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Abstract: This paper proposes a statistical approach to 2D pose estimation from human images. The main problems
with the standard supervised approach, which is based on a deep recognition (image-to-pose) model, are that it often
yields anatomically implausible poses, and its performance is limited by the amount of paired data. To solve these prob-
lems, we propose a semi-supervised method that can make effective use of images with and without pose annotations.
Specifically, we formulate a hierarchical generative model of poses and images by integrating a deep generative model
of poses from pose features with that of images from poses and image features. We then introduce a deep recognition
model that infers poses from images. Given images as observed data, these models can be trained jointly in a hierarchi-
cal variational autoencoding (image-to-pose-to-feature-to-pose-to-image) manner. The results of experiments show
that the proposed reflective architecture makes estimated poses anatomically plausible, and the pose estimation perfor-
mance is improved by integrating the recognition and generative models and also by feeding non-annotated images.
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1. Introduction

Human beings understand the essence of things by abstraction
and embodiment. As Richard P. Feynman, the famous physicist,
stated, “What I cannot create, I do not understand” [15], abstrac-
tion and embodiment are two sides of the same coin. Our hy-
pothesis is that such a bidirectional framework plays a key role in
the brain process of recognizing human poses from 2D images,
inspired by the mirror neuron system or motor theory known in
the field of cognitive neuroscience [17]. In this paper, we focus
on the estimation of the 2D pose (joint coordinates) of a person
in an image, inspired by the human mirror system.

The standard approach to 2D pose estimation is to train a
deep neural network (DNN) that maps an image to a pose in
a supervised manner by using a collection of images with pose
annotations [3], [30], [42], [44], [45], [48], [51]. Toshev and
Szegedy [45] pioneered a method called DeepPose that uses a
DNN consisting of convolutional and fully connected layers for
the nonlinear regression of 2D joint coordinates from images.
Instead of directly using 2D joint coordinates as target data,
Thompson et al. [44] proposed a heatmap representation that in-
dicates the posterior distribution of each joint over pixels. This
representation has commonly been used in many state-of-the-art
methods for 2D pose estimation [3], [30], [42], [48], [51]. Note
that all of these methods focus only on the recognition part of the
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human mirror system.
Such a supervised approach based on image-to-pose mapping

has two major drawbacks. First, the anatomical plausibility of
estimated poses is not taken into account. To mitigate this prob-
lem, the positional relationships between adjacent joints have of-
ten been considered [4], [9], [26], [32], [43], and error correction
networks [5], [6] and adversarial networks [7], [8] have been used
in a heuristic manner. Second, the performance of the supervised
approach is limited by the amount of paired pose-image data. To
overcome this limitation, data augmentation techniques [34] and
the use of metadata [46] and non-annotated data [12], [46] have
been proposed. A unified solution to these complementary prob-
lems, however, remains an open question.

In this paper, we propose a hierarchical variational autoencoder
(VAE) called MirrorNet that consists of higher- and lower-level
mirror systems (Fig. 1). Specifically, we formulate a probabilis-
tic latent variable model that integrates a deep generative model
of poses from pose features (called primitives) with that of im-
ages from poses and foreground and background features (called
appearances and scenes). To estimate poses, pose features, and
image features from given images in the framework of amortized
variational inference (AVI) [24], we introduce deep recognition
models of pose features from poses, foreground and background
image features from poses and images, and poses from images.
These generative and recognition models can be trained jointly
even from non-annotated images.

