Representation: The complex spectrogram was cal-
culated by the short-time Fourier transform (STFT) [10] us-
ing nnAudio [6] with a Hann window, frequency bins F of
1,025, and a stride size of 512. Then, the complex spectro-
gram was cropped so that the shape of the cropped complex
spectrogram was 2 × F × 256 (i.e., a music audio signal
with a frame length of approximately 3 s). The music en-
coder embeds the cropped complex spectrogram into the
256-dimensional shared embedding space. While training
the music encoder, we randomly cropped the complex spec-
trogram for data augmentation. For the test, we used the
averaged value of the embeddings of the cropped complex
spectrograms for each piece of music, where we iteratively
cropped the complex spectrogram from the beginning of the
music audio signal with 50% overlapping.
Image Representation: The image was resized to 256 px
× 256 px. The image encoder embeds the resized image
into the 256-dimensional shared embedding space. While
training the image encoder, an affine transformation in-
cluding random rotation ([−25◦, 25◦]), random translation
([0.15, 0.15]), and random scaling ([0.75, 1.25]) was ap-
plied to all the images for data augmentation.
Encoder Architecture: We used HRFormer [62] as a back-
bone network. The final layer of the backbone network was
set as an embedding layer instead of a classifier.
Training Options: We trained the encoders from scratch
and warmed them up with over 50k iterations. Our imple-
mentation was based on PyTorch [33]. We used the Adam
optimizer [16] with a learning rate of 1.0 × 10−4. We
used eight NVIDIA A100 40-GB PCIe GPU Accelerators
for three days for training. We empirically set the weights
(λself = 0.3, λcross = 0.2) regarding the loss functions
so that the values of each loss function would be approxi-
mately equal. We also set the temperature-scaling value that
was originally used in MOCO [31] (i.e., τ = 0.07).

4.1.3 Ranking-based Evaluation Metrics

We used three standard evaluation metrics in cross-modal
tasks for the comparison experiments: the mean recipro-

cal rank (MRR) [7], the recall@k (R@k), and the median
rank [45].

4.2. Conditions

To demonstrate the effectiveness of the proposed mecha-
nism, we compared it with the following baseline methods.

• Baseline: HRFormer [62] as a backbone network for
each encoder without any data augmentation or feature
memory mechanisms.

• Baseline w/ Data Augmentation: HRFormer as a
backbone network for each encoder with data augmen-
tation and no feature memory mechanisms.

• Baseline + w/ XBM: HRFormer as a backbone net-
work for each encoder with data augmentation and a
cross-batch memory (XBM) mechanism [51]. In this
study, XBM is the same as the proposed mechanism
when E = 1. This baseline is also comparable to the
cross-epoch learning [60], although their method uses
negative instances stored in the memory at one previ-
ous epoch.

• Baseline + w/ SCFEM (ours): HRFormer as a back-
bone network for each encoder with data augmentation
and our proposed SCFEM. We here set E = 2 and
w0 = w1 = 1.0.

In addition, we include the results of the following methods
here for reference.

• Random: We used random estimation.
• CBVMR: We tested CBVMR [13], but it differs from

our study in terms of the input representations because
it focuses on cross-modal retrieval for music and video
(not image). Instead of video-level features, we di-
rectly used frame-level features with a whitened prin-
cipal component analysis described in their paper.

4.3. Results

Table 1 lists the MRR, R@k, and median rank results in
the query-by-music and query-by-image settings. Our pro-
posed mechanism outperformed the baseline methods by
×2.70 ∼ 3.38 for the MRR, ×2.62 ∼ 3.56 for R@50,
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Query-by-music Query-by-image
MRR R@50 R@100 Median rank MRR R@50 R@100 Median rank

E = 1 (XBM [51]) 4.23× 10−3 2.78 5.86 1594 5.04× 10−3 3.22 6.09 1600

E = 2, w1 = 1.0 1.14× 10−2 7.45 12.3 1066 9.75× 10−3 7.06 11.8 1059

E = 3, w1 = w2 = 0.5 1.10× 10−2 8.00 12.9 1014 9.49× 10−3 6.92 12.2 1002
E = 3, w1 = 0.6, w2 = 0.4 1.13× 10−2 8.04 12.9 1034 1.05× 10−2 7.50 12.3 1010
E = 3, w1 = 0.7, w2 = 0.3 1.11× 10−2 7.53 12.7 1014 1.09× 10−2 7.49 12.0 982
E = 3, w1 = 0.8, w2 = 0.2 1.26× 10−2 7.78 13.0 1024 1.09× 10−2 7.34 12.5 1022
E = 3, w1 = 0.9, w2 = 0.1 1.10× 10−2 7.91 12.9 1009 1.07× 10−2 7.47 12.2 1010

Table 2: Comparison of memory sizes and weights.
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and 528 ∼ 891 ranks in the query-by-music setting; and
by ×1.93 ∼ 2.85 for the MRR, ×2.19 ∼ 3.39 for R@50,
and 541 ∼ 867 ranks in the query-by-image setting. Figure
5 shows empirical cumulative distribution functions (CDFs)
with respect to k in both settings. These CDFs illustrate the
advantage of our SCFEM mechanism for almost all R@k
levels. This result demonstrates that our mechanism, which
can mine more informative instances from the feature mem-
ories, was effective in the retrieval tasks of this study.

Moreover, the baseline method with data augmentation

was superior to that without data augmentation. This result
indicates that the data augmentation we used was effective
for training, whereas existing content-based cross-modal re-
trieval methods [13, 34, 45, 59] directly used music and im-
age features as training data without data augmentation.

4.4. Ablation and Comparative Study

We provide ablation and comparative study to verify the
effectiveness of each component in our SCFEM mechanism
and the necessity of warmed-up encoders.

4.4.1 Backbone Network

Selection of the backbone network has a large impact on
performance. To investigate the impact, we compared sev-
eral well-known neural network models as backbones, in-
cluding CNN-based models [12, 41, 46] and Transformer-
based models [25, 62]. We used τ = 1.0 in this comparison
experiment. Figure 6 shows the results, which confirm the
appropriateness of using HRFormer [62] as the backbone in
this paper.

4.4.2 Memory Size

Since our SCFEM mechanism can store music and image
embeddings of more previous iterations in memory and
leverage all of them to obtain more positive instances, we
compared the performance with different memory sizes and
weights (w0 = 1.0 is fixed for all conditions). Although
E = 2 and w0 = w1 = 1.0 was used in Table 1, the results
listed in Table 2 indicate that an increase in memory size
can further improve the performance. Note that it is neces-
sary to set appropriate weights when increasing the memory
size. We leave the investigation of their optimal setting for
future work.

4.4.3 Embedding Size

To investigate the effect of the number of dimensions of
the shared embedding space, we compared the R@50 per-
formances with Dz = 64, 128, 256, and 512. The results
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shown in Figure 7 confirm that Dz = 256, which was used
for Table 1, is the best choice.

4.4.4 Necessity of Warmed-Up Encoders

Since the parameters of encoders are largely updated at the
initial stage of training, their embeddings are changed too
much during iterations and are not expected to be informa-
tive instances in the memory. Our SCFEM mechanism is
therefore applied only after the encoders are warmed up as
described in Section 3.2. In Figure 8, we compared valida-
tion losses for the proposed mechanism without the warm-
up and the baseline method, which confirms that adverse ef-
fects of performance deterioration occur if our mechanism
is applied too early in the training (i.e., the warm-up is nec-
essary).

4.5. Qualitative Analysis

A qualitative analysis was also conducted to further in-
vestigate the nature of the obtained embeddings. We applied
principal component analysis (PCA) on the embeddings of
the music and images for 686 songs in total categorized as
Metal, Jazz, Classical, Electronic, and Punk in the test set
(note that metadata including these category tags are not
used at all in our training). Figure 9 shows that embeddings
for songs of the same category are relatively close to each
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Figure 9: Principal component analysis for both music and image
embeddings.

other in the shared embedding space. Interestingly, the em-
beddings of Metal and Punk songs are close to each other in
the shared embedding space because of their similarities in
pieces of music and images. This result supports the asso-
ciation between a piece of music and its cover art described
in Section 1.

5. Conclusion
In this study of content-based music-image retrieval, we

proposed a mechanism called self- and cross-modal feature
embedding memory (SCFEM), which can be seamlessly in-
tegrated into a pair-based DML framework. The contribu-
tions of this paper can be summarized as follows. First,
the proposed mechanism can store the embeddings of any
previous iterations in order to mine informative pairs from
the feature memories. This approach leverages the power
of the feature embedding memory mechanism for music-
image retrieval tasks. Second, our comparison experiments
using ranking-based evaluation metrics (i.e., the mean re-
ciprocal rank, recall@k, and median rank) demonstrated
that our mechanism outperformed the baseline methods. We
also demonstrated that an increase in memory size improved
the performance. Third, the qualitative analysis reveals that
music and images similar in style are close to each other in
the shared embedding space.

The proposed mechanism can also be applied to hard
mining problems in not only MIR tasks but also other com-
puter vision tasks. We believe that this proposed mecha-
nism opens up the possibilities of achieving a broad range
of cross-modal tasks.
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