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PAPER

A Method to Detect Chorus Sections in Lyrics Text∗

Kento WATANABE†a), Nonmember and Masataka GOTO†b), Fellow

SUMMARY This paper addresses the novel task of detecting chorus
sections in English and Japanese lyrics text. Although chorus-section de-
tection using audio signals has been studied, whether chorus sections can
be detected from text-only lyrics is an open issue. Another open issue is
whether patterns of repeating lyric lines such as those appearing in cho-
rus sections depend on language. To investigate these issues, we propose
a neural-network-based model for sequence labeling. It can learn phrase
repetition and linguistic features to detect chorus sections in lyrics text. It
is, however, difficult to train this model since there was no dataset of lyrics
with chorus-section annotations as there was no prior work on this task. We
therefore generate a large amount of training data with such annotations by
leveraging pairs of musical audio signals and their corresponding manually
time-aligned lyrics; we first automatically detect chorus sections from the
audio signals and then use their temporal positions to transfer them to the
line-level chorus-section annotations for the lyrics. Experimental results
show that the proposed model with the generated data contributes to de-
tecting the chorus sections, that the model trained on Japanese lyrics can
detect chorus sections surprisingly well in English lyrics, and that patterns
of repeating lyric lines are language-independent.
key words: lyrics information processing, music information retrieval, nat-
ural language processing, lyrics structure analysis

1. Introduction

The digitization of lyrics collections has opened vari-
ous areas of lyrics-based research, such as research on
lyrics browsing [2]–[4], lyrics genre classification [5]–[7]
and lyrics-to-audio synchronization [8]–[18]. Lyrics are
usually plain text without any annotations, and some re-
searchers have analyzed their structure, such as paragraph
structure and topic transitions between paragraphs [19]–
[23]. For example, Fell et al. [19] and Watanabe et al. [20]
estimated section boundaries in lyrics text without empty
lines but were not able to assign a section label such as verse
or chorus to each estimated section. Chorus sections were
not detected in lyrics text.

The goal of this paper is to achieve automatic chorus-
section detection for lyrics text. This task has not been stud-
ied, though chorus-section detection, as well as music struc-
ture analysis, for audio signals has been a popular topic of
research [24]–[42]. Since whether chorus sections can be
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detected from text-only lyrics is an open issue, it is worth
investigating this issue from an academic viewpoint. More-
over, a chorus-section detection method for lyrics text has
potential applications. For example, when listeners want to
find lyrics with a chorus section having a particular phrase
such as “I love you” for the purpose of singing that sec-
tion or reusing it in a short video clip, it is necessary for a
lyrics search system to automatically detect which lines of
the lyrics are included in chorus sections. The detected lyric
lines of chorus sections could be used in a lyrics viewing
function of music services displaying lyrics with those lines
highlighted by a different color or typeface. Automatic lyric
video generation technologies could give those lines more
vivid animations.

Chorus sections are the most repeated and memorable
portions of a song [40]. Since it is not easy to find such
sections by exploiting heuristic rules, most existing chorus-
section detection methods for audio signals have leveraged
repetitive patterns of those sections within a song. In this
paper, we propose a supervised model that can detect cho-
rus sections in English and Japanese lyrics. Our model
uses both structural features that represent patterns of re-
peating lyric lines, and linguistic features that are calcu-
lated either from word2vec [43] with context2vec [44] or
from BERT [45]. To detect chorus sections using only plain
text without any labels or even empty lines (i.e., section
boundaries), we investigate a model and features effective
for chorus-section detection. Experimental results show that
our proposed model outperforms alternative baseline mod-
els and that combining structural and linguistic features con-
tributes to better performance.

Although such a supervised model needs a large dataset
of lyrics with line-level chorus-section annotations for its
training, there was no such dataset as there was no prior
work on chorus sections in lyrics text. To address this is-
sue of lacking training data, we generated a dataset con-
sisting of 9,313 English and 91,459 Japanese lyrics with
chorus-section annotations by utilizing pairs of musical au-
dio signals and their corresponding manually time-aligned
lyrics. We first automatically detected chorus sections in
audio signals of a song [40]. Then, since each lyric line
had the corresponding start time within the song, we could
find lyric lines that temporally correspond to the duration
of each detected chorus section. We thus obtained the an-
notated dataset by assigning a chorus label to those lyric
lines and a not-chorus label to the other lines. Experimen-
tal results show that the model trained with this large auto-
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Fig. 1 Example of lyrics with chorus-section annotations and corresponding self-similarity matrix in
which each cell represents the similarity between two lyric lines. These lyrics are from “How Deep Is
Your Love?” (RWC-MDB-P-2001 No. 81 in the RWC Music Database [46]).

matically generated dataset performs better than the model
trained with a smaller manually annotated dataset and that
the model trained on Japanese lyrics can detect chorus sec-
tions surprisingly well in English lyrics.

2. Lyrics Chorus-Section Detection Task

The left side of Fig. 1 shows an example of lyrics with
chorus-section annotations (labels). The lyrics of a song
are a sequence of lyric lines, each line having a sentence
or phrase. In this example there are three highlighted cho-
rus sections that have exactly the same four lines, though in
other songs, lyrics of chorus sections are repeated with some
modifications. To maximize the applicability, as shown in
this example, we assume that the input text of lyrics does not
have any section boundaries. Even though some lyrics con-
tain empty lines at those boundaries, those lines are deleted
in advance. We also assume that the input text does not have
explicit chorus labels such as “(chorus)” at the beginnings
of chorus sections. Even though some lyrics contain those
labels, they are deleted as well. When lyrics contain a repe-
tition label such as “(* repeat)”, it is manually replaced with
the corresponding lyric lines.

We formulate this chorus-section detection task as
a sequence labeling problem: predicting the chorus or
not-chorus status for each lyric line. Let Xs be the
lyrics of a song s composed of T lines of text: Xs =

{x1, . . . , xt, . . . , xT }. Each lyric line xt has a binary label yt.
If yt = 1, xt is in a chorus section. If yt = 0, xt is not in a
chorus section. Ys denotes a sequence of labels correspond-

ing to Xs: Ys = {y1, . . . , yt, . . . , yT }. In the training step,
the model learns the conditional probability P(Ys|Xs). In the
validation/testing step, the trained model has to predict la-
bels Ys for given lyric lines Xs.

Chorus sections cannot be detected by simply extract-
ing repeated lines since those lines often correspond to non-
chorus sections. For example, lyric lines 9–12 and 21–24
in Fig. 1 are exactly repeated, but those lines are not in cho-
rus sections. It is also difficult to manually define a set of
rules to find various chorus sections. We therefore prepare
various features that could be useful for machine learning to
deal with various types of chorus sections.

3. Computational Modeling of Chorus Sections in
Lyrics

We propose a neural-network-based model for sequence la-
beling by using structural features that are self-similarity
matrix (SSM) representations. SSM representations are
widely used in computational music structure analysis, but
we use different representations for lyrics. In addition to
structural features, our model utilizes two kinds of lin-
guistic features widely used in natural language process-
ing (NLP): (1) word vectors and sentence vectors calculated
from word2vec [43] and context2vec [44], and (2) sentence
vectors calculated from BERT [45].

In the following sections, we first describe nine SSMs
for capturing patterns of repeating lyric lines and explain
how to encode the SSMs for neural networks (Sect. 3.1). We
then describe the linguistic features obtained by vectorizing
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the semantic/syntactic information of lines using word2vec,
context2vec, and BERT (Sect. 3.2). Finally, we describe a
neural-network-based sequence labeling model with these
structural and linguistic features (Sect. 3.3).

3.1 Structural Features

Most previous work on music structure analysis for audio
signals [24]–[42] identifies repeated musical sections by us-
ing a SSM like that shown in Fig. 1. Repeated sections lead
to high values in diagonals of the matrix, and those patterns
are used to identify the structure. To capture repeated lyric
lines that often appear in chorus sections, we also compute
the SSM from lyrics text, but the design of the similarity
measure to compute each cell of the SSM is important. We
propose to use the following nine variations of similarity
measures simm, where m denotes the variation. Some of the
similarities are based on previous studies [19], [20].

1. String similarity (simstr): a normalized Levenshtein
edit distance [47] between the characters of two lyric
lines.

2. Head similarity (simhead): a normalized Levenshtein
edit distance between the characters of the first two
words of two lyric lines.

3. Tail similarity (simtail): a normalized Levenshtein edit
distance between the characters of the last two words
of two lyric lines.

4. Phonetic similarity (simphone): To capture rhymes in
the lyrics, we calculate a normalized Levenshtein edit
distance between the phonetic transcriptions of two
lyric lines. We use the CMU pronunciation dictionary†
to extract the phonetic transcription. For example, the
phonetic transcription of “I love you” is [AY1, L, AH1,
V, Y, UW1].

5. Part-of-speech similarity (simpos): To capture simi-
larities in grammatical structure, we calculate a nor-
malized Levenshtein edit distance between the part-of-
speech (POS) sequences of two lines. We use the de-
fault POS tagger in the NLTK package [48].

6. Word vector similarity (simw2v): To capture the se-
mantic similarity between two lyric lines, we simply
average vectors of the words of each lyric line by us-
ing pre-trained word2vec [43] and compute their cosine
similarity. This “bag of words” representation does
not differentiate “dog bites person” from “person bites
dog”.

7. Context vector similarity (simc2v): To consider the
word order, we vectorize the lyric lines using pre-
trained context2vec [44], an extension of word2vec,
which encodes a sequence of words by using Long
Short-Term Memory (LSTM) networks [49]. We then
compute their cosine similarity to obtain simc2v.

8. Word syllable count similarity (simsyW ): Since re-
peated phrases sometimes have the same number of
syllables even if their words are different, we use a
†http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Fig. 2 Convolutional neural network for SSMs.

sequence of word syllable counts on each lyric line.
For example, the word syllable counts of the two lyric
lines “Sometimes you lost yourself away” and “Every-
time you just close your eyes”†† are {2, 1, 1, 2, 1} and
{2, 1, 1, 1, 1, 1}, respectively. When successive lyric
lines have similar syllable count sequences, they are
likely to correspond to the repetition of sections. We
use dynamic time warping (DTW) [50] to calculate the
similarity between syllable count sequences.

9. Lyric Line syllable count similarity (simsyL): We
can also use the total syllable count of all words in
each lyric line. For example, in all the chorus sec-
tions shown in Fig. 1, the total syllable count of the
first lyric line is 6 and that of the second line is 8.
We calculate the similarity of such total syllable counts
of each pair of lyric lines by using the following pro-
cedure. (1) We extract a window of four lyric lines
Lt = {xt, xt+1, xt+2, xt+3} and shift it over the entire
lyrics of a song. (2) The similarity between the lyric
lines xt and xt′ is calculated by DTW of Lt and Lt′ .

We thus calculated nine SSMs Am ∈ RT×T , where each
cell is a simm explained above. Then, to calculate feature
vectors from the above nine SSMs, we exploit a convolu-
tional neural network (CNN) architecture to detect textual
macro structures from various patterns in SSMs regardless
of their locations and relative sizes in SSMs. Except for net-
work parameters, this CNN architecture is the same as that
of Fell et al. [19], as we share the same motivation: to ex-
tract translation, scaling and rotation invariant features from
the input image (in our case, nine SSMs).

Figure 2 illustrates the CNN structure. After calculat-
ing the nine SSMs, we extract fixed-size elongated-rectangle
††These lyrics are taken from the RWC Music Database (RWC-

MDB-P-2001 No. 92) [46].



WATANABE and GOTO: A METHOD TO DETECT CHORUS SECTIONS IN LYRICS TEXT
1603

sub-matrices centered on the target lyric line xt: at
m =

Am[t−w+1, . . . , t+w; 1, . . . ,T ] ∈ R2w×T , where w is a fixed
window size. The input of the CNN is nine sub-matrices
{at

str, . . . , a
t
syL} ∈ R2w×T×9, where the number of channels

corresponds to the number of SSMs (i.e., 9). The kernel
size of the first 2D-convolutional layer is (w + 1) × (w + 1)
so that each feature can capture a prospective chorus sec-
tion. This first 2D-convolutional layer has 200 kernels, so
this convolution produces 200 matrices from the nine sub-
matrices (bottom left of Fig. 2). Each of the resulting 200
matrices is downsampled to a vector by max-pooling with
w×w kernel size, so this produces 200 vectors (bottom cen-
ter of Fig. 2). We then apply the 1D-convolutional layer with
a kernel size of w to the 200 vectors (200 channels). This
1D-convolutional layer has 400 kernels, so the convolution
produces 400 vectors from the 200 vectors (bottom right of
Fig. 2). The final max-pooling layer reduces the dimension
of each of the resulting 400 vectors to one dimension, re-
sulting in the final 400-dimensional vector ut.

In this network, all convolutional layers employ the
ReLU function. We perform the above procedure indepen-
dently for each lyric line xt and obtain the CNN-based fea-
ture vector ut. We call this vector ut the structural feature
simall.

3.2 Linguistic Features

Some expressions tend to appear in chorus sections. To
quantify this tendency, we calculate the difference between
word tri-gram probabilities in the chorus and non-chorus
sections. Table 1 shows the word tri-grams that frequently
appear in both of the sections. Here, Pc and Pn denote word
tri-gram probabilities in the chorus and non-chorus sections,
respectively. As shown in this table, we found that phrases
about the future (e.g., “I’ll” and “Let’s”) tend to appear in
chorus sections more often than do phrases about the past
(e.g., “have been” and “didn’t”). To exploit such tenden-
cies, we compute two kinds of linguistic features:

1. word2vec/context2vec-based linguistic feature
(lingave+seq): For each lyric line xt, we first cal-
culate the average of word vectors obtained using
pre-trained word2vec [43], skipping out-of-vocabulary

Table 1 Frequent word tri-grams in chorus and non-chorus sections. An
apostrophe is regarded as a word.

Tri-gram Pc − Pn Tri-gram Pn − Pc

I’m 0.12% there’s 0.04%
don’t 0.11% I’ve 0.03%

oh oh oh 0.05% ’s a 0.03%
I’ll 0.05% I’d 0.02%

we’re 0.04% but I’ 0.02%
you’re 0.04% ’s not 0.01%
’ll be 0.04% what’s 0.01%
I don’ 0.04% na na na 0.01%
Let’s 0.03% yeah yeah yeah 0.01%

you got ta 0.03% ’ve been 0.01%
I can’ 0.03% ’t take 0.01%
can’t 0.03% didn’t 0.01%

words. Since the word order cannot be modeled by
word2vec, we then use pre-trained context2vec [44]
that puts a sequence of the word vectors based on
word2vec into the LSTM to obtain a sentence vector.
We finally concatenate the averaged word2vec-based
word vector with the context2vec-based sentence vec-
tor to obtain the concatenated vector uave+seq

t . We call
this vector uave+seq

t the linguistic feature lingave+seq.
2. BERT-based linguistic feature (lingBERT ): Since

BERT has been reported to improve performance in
various NLP tasks [45], we calculate the BERT-based
feature vector uBERT

t in addition to uave+seq
t so that we

can compare them. We first feed each lyric line xt to the
pre-trained BERT model. Among the output vectors
of BERT, we then obtain the vector resulting from the
position of the [CLS] token and use it as the sentence
embedding vector uBERT

t . We call this vector uBERT
t the

linguistic feature lingBERT .

As lingBERT is expected to be better than lingave+seq, we com-
pared their performances in our experiments.

3.3 Neural-Network-based Sequence Labeling Model

To solve the sequence labeling problem, we use the standard
Bidirectional Long Short-Term Memory (Bi-LSTM) net-
works [51] to compute the conditional probability P(Ys|Xs).
The neural network structure is illustrated in Fig. 3.

The input to the Bi-LSTM layer at each time step t
(lyric line xt) is a concatenation of two different types of
feature vectors: (1) the structural feature vector ut encoded
from the nine variations of SSMs in Sect. 3.1 and (2) the lin-
guistic feature vector uave+seq

t or uBERT
t encoded in Sect. 3.2.

Formally, the conditional probability P(Ys|Xs) is calculated
by using a softmax function:

Fig. 3 Neural-network-based sequence labeling model for chorus-
section detection. The BERT-based feature vector uBERT

t is used as the
linguistic feature in this figure.
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P(Ys|Xs) =
exp(Score(Xs,Ys))∑
Y ′s exp(Score(Xs,Y ′s))

. (1)

The Score() is defined as

Score(Xs,Ys) =
∑

t

BN(ht[yt]), (2)

where ht[yt] is the output of the Bi-LSTM for each time step
t and BN() denotes batch normalization [52]. In the model
training step, we use a binary cross-entropy loss.

4. Experiment

Inspired by audio-based chorus-section detection [40], we
evaluated the proposed method by using the F-measure (F)
that is a harmonic mean of precision (P) and recall (R), F =
(2 · R · P)/(R + P), where

P = # of lyric lines in correctly detected chorus sections
# of lyric lines in detected chorus sections .

R = # of lyric lines in correctly detected chorus sections
# of lyric lines in correct (annotated) chorus sections .

We also used the pair-wise F-measure (p-F), normalized
conditional entropy F-measure (n-F) and V-measure (V)
that are provided by the Python module mir eval and com-
monly used to evaluate computational music structure anal-
ysis [53].

4.1 Methods Compared

To confirm the effectiveness of our Bi-LSTM method based
on the Bi-LSTM model that can learn dependencies between
adjacent lyric lines, we compared its performance with those
of two baseline methods:

1. Heuristic: We implemented the heuristic that “if lines
at the end of the lyrics are repeated with small modi-
fications, all those repeated lines are chorus sections”
by the following procedure: (i) From the SSM that
is the average of the nine SSMs, we extracted diago-
nals whose cells had values higher than a threshold λ,
which was tuned on a development set to be 0.62. (ii)
From the extracted diagonals, we selected the shortest
diagonal among diagonals placed at the bottom of the
SSM (e.g., the diagonal starting at the cell SSM[29; 1]
in Fig. 1). (iii) Successive lines corresponding to the
rows where the selected diagonal was located (e.g.,
lyric lines 29–32 in Fig. 1) were assigned the label
chorus. (iv) Other successive lines that were similar
to the chorus lines (e.g., lyric lines 1–4 and 13–16 in
Fig. 1) were also assigned chorus labels.

2. Multi-Layer Perceptron (MLP): Similar to the Bi-
LSTM method, but with the Bi-LSTM model replaced
by a standard MLP model. This method ignores transi-
tions between adjacent lyric lines and predicts yt from
xt only.

We chose the number of kernels for the first and sec-
ond CNNs to be 200 and 400, respectively. We used w = 3

for the window size. In the MLP and Bi-LSTM methods,
we chose the dimension of the hidden state to be 600.
The word2vec [43] and context2vec [44] were pre-trained
on lyrics and were not updated in the model training step
of our method. The dimension of their output vectors was
300. We used pre-trained BERT models [45] that are pub-
licly available†. The dimension of the BERT-based feature
vector is 768. We used AdamW for parameter optimiza-
tion [54]. The initial learning rate was 0.001 with an expo-
nential decay. We used a mini-batch size of 64. Training
was run for 100 epochs, and the model used for testing was
the one that achieved the best F-measure on the development
set.

4.2 Dataset

To train our computational model that predicts whether the
label of each lyric line is chorus or not-chorus, we
needed a large amount of lyrics data with line-level chorus-
section annotations like those illustrated in Fig. 1. Since
there was no dataset for this, we generated a large amount
of such lyrics data by the following procedure:

1. We prepared 100,772 pairs of musical audio signals
and their corresponding manually time-aligned (tem-
porally synchronized) lyrics††. To avoid unreliable
lyrics, we made sure that all lyrics had more than eight
lines and less than 120 lines.

2. We detected chorus sections of every song automati-
cally by using its audio signals. In our experiments, we
used the RefraiD method [40] to obtain the start and
end times of each chorus section, but other methods
could also be used.

3. If the start time of a lyric line was within any chorus
section detected in audio signals, that line was labeled
chorus; otherwise, it was labeled not-chorus.

Of course, not all generated annotations were correct, but
by using over 100,000 training data, the model could be ro-
bustly trained without being influenced by errors or outliers.
The generated training data consisted of 9,313 English and
91,459 Japanese songs, and we called them EN auto and
JA auto, respectively.†††

Furthermore, we manually annotated three sets of
lyrics data with more reliable line-level chorus-section an-
notations for three different purposes:

(a) For training comparison: We annotated 1,103

†We used https://huggingface.co/bert-base-uncased for En-
glish and https://huggingface.co/cl-tohoku/bert-base-japanese-v2
for Japanese.
††In our experiments, English and Japanese lyrics text as well as

the start time of every lyric line were provided by a lyrics distribu-
tion company. Automatic lyrics-to-audio synchronization [8]–[18]
could also be used to estimate such start times.
†††The main genres are Rock (33%), Pop (25%), and Alternative

(12%) for EN auto and are J-Pop (53%), Rock (20%), and Anime
(9%) for JA auto.
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Table 3 Experimental result: Importance of using both structural and linguistic features.

Training data / Testing data
EN auto / EN test JA auto / JA test

Feature F p-F n-F V F p-F n-F V
simall 77.9 76.1 48.6 45.5 81.2 82.7 63.6 59.6

lingave+seq 57.4 59.9 16.5 6.9 55.2 61.8 22.1 16.7
lingBERT 61.7 61.1 19.9 12.7 58.3 66.6 29.3 23.3

simall + lingave+seq 78.1 77.7 50.8 47.3 83.4 83.5 64.9 61.4
simall + lingBERT 79.7 78.2 51.7 47.8 85.4 83.3 65.3 62.7

Table 2 Experimental result: Comparison of different methods (the unit
is %).

Training data / Testing data
EN auto / EN test JA auto / JA test

Method F p-F n-F V F p-F n-F V
Heuristic 57.8 73.8 43.0 35.8 57.1 73.2 43.6 36.3

MLP 76.4 72.7 43.6 39.4 79.8 83.0 62.3 58.9
Bi-LSTM 79.7 78.2 51.7 47.8 85.4 83.3 65.3 62.7

Japanese lyrics and called them JA man†. By compar-
ing the performance of the model trained on JA auto
with that of the model trained on JA man, we could
confirm that our generated data is reliable enough for
training purposes.

(b) For tuning model parameters: We annotated the
lyrics of 21 English and 79 Japanese songs from RWC-
MDB-P-2001 and called them EN RWC and JA RWC,
respectively. These were used to tune model parame-
ters.

(c) For testing: We annotated the lyrics of 118 other En-
glish songs and 128 other Japanese songs and called
them EN test and JA test, respectively††. These were
used to test the chorus-section detection methods.

4.3 Comparison of Different Methods

Table 2 summarizes the evaluated performances of Heuris-
tic, MLP, and the proposed Bi-LSTM. Note that in this sec-
tion, MLP and Bi-LSTM are trained using the structural fea-
ture simall and the linguistic feature lingBERT . We found that
MLP and Bi-LSTM performed better than Heuristic. This
indicates that methods based on supervised learning are bet-
ter than a rule-based method. We also found that Bi-LSTM
was better than MLP and thus confirmed the importance of
learning dependencies between adjacent lines.

Since we concluded from these results that the pro-
posed Bi-LSTM is the best for the chorus-section detection
task, in the subsequent experiments reported here we used
only Bi-LSTM.

†To investigate the accuracy of the automatic annotation
method we used for generating EN auto and JA auto, we applied
the same method to the songs (audio signals and corresponding
manually time-aligned lyrics) in JA man. The accuracy of the gen-
erated annotations was F = 68.0%, so the automatic annotation
method seems to work fairly well.
††The chorus and not-chorus labels were annotated only on

the lyrics. No audio signal is available for these test data.

4.4 Importance of Using Both Structural and Linguistic
Features

To investigate the effectiveness of structural and linguistic
features, we compared their use individually and in combi-
nation. Table 3 summarizes the results.

The top three entries in Table 3 show that the mod-
els trained solely on the structural feature simall greatly out-
performed the models trained solely on the linguistic fea-
ture lingave+seq or lingBERT . This result confirms that cap-
turing the repetitive structure is effective in detecting cho-
rus sections not only in audio signals but also in lyrics
text. We also confirmed that the use of the BERT-based
linguistic feature lingBERT outperformed the use of the
word2vec/context2vec-based linguistic feature lingave+seq,
as expected.

The bottom two entries in Table 3 show that combin-
ing the structural feature simall with the linguistic feature
lingave+seq or lingBERT improved performance. This not only
confirms the importance of using SSMs, as had been shown
for the audio-based detection of chorus sections, but also
confirms that the additional use of linguistic features is help-
ful for detecting chorus sections, which has not been shown
before.

Table 3 also shows that the combination of simall +

lingBERT outperformed the combination of simall +

lingave+seq, as expected. However, the performance differ-
ence between those combinations (the bottom two entries)
was much smaller than the performance difference between
lingBERT and lingave+seq (the second and third entries from
the top). This confirms that although BERT is superior to
word2vec/doc2vec as a linguistic feature, the combination
of structural and linguistic features reduces its superiority
since the structural feature is much more effective for the
lyric chorus-section detection task.

Since we concluded from these results that lingBERT is
superior to lingave+seq whether it is used alone or in combi-
nation, in the subsequent experiments reported here we used
only lingBERT .

4.5 Reliability of Generated Annotations

To investigate whether JA auto containing some annotation
errors is reliable enough for training purposes, we compared
the model trained using JA auto with the model trained us-
ing JA man that does not contain annotation errors. Table 4
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Table 4 Experimental result: Reliability of automatically generated an-
notations.

Training data F p-F n-F V
JA auto (91,459 songs) 85.4 83.3 65.3 62.7
JA man (1,103 songs) 81.1 77.8 54.7 52.0

Table 5 Experimental result: Can the Japanese model detect English
chorus sections?

Training data Testing data F p-F n-F V
EN auto (9,313 songs) EN test 77.9 76.1 48.6 45.5
JA auto (91,459 songs) EN test 80.3 80.6 58.1 54.4

EJ auto (100,772 songs) EN test 81.0 82.3 60.7 57.4

clearly shows that the model trained using JA auto, auto-
matically generated data the amount of which can be large,
outperformed the model trained using JA man, manually an-
notated data, the amount of which is usually very limited
because of the laborious manual effort its creation requires.
The result also confirms that even if annotations generated
automatically are not perfect, they are reliable enough for
training the model.

4.6 Training Data Size and Language Dependency

Tables 2 and 3 also show that the performances for English
lyrics were worse than those for Japanese lyrics. Since the
amount of Japanese training data was about 10 times that of
English training data, we think that the amount of training
data greatly affects the performance of the proposed model.
We are thus interested in answering the question “Can a
model trained on a large amount of Japanese data detect
English chorus sections?” In fact, although linguistic fea-
tures are language dependent and the process of computing
SSMs is also language dependent, structural features based
on the resulting SSMs can be language independent because
our SSMs simply represent patterns of repeating lyric lines,
which could be universal in music. Therefore, in this sec-
tion, we compare models solely trained on the structural fea-
tures, without using the linguistic features.

As shown in the upper half of Table 5, which shows
results obtained without using linguistic features, we found
that the structural-feature-based model trained on Japanese
data JA auto succeeded in detecting English chorus sections
in EN test and its performance was better than that of the
model trained on the smaller dataset EN auto. This result in-
dicates that the SSM-based model trained on a large amount
of data can detect chorus sections regardless of the language
of the test set. Moreover, this result is further evidence that
Japanese and English SSMs (i.e., patterns of repeating lyric
lines) have similar structures.

Obviously, the above result raises another question:
“Can a model trained on both EN auto and JA auto per-
form better than one trained on only EN auto or JA auto?”
To answer this question, we created training data EJ auto
by including both EN auto and JA auto and constructed yet
another structural-feature-based model with EJ auto. As
shown in the lower half of Table 5, we found that the model

trained on both languages performed better than the model
trained on only one.

These results confirm that chorus sections can be de-
tected by a model trained on data in another language, that
patterns of repeating lyric lines are language-independent
and that mixing different language data allows the model to
learn the general structure of chorus sections and thereby
perform better. This could have an impact on low-resource
languages because large-scale training data can be created
by mixing other available language resources.

5. Related Work

Previous work in the community of music information re-
trieval has addressed musical structure analysis and chorus-
section detection based on repeated patterns in musical au-
dio signals [24]–[42]. Studies in the chorus-section detec-
tion for audio signals typically used SSMs to capture re-
peated structures, and we share this motivation. Our ap-
proach differs from those audio-based approaches in that it
exploits multiple lyrics-based SSMs and linguistic features
within chorus sections.

On the other hand, recent work in the community of
natural language processing has tackled lyrics segmentation
and summarization tasks by exploiting SSMs. Fell et al. [19]
and Watanabe et al. [20] proposed a neural network model
and logistic regression model for segmenting paragraphs
(sections) without labeling them by using SSMs as features.
Those tasks, however, are essentially different from detect-
ing all chorus sections that are the most representative sec-
tions in lyrics text. Addressing a task similar to chorus-
section detection, Fell et al. [55] proposed a method of sum-
marizing lyrics by combining general document summariza-
tion methods with audio thumbnailing methods. They fo-
cus on extracting individual informative lines as a summary
from lyrics text, not redundant repeated lines. On the other
hand, the focus of our paper is to detect chorus sections
whose successive lines are often repeated in lyrics text.

6. Conclusion

This paper has addressed the novel task of detecting cho-
rus sections in English and Japanese lyrics. We proposed
a neural-network-based sequence labeling model that learns
structural (i.e., phrase-repetition) and linguistic features to
detect lyric lines of chorus sections. We also generated over
100,000 training data with chorus-section annotations. No
previous work has ever conducted chorus-section detection
for text-only lyrics with this much data.

The contributions of this study are summarized as fol-
lows: (1) We designed a variety of features to capture struc-
tural and linguistic properties of chorus sections. (2) We
proposed a sequence labeling model that can detect chorus
sections in lyrics. (3) We showed how to generate a large
training dataset of lyrics with chorus-section annotations.
(4) We demonstrated that our Bi-LSTM-based method out-
performs alternative baseline methods. (5) We thoroughly
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investigated this detection task and the nature of chorus sec-
tions of lyrics from different perspectives such as the impor-
tance of features, the amount of training data, and language
dependency.

We plan to extend our method to detect other sections,
such as verse and bridge sections. Future work will also
develop music applications using our method, such as those
discussed in Sect. 1.
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