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ABSTRACT
In this paper, we present a new method that represents an
overall musical time-varying impression of a song by a pair
of mood trajectories estimated from lyrics and audio signals.
The mood trajectory of the lyrics is obtained by using the
probabilistic latent semantic analysis (PLSA) to estimate
topics (representing impressions) from words in the lyrics.
The mood trajectory of the audio signals is estimated from
acoustic features by using the multiple linear regression anal-
ysis. In our experiments, the mood trajectories of 100 songs
in Last.fm’s Best of 2010 were estimated. The detailed anal-
ysis of the 100 songs confirms that acoustic features provide
more accurate mood trajectory and the 21% resulting mood
trajectories are matched to realistic musical mood available
at Last.fm.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Modeling

General Terms
Algorithm, Design

Keywords
musical mood representation, musical mood estimation, time-
varying impression, mood trajectory, lyrics and audio signals
music information retrieval

1. INTRODUCTION
Musical mood estimation is gaining increasing attention

in recent years in musical information retrieval (MIR) re-
search [3]. Human listeners recognize music not only from
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the acoustic features but also from the expression of the
emotions. MIR systems based on the similarity of musi-
cal moods are expected to provide more intuitive retrieval
results with human sensibility than systems based on only
acoustic features [1, 2]. Various methods for musical mood
estimation [4–12] have been reported, and these methods
are still being developed. This is because musical moods are
highly subjective and difficult to quantify [3].

We believe that the following two aspects are important
for musical mood representation:

1. musical moods depend on both lyrics and audio signals

2. musical moods have time-varying characteristics.

Regarding the former, lyrics have a large influence on mu-
sical moods because lyrics represent these moods linguisti-
cally. Some musical pieces have contradicting moods in their
lyrics and audio signals, e.g., a happy melody with melan-
cholic lyrics. To represent these musical moods, we need
both lyrics and audio signals. In fact, the accuracy of mu-
sical mood detection is improved by using both lyrics and
audio signals [8–10]. Regarding the latter, humans receive
time-varying impressions from music [11,12]. Some pieces of
music have highly different moods between sections such as
the verses and choruses. To represent these musical moods,
we need to model their time-varying aspect.

In previous MIR research [4–12], there was no research
dealing with these two points to the authors’ knowledge.
Research using only lyrics or audio signals [4–7] cannot re-
flect musical moods depend on both lyrics and audio signals.
Research using both lyrics and audio signals [8–10] focused
on static musical moods. Research focusing on time-varying
musical moods [11,12] used only audio signals.

In this paper, a time-varying musical mood (a mood tra-
jectory) estimation method using both lyrics and acoustic
features is proposed. We estimate the mood trajectories of
lyrics and audio signals separately. In other words, we rep-
resent time-varying musical moods not as a mixture of lyrics
and audio trajectories but as a pair of these two trajectories.
This multilateral musical mood representation can describe
conflicts between the complex time-varying musical moods
of the lyrics and audio signals. We assume that humans
feel a constant mood in a certain musical section defined
as a phrase. Under this assumption, the mood trajectories
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lyrics audio signals

PLSA
MLR

Can’ t buy me love...
All you need is love...

Hold me tight... I love you...

PLSA

MLR

Training

Estimation

Figure 1: Overview of mood trajectory estimation
method

are estimated as sequences of coordinates on V-A space [13]
from lyrics and audio signals divided into phrases. The V-
A space has two axes: valence (positive-to-negative) and
arousal (high-to-low energy).
A mood trajectory of lyrics is estimated by the proba-

bilistic latent semantic analysis (PLSA) [14]. As the normal
PLSA focuses on the co-occurrence data of documents and
words, estimated latent topics are not certain to represent
moods. To obtain emotional representation from a PLSA,
topics are mapped to V-A space by using prior knowledge. A
mood trajectory of an audio signal is estimated by multiple
linear regression (MLR) [11,12]. Multi-dimensional acoustic
features for each musical phrase are mapped to V-A space.
The rest of this paper is organized as follows. In Sec-

tion 2, we take a general view of our method. Section 3 and
Section 4 explain a mood trajectory estimation method for
lyrics and audio signals. In Section 5, we analyze results
of an experimental evaluation and confirm effectiveness of
our method. Finally, Section 6 conclude and summarize the
main findings.

2. OVERVIEW OF A MOOD TRAJECTORY
ESTIMATION

The goal of this paper is to estimate a musical mood tra-
jectory, i.e. the time-varying musical moods of lyrics and
audio. The input are lyrics and an audio signal of a song,
and the output are the mood trajectories of lyrics and an
audio signal. Though our method can be applied to songs
from arbitrary musical genres with lyrics, we used popular
songs for our experimental evaluation. Figure 1 shows an
overview of our method.
We define “a phrase” as a certain section in which humans

feel a constant mood. Note that boundaries between phrases
and those between structural sections (e.g., verses, choruses)
are not always the same though they tend to be similar to
each other. In addition, the numbers of phrases in audio
signals do not necessarily coincide with those in lyrics. In
this paper, we assume that the input lyrics and audio signals
were manually divided into phrases in advance.
The musical mood of each phrase is defined as the co-

ordinates on V-A space [13]. V-A space is a psychological
model that represents an emotional state as coordinates on
two-dimensional space (see Figure 2). The horizontal axis
(valence) ranges from positive to negative, and the vertical
axis (arousal) ranges from high to low energy. Therefore,

Figure 2: Russell’s circumplex model

the mood trajectories of lyrics and an audio signal are esti-
mated as sequences of coordinates on V-A space from lyrics
and an audio signal divided into phrases. The musical mood
of an input song is represented by combining the mood tra-
jectories of lyrics and an audio signal.

The mood trajectory of lyrics is estimated by using a
PLSA [14] constrained by affective words as prior knowl-
edge. The PLSA is a probabilistic generative model based
on the co-occurrence data of documents (lyrics) and words.
This model is used to estimate semantic relations between
words and semantic topics of documents. As the PLSA is
based only on the co-occurrence data of documents (lyrics)
and words, a lot of training data can be used without la-
beling. Because of this, the PLSA is widely used in natural
language processing [15,16].

As the normal PLSA focuses on the co-occurrence data of
documents and words, the estimated semantic relations and
latent topics are not certain to represent moods. By using
affective words as prior knowledge and estimating parame-
ters of the PLSA by maximum a posterior (MAP) estima-
tion, the estimated semantic relations and latent topics are
mapped on V-A space.

The mood trajectory of an audio signal is estimated by us-
ing a multiple linear regression (MLR). The input variables
are the phrases’ acoustic features, and the output variables
are the phrases’ V-A coordinates. By using a MLR, acoustic
features can be mapped on V-A space. In a training phase,
combination of phrases and V-A coordinates of phrases are
made manually as training data, and the MLR regressor is
trained to relations between acoustic features and V-A co-
ordinates of phrases. In an estimating phase, the V-A coor-
dinates of phrases are calculated from the acoustic features
of phrases by a trained MLR regressor, and the estimated
V-A coordinates construct a mood trajectory.

3. MOOD TRAJECTORY ESTIMATION FOR
LYRICS

We estimate a mood trajectory of lyrics by estimating the
V-A coordinates of each word in the lyrics, calculating the
V-A coordinates of phrases, and plotting the V-A coordi-
nates of phrases. We estimate the V-A coordinates of each
word in the lyrics by using a PLSA [14] based on a MAP es-
timation using prior knowledge. Our method assumes that
the lyrics were manually segmented to phrases before using
a PLSA since it requires certain amount of lyrics to esti-
mate an appropriate mood stably. It is one of our future
works to preclude this presumption. PLSA estimates mood
of each word of lyrics and moods of phrases are calculated
by summing up moods of words of segmented phrases.
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Figure 3: Graphical model of a probabilistic latent
semantic analysis (PLSA)

3.1 Probabilistic Latent Semantic Analysis
We estimate a mood trajectory of lyrics by using a PLSA.

The PLSA is a probabilistic generative model used to es-
timate the semantic relations between words and semantic
topics of documents. The co-occurrent probabilities of doc-
uments and words are associated with latent variables (Fig-
ure 3). A latent variable z is assumed to be observed from
a document d, and a word w is assumed to be generated
from z. A latent variable z can be understood as a topic of
documents. Using d, w, and z, a co-occurrence probability
P (d,w) is defined as:

P (d,w) = P (d)
∑
z

P (z|d)P (w|z)

=
∑
z

P (z)P (d|z)P (w|z).

P (w|z) is the observed probability of words from topics, and
words having a high P (w|z) represent topics of z.

3.2 MAP Estimation of Parameters of PLSA
For a mood trajectory estimation for lyrics, it is necessary

for z to represent the moods of the lyrics. However, z does
not always represent a mood because normal PLSA focuses
on the co-occurrent data of documents and words, and es-
timates the semantic relations between words and semantic
topics of documents. We condition on z representations by
maximum a posterior (MAP) estimation of PLSA parame-
ters by using affective words such as happy and sad of which
the V-A coordinates are already known.
Here, z is defined as:

z ∈ {V+A+,V+A−,V−A+,V−A−}.

Each z represents a distinct quadrant of V-A space. Prior
distribution of P (w|z) is defined as:

P (w, z|αw,z) ∝
∏
w

∏
z

P (w|z)αw,z−1.

By setting αw,z for affective words and increasing P (w|z) for
affective words, each z can represent each quadrant of V-A
space. For example, if z1 = V+A+, we set αw,z of words on
the V+A+ quadrant such as happy and glad.
As prior knowledge, ANEW [17] and WordNet [18] are

used. ANEW is constructed during psycholinguistic exper-
iments and contains 1,034 words that have coordinates on
V-A space. WordNet is a lexical database for English. This
links English words to sets of synonyms called synsets, and
synsets are linked to each other through semantic relations.
By using ANEW and WordNet, αw,z is set according to the
following procedure:

1. By searching the synsets of each word of ANEW and
extending ANEW with synonyms, ANEW is extended
from 1034 to 9757 words.

2. αw,z of words of ANEW on any quadrant of V-A space
is set. If a word of ANEW is on the origin of V-A space,
αw,z is set to 1. According to the distance between
each word of ANEW and origin of V-A space, αw,z is
set ranging from 1 to 1.01. We compare the estimated
V-A coordinates of words of ANEW in the training
data and original coordinates of ANEW, and decide
the max of αw,z for accurate estimation.

Each musical phrase’s coordinates on V-A space are calcu-
lated by:

V =
1

K

K∑
k=1

((P (V+A+|wk) + P (V+A−|wk))

−(P (V−A+|wk) + P (V−A−|wk)))

A =
1

K

K∑
k=1

((P (V+A+|wk) + P (V−A+|wk))

−(P (V+A−|wk) + P (V−A−|wk))).

Here, K is the number of words of musical phrases, and
P (z|w) can be calculated from P (w|z), P (z), and P (w).
Calculated V-A coordinates are plotted on V-A space, and
a mood trajectory of lyrics are described.

4. MOOD TRAJECTORY ESTIMATION FOR
AUDIO SIGNALS

We estimate a mood trajectory of an audio signal by us-
ing a multiple linear regression (MLR). We train a MLR
regressor based on acoustic features and V-A coordinates of
each phrase by using a prepared training data set. The V-A
coordinates of phrases are estimated from acoustic features
by a trained regressor, and mood trajectories are described
by plotting estimated V-A coordinates. As with the case of
mood trajectory for the lyrics, it is necessary to segment the
audio signals to phrases beforehand. We input acoustic fea-
tures of each phrase to a trained regressor to estimate each
V-A coordinates of each phrase.

4.1 Training data collection
As a training data set, V-A coordinates and phrase switch-

ing times are needed. We developed the graphical interface
seen in Figure 4 for data collection. We referred to the in-
teractive game developed by Kim et.al. [19] to develop this
interface. The horizontal axis represents valence (positive
vs. negative), and the vertical axis represents arousal (high
vs. low energy). Users listen to music and click on this in-
terface when they recognize that moods are switching. The
collected data are saved as matrices, and the V-A coordi-
nates and phrase switching time are stored in each row.

4.2 Acoustic Features
The accuracy of musical mood detection is increased by

using multiple acoustic features [3]. With this knowledge, we
select significant acoustic features from the multiple features
by using a principal component analysis (PCA).

First, we extract some acoustic features from each of the
musical phrases according to the previous mood detection
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arousal

valence

Figure 4: Graphical interface for manual annotation

Table 1: Extracted 71 acoustic features

Acoustic features Description

Statistical spec-
trum descriptors

Includes spectral centroid, flux, roll-off,
and flatness. They represent spectrum
shape and reflect timbral features (27 di-
mensions).

Mel-frequency
cepstral coeffi-
cients (MFCCs)

Short-term and low-dimensional features
based on spectrum. These features are
used in the modeling of audio signals etc.
[21] (13 dimensions).

Chroma vector The sum of the magnitude at some octaves
divided into 12 divisions corresponding to
12 pitch classes [22] (12 dimensions).

Line spectral pair
(LSP)

The feature used to represent linear pre-
diction coefficients (18 dimensions).

Zero crossing The number of times of crossing zero
points of a waveform (1 dimension).

methods [8–12]. The extracted features and descriptions
are in Table 1. These features are extracted using a 32-ms
frame (no overlap), and the means and variances of these
features are calculated as a 142 dimensional feature vector.
We extract acoustic features from stereo audio signals at
a sampling rate of 44.1 kHz using MARSYAS [20]. The
142 dimensional vectors are normalized (mean = 0, variance
= 1) and compressed to 18 dimensions by PCA (cumulative
contribution ratio = 90%). We use these 18 dimensional
vectors as acoustic features.
First, second and third principal components and the con-

tributing acoustic features are in Table 2. The acoustic fea-
tures of which the absolute value of the principal component
axis is in the top 5 are selected as contributing features. Ac-
cording to Table 2, MFCC, LSP, chroma vector, and spectral
centroid contribute principal components that have a high
contribution ratio.

4.3 Multiple Linear Regression
The V-A coordinates of each phrase are estimated from

Table 2: Three major principal components, their
contribution ratios of three components, and their
contributing acoustic features

Principal components
First Second Third

Contribution
ratio

48.5% 10.6% 8.06%

Contributing
features

Centroid Chroma vector Chroma vector
MFCC LSP LSP

acoustic features by a multiple linear regression (MLR) using
a polynomial basis function. The input variables are the
acoustic features of phrases, and the output variables are
the V-A coordinates of phrases. The regression function is
defines as:

V =

M−1∑
i=0

22∑
j=1

vij(xj)
i, A =

M−1∑
i=0

22∑
j=1

aij(xj)
i.

Here, xj is the jth element of a 22 dimensional feature vec-
tor, vij and aij are parameters of MLR, andM is the number
of parameters. According to preliminary experiments, M is
set to four for the smallest prediction error. By using train-
ing data, we estimate vij and aij and train an MLR regres-
sor. With the trained MLR regressor, we estimate the V-A
coordinates of the phrases of input songs from the acoustic
features. The estimated V-A coordinates are plotted on V-A
space, and the audio’s mood trajectories are described.

5. EXPERIMENTAL EVALUATION
We conducted an experimental evaluation to confirm the

validity of our method by

1. investigating how songs are classified by mood trajec-
tories,

2. validating that mood trajectories can represent time-
varying musical moods, and

3. confirming that mood trajectories can be matched to
mood tags selected from social tags.

We classified songs based on the forms and positions of mood
trajectories by clustering based on the similarity of the tra-
jectories. The variance of acoustic features in each class was
compared to validate the time-varying mood expressiveness
of the mood trajectories. Moreover, the mood trajectories
and mood tags of each class were compared to confirm the
accuracy of the mood trajectories.

As a dataset, we used 100 songs taken from the top 20
albums of “Last.fm’s Best of 2010” (http://www.last.fm/
bestof/2010/about). We first segmented the lyrics and au-
dio signals of these songs into phrases. For audio signals,
three university students listened to the songs and labeled
the VA coordinates of each of the phrases and phrase switch-
ing times by using GUI. Lyrics were segmented into phrases
based on line feed positions of the lyrics sheets. Note that
these manually-annotated phrase boundaries were used not
only for training but also for testing. The V-A labels of the
phrases of the audio signals were used for training a MLR
regressor.

We then collected the social tags of the songs before the
experiment. Social tags are frequently used in some pieces
of research [23, 24] as they are tagged to songs by an un-
specified large number of people based on the metadata
of songs (for example mood, composer, genre) and tend
to contain mood tags. We selected 106 tags from last.fm
(http://www.last.fm/) that were tagged more than three
times and found in the extended ANEW. Tags represent-
ing genre (e.g., rock, jazz) and musical instruments (e.g.,
guitar, piano) were excluded because they were considered
irrelevant to moods. The average number of mood tags in a
song was 5 and the maximum number of mood tags was 18.
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Table 3: Mood trajectory features
Features Description

Distance of two
trajectories

Summation of Euclidean distance be-
tween each musical phrase of lyrics and
an audio signal’s mood trajectory.

Trajectory’s vari-
ance

Variance of a mood trajectory.

Trajectory’s mean Mean of a mood trajectory.
Trajectory’s tran-
sition variance

Variance of transition of a mood trajec-
tory.

trajectory mean

trajectory

variance

Euclidean distance of phrases

transitions of coordinates

: lyric’s mood trajectory

: audio’s mood trajectory

Figure 5: Mood trajectory features

5.1 Hierarchical Clustering
By performing hierarchical clustering usingWard’s method

[25], we clustered all of the songs. To confirm whether the
songs were classified based on the complexity of time-varying
musical mood, we compared variance of the acoustic features
of the songs in each class. We used the mood trajectory fea-
tures defined in Table 3 and Figure 5 for hierarchical clus-
tering by using Ward’s method.

5.2 Comparing Acoustic Features of Each Class
We compared the variance of the acoustic features of the

songs in each class. Songs with complex time-varying moods
(i.e., songs expected to have complex mood trajectories)
were considered to have variable audio signals. Thereby,
we were able to confirm the time-varying mood expressive-
ness of the mood trajectories by comparing the variance of
the acoustic features of the songs in each class.

5.3 Comparing Social Tags and Mood Trajec-
tories

We compared the mood tags selected from social tags and
mood trajectories of the songs in each class. Since social
tags are tagged by an unspecified large number of people as
described above, mood tags taken from them can be consid-
ered as a ground-truth for mood recognition. Thus, we were
able to confirm the accuracy of mood trajectories by com-
paring the V-A coordinates of the social tags and estimated
mood trajectories.

5.4 Results and Discussion

5.4.1 Clustering Results
Figure 6 contains the result of hierarchical clustering. The

horizontal line describes all songs, and the vertical line de-
scribes the distance of each cluster. Figure 6 is colored by
a threshold set at 25% of the maximum distance. The fig-
ure is colored with six colors. Since songs colored with blue
are less than half of the songs colored with other colors, we

class 1 class 2 class 3 class 4

100 songs

13 songs

25 songs
26 songs 18

songs

d
is

ta
n
c
e

Figure 6: A dendrogram of hierarchical clustering
according to the two mood trajectories

Table 4: Means of the acoustic feature variance in
the songs of each class

Principal components
First Second Third

Class 1 15.87 8.20 4.88
Class 2 15.96 8.28 4.96
Class 3 15.79 8.13 4.77
Class 4 15.91 8.19 4.83

concluded that four classes were obtained by hierarchical
clustering.

5.4.2 Comparing Acoustic Features of Each Class
Table 4 is the means of the acoustic feature variance in the

songs of each class. We compared the first, second, and third
principal components. In Table 4, the principal component
variances of class 2 were the largest. In contrast, the princi-
pal component variances of class 3 were the smallest. These
results suggest that the songs of class 2 were classified as
complex time-varying musical mood songs, and the songs of
class 3 were classified as simple time-varying musical mood
songs.

5.4.3 Comparing Mood Tags and Mood Trajectories
We calculated Euclidean distance on V-A space between

class 1 class 2

class 3 class 4

: social tags

: trajectory distribution
  of audio signals

: trajectory distribution
  of lyrics

Figure 7: Distribution of mood trajectories in each
class and V-A coordinates of mood tags

55



Table 5: Comparing results of mood tags and mood
trajectories

Class 1 Class 2 Class 3 Class 4 All songs

Matched songs 10% 13% 27% 19% 21%

each phrase of mood trajectories and mood tags of a song.
The V-A coordinates of mood tags were calculated using the
extended ANEW. If more than half of mood tags have the
distance of 0.25 or less, we regarded that the song’s mood
trajectories matched the mood tags and, thus, the song’s
mood was correctly estimated. Table 5 shows percentages
of songs that moods were correctly estimated. We can see
that 21% of the songs are correctly estimated. This results,
though there is still much room for improvement in it, is
promising given the difficulty of the task we are tackling.
Figure 7 shows the distributions of mood trajectories in

each class and the V-A coordinates of the mood tags. Ac-
cording to Table 5, it can be seen that class 3 yielded the
best result among the four classes. This result is in line with
Figure 7 where the distributions of mood tags and estimated
mood trajectory of class 3 are the most similar to each other
than those of the other classes.

6. CONCLUSION AND FUTURE WORK
We proposed a mood trajectory estimation method for

lyrics and audios signals. Mood trajectories can represent
relationship between lyrics’ and audio signal’s moods and
time-varying musical moods. In an experimental evaluation,
we clustered songs based on mood trajectories, compared
the acoustic features of each class, and compared social tags
and mood trajectories. Comparing acoustic features of each
class showed that songs could be classified according to the
complexity of time-varying moods. Moreover, comparing
social tags and mood trajectories showed that our method
could correctly estimate the mood trajectories for 21% of
the songs. We should implement MIR systems based on
mood trajectories and subjective experiments to confirm the
validity of systems for future work.
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