A key feature of our semi-supervised method is to consider
the anatomical fidelity and plausibility of poses in the estimation
process. To make use of both annotated and non-annotated im-
ages, our method constructs an image-to-pose-to-image reflective
model (i.e., a higher-level mirror system for image understand-

c© 2021 Information Processing Society of Japan 406



Journal of Information Processing Vol.29 406–423 (May 2021)

Fig. 1 An overview of MirrorNet, which consists of generative models of
poses and images from latent features and recognition models of
poses and latent features from images. The latent features consist of
primitives (pose features), appearances (foreground image features),
and scenes (background image features). A higher-level image-to-
pose-to-image mirror system is integrated with a lower-level pose-to-
feature-to-pose mirror system in a hierarchical manner for effectively
using images with and without pose annotations.

ing) by connecting the image-to-pose recognition model with the
pose-to-image generative model. Even when only images without
pose annotations are given, the generative model can be used for
evaluating the anatomical fidelity of poses estimated by the recog-
nition model (i.e., how consistent the estimated poses are with
the given images). In the same way, our method builds a pose-to-

feature-to-pose reflective model (i.e., a lower-level mirror system
for pose understanding) by connecting the pose-to-feature recog-
nition model with the feature-to-pose generative model. This
pose VAE can be trained in advance by using a large number of
pose data (e.g., data obtained by rendering human 3D models)
and then used for evaluating the anatomical plausibility of the es-
timated poses. Note that the pose VAE cannot be used alone as
an evaluator of an estimated pose for a non-annotated image be-
cause any plausible pose is allowed even if it does not reflect the
image. This is why conventional plausibility-aware methods still
need paired data [6], [7], [8]. The higher- and lower- mirror sys-
tems are integrated into MirrorNet and can be trained jointly in
a statistically principled manner. In practice, each component of
MirrorNet is trained separately by using paired data and then the
entire MirrorNet is jointly trained in a semi-supervised manner
using both paired and unpaired data for further optimization.

The main contribution of this paper is to realize plausibility-
and fidelity-aware 2D pose estimation based on a hierarchical
VAE consisting of pose and image VAEs corresponding to the
higher- and lower-level mirror systems. To achieve this, we ef-
fectively integrate state-of-the-art DNN-based methods for super-
vised pose estimation, foreground/background segmentation, and
image generation into the unified VAE architecture. The VAE-
based probabilistic formulation can make effective use of both
annotated and non-annotated images for joint semi-supervised
learning of pose fidelity and plausibility, leading to improved
pose estimation. We experimentally show that the image-to-pose
recognition model can be improved by integrating the pose-to-
image generative model and the pose VAE.

The rest of this paper is organized as follows. Section 2 reviews
related work on plausibility-aware pose estimation and fidelity-
aware image processing. Section 3 explains the proposed method
for unsupervised, supervised, and semi-supervised pose estima-
tion. Section 4 describes the detailed implementation of the pro-
posed method. Section 5 reports comparative experiments con-

ducted for evaluating the proposed method. Section 6 summa-
rizes this paper.

2. Related Work

Here, 2D human pose estimation refers to estimating the coor-
dinates of joints of a person in an image. This task is challenging
because a wide variety of human appearances and background
scenes can exist and some joints are often occluded.

For robust pose estimation, Ramanan [37] proposed an edge-
based model, and Andriluka et al. [2] introduced a pictorial struc-
tural model of human joints. Modeling the human body using tree
or graph structures has been intensively studied [11], [14], [19],
[35], [40], [41], [52]. To improve the accuracy of estimation, one
needs to carefully design sophisticated models and features that
can appropriately represent the relations between joints.

Toshev and Szegedy [45] proposed a neural pose recognizer
called DeepPose that estimates the positions of joints by using
a DNN consisting of convolutional layers and fully connected
layers. DeepPose is the first method that applies deep learning
to pose estimation, resulting in significant performance improve-
ment. Instead of directly regressing the coordinates of joints from
an image as in DeepPose, Thompson et al. [44] used a heatmap
(pixel-wise likelihood) for representing the distributions of each
joint, which has recently become standard. These state-of-the-art
methods for 2D pose estimation have been examined from several
points of view. For example, intermediate supervision and multi-
stage learning were proposed for using deep convolutional neural
networks (CNNs) [3], [30], [42], [48], [51]. An optimal objec-
tive function was proposed for evaluating the relations between
pairs of joints [4], [9], [26], [43]. Recently, some studies have
assessed the correctness of inferred poses using additional net-
works [6], [13], [29] or compensated for the lack of data samples
with data augmentation [34], [46]. Here, we review plausibility-
aware methods of pose estimation and fidelity-aware methods of
image processing.

2.1 Plausibility-Aware Pose Estimation
A standard way of improving the anatomical plausibility of es-

timated poses is to focus on the local relations of adjacent joints
in pose estimation [4], [9], [26], [32], [43] or to refine the esti-
mated poses as post-processing. Carreira et al. [5] proposed a
self-correcting model based on iterative error feedback. Chen
et al. [6], Fieraru et al. [13], and Moon et al. [29] proposed cas-
caded networks that recursively refine the estimated poses while
referring to the original images. Adversarial networks have of-
ten been used to judge whether the estimated poses are anatom-
ically plausible [7], [8]. In addition, Ke et al. [20] proposed a
scale-robust method based on a multi-scale network with a body
structure-aware loss function. Nie et al. [31] proposed a struc-
tured pose representation using the displacement in the position
of every joint from a root joint position. While these methods
can use only paired data for supervised learning, our VAE-based
method enables unsupervised learning. In contract to the exist-
ing autoencoding approach that aims to extract latent features of
poses [27], [47], our VAE is used for measuring the plausibility
of poses.
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To compensate for a lack of training data, Ukita and
Uematsu [46] took a semi- and weakly-supervised approach that
uses non-annotated images and action labels of images (e.g.,
baseball and volleyball) to estimate the poses of humans from a
part of paired data. Peng et al. [34] proposed an efficient data
augmentation method that generates hard-to-recognize images
with adversarial training. Yeh et al. [54] used the chirality trans-
form, a geometric transform that generates an antipode of a target,
for pose regression. In this paper, we take a different approach
based on mirror systems for unsupervised learning so that non-
annotated images can be used to improve the performance.

2.2 Fidelity-Aware Image Processing
The mirror structure has been used successfully for various im-

age processing tasks including domain conversion. A representa-
tive example is the VAE that jointly learns a generative model
(decoder) of observed variables from latent variables following a
prior distribution, and a recognition model (encoder) of the latent
variables from the observed variables [24]. The VAE can gener-
ate new samples by randomly drawing latent variables from the
prior distribution. CycleGAN [57], DiscoGAN [21], and Dual-
GAN [55] are popular variants of GANs using mirror structures
for image-to-image conversion. The key feature of these meth-
ods is to consider bidirectional inter-domain mappings from un-
paired data. Qiao et al. [36] recently proposed MirrorGAN for
bidirectional text-image conversion. Yildiri et al. [56] proposed
an analysis-by-synthesis approach to joint 3D face generation and
recognition from a cognitive point of view. The success of these
methods indicates the potential of the mirror structure for stably
training a DNN with non-annotated data.

In the context of pose estimation, we propose the first mirror-
structured DNN for human pose estimation that integrates the
two-level mirror systems in a hierarchically autoencoding man-
ner. Recently, de Bem et al. [12] proposed a fidelity-aware pose
estimation method based on an image-to-pose-to-image model
called VAEGAN. This model can be trained in a semi-supervised
manner, but its generalization capability has not been fully vali-
dated on a dataset with annotated and non-annotated images hav-
ing various background images. The advantages of our method
are that it can simultaneously consider both the pose plausibility
and fidelity and that it can work robustly against changes in back-
ground images thanks to the foreground/background segmenta-
tion.

3. Proposed Method

This section describes the proposed method based on a fully
probabilistic model of poses and images for 2D pose estima-
tion in images of people (Fig. 2). MirrorNet is a hierarchical
VAE that is one technique for amortized variational inference
(AVI) [10], [24], [28], [38], and consists of a VAE of images (i.e.,
a pose-to-image generative model and an image-to-pose recogni-
tion model), and a VAE of poses (i.e., a primitive-to-pose genera-
tive model and a pose-to-primitive recognition model). In the-
ory, this model can be trained in an unsupervised manner by
using non-annotated images only, or by using unpaired images
and poses. In practice, the model is trained in a semi-supervised

manner by using partially annotated images. Each model is first
trained separately to stabilize the training, and then all models
are jointly trained for further optimization. Once the training is
completed, only the image-to-pose recognition model is used for
pose estimation. The hierarchical autoencoding architecture is
effective for estimating poses that are anatomically plausible and
reproduce the original images with high fidelity.

3.1 Problem Specification
Let X = {xn ∈ RDx }Nn=1 and S = {sn ∈ RDs }Nn=1 be a set of im-

ages and a set of poses corresponding to X, respectively, where
Dx is the number of dimensions of each image, Ds is the number
of dimensions of each pose, and N is the number of images. We
assume that each xn is an RGB image featuring single or multi-
ple persons, showing all or parts of their bodies, and each sn is
a set of grayscale images, each of which represents the position
of a joint using a heatmap [44]. Note that a coordinate taking the
maximum pixel value in each of the grayscale images is retrieved
as the 2D joint coordinate during a test phase.

Let A = {an ∈ RDa }Nn=1 and G = {gn ∈ RDg }Nn=1 be a set of
appearances representing the foreground features of X (e.g., skin
and hair colors and textures) and a set of scenes representing the
background features of X (e.g., places, color, and brightness), re-
spectively, where Da and Dg are the number of dimensions of the
latent spaces. These latent features are used in combination with
S for representing X. Let Z = {zn ∈ RDz }Nn=1 be a set of primitives

representing the features of S (e.g., scales, positions, and orien-
tations of joints), where Dz is the number of dimensions of the
latent space.

Our goal is to train a pose recognizer that maps X to S. Let
M be the number of annotated images. In a supervised condition,
X and S are given as observed data (M = N). In an unsuper-
vised condition, only X is given (M = 0). In a semi-supervised
condition, X and a part of S, i.e., {sn}Mn=1, are given.

3.2 Generative Modeling
We formulate a unified hierarchical generative model of im-

ages X, poses S, appearances A, scenes G, and primitives Z that
integrates a deep generative model of X from S, A, and G with a
deep generative model of S from Z as follows:

p(X, S,A,G,Z) = pθ(X|S,A,G)pφ(S|Z)p(A)p(G)p(Z)

=

N∏
n=1

pθ(xn|sn, an, gn)pφ(sn|zn)p(an)p(gn)p(zn), (1)

where θ and φ are the sets of trainable parameters of the deep
generative models of xn and sn, respectively. The pose likelihood
pθ(xn|sn, an, gn) evaluates the pose fidelity to the given images and
the pose prior pφ(sn|zn) prevents anatomically implausible pose
estimates. The remaining terms are prior probability distributions
of an, gn, and zn.

The pose-to-image generation model pθ(xn|sn, an, gn) and the
primitive-to-pose generation model pφ(sn|zn) are both formulated
as follows:

pθ(xn|sn, an, gn) = N(xn; μθ(sn, an, gn), σ2
θ(sn, an, gn)IDx ), (2)

pφ(sn|zn) = N(sn; μφ(zn), σ2
φ(zn)IDs ), (3)
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Fig. 2 The proposed architecture of MirrorNet integrating a VAE for poses (lower-level mirror system)
with a pose-conditioned VAE for images (higher-level mirror system) in a hierarchical Bayesian
manner. In terms of generative modeling, the decoder of the pose VAE serves as a prior dis-
tribution of poses p(S) to evaluate the pose plausibility and the decoder of the image VAE as a
likelihood function of poses p(X|S) to evaluate the pose fidelity. In terms of posterior inference,
the encoder of the pose VAE is used as a variational posterior distribution of poses q(S|X). Such
a statistical approach based on a complete probabilistic generative model enables semi-supervised
pose estimation using any images with/without pose annotations.

where μθ(sn, an, gn) and σθ(sn, an, gn) are the outputs of a DNN
with parameter θ that takes sn, an, and gn as input, and μφ(zn) and
σφ(zn) are the outputs of a DNN with parameters φ that takes zn

as input. The priors p(an), p(gn), and p(zn) are set to the standard
Gaussian distributions as follows:

p(an) = N(an; 0Da , IDa ), (4)

p(gn) = N(gn; 0Dg , IDg ), (5)

p(zn) = N(zn; 0Dz , IDz ), (6)

where 0D† (D† = {Da,Dg,Dz}) and ID† are the zero vector of size
D† and the identity matrix of size D†, respectively.

3.3 Unsupervised Learning
We explain the unsupervised learning of the proposed model

using only images X, which is the basis for practical semi-
supervised learning using partially annotated images (Section
3.4). Given a set of images X as observed data, our goal is to
infer the distribution of the latent variables Ω ≡ (S,A,G,Z). We
estimate optimal parameters θ∗ and φ∗ in the framework of maxi-
mum likelihood estimation as follows:

θ∗, φ∗ = argmax
θ,φ

p(X), (7)

and p(X) is the marginal likelihood given by

p(X) =
∫

p(X,Ω)dΩ. (8)

where p(X,Ω) is the joint probability distribution given by
Eq. (1).

Because Eq. (8) is analytically intractable, we use an amortized
variational inference (AVI) technique [10], [24], [28], [38] that

introduces an arbitrary variational posterior distribution q(Ω|X)
and makes it approach as close as possible to the true poste-
rior distribution p(Ω|X) (Section 3.3.1). The minimization of
the Kullback–Leibler (KL) divergence between these posteriors
is equivalent to the maximization of a variational lower bound L
of log p(X) with respect to q(Ω|X). Thus, the optimal parameters
θ∗ and φ∗ can be obtained by maximizing the variational lower
bound L instead of log p(X) (Section 3.3.2).
3.3.1 Variational Lower Bound

Using Jensen’s inequality, a variational lower bound LX of
log p(X) can be derived as follows:

log p(X) ≥
∫

q(Ω|X) log
p(X,Ω)
q(Ω|X)

dΩ
def
= LX, (9)

where the equality holds, i.e., LX is maximized, if and only if
q(Ω|X) = p(Ω|X). Because this equality condition cannot be
computed analytically, q(Ω|X) is approximated by a factorized
form as follows:

q(Ω|X) = qα(S|X)qβ(A|S,X)qγ(G|S,X)qδ(Z|S)

=

N∏
n=1

qα(sn|xn)qβ(an|sn, xn)qγ(gn|sn, xn)qδ(zn|sn), (10)

where α, β, γ, and δ are the sets of parameters of these four vari-
ational distributions, respectively.

In the statistical framework of AVI, we introduce a DNN-based
posterior distribution q(Ω|X) such that the complex true posterior
distribution p(Ω|X) can be well approximated by q(Ω|X). Specif-
ically, we introduce a deep image-to-pose model qα(sn|xn), a deep
image-to-appearance model qβ(an|sn, xn), a deep image-to-scene

model qγ(gn|sn, xn), and a deep pose-to-primitive model qδ(zn|sn)
as follows:
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qα(sn|xn) = N(sn; μα(xn), σ2
α(xn)IDs ), (11)

qβ(an|sn, xn) = N(an; μβ(sn, xn), σ2
β(sn, xn)IDa ), (12)

qγ(gn|sn, xn) = N(gn; μγ(sn, xn), σ2
γ(sn, xn)IDg ), (13)

qδ(zn|sn) = N(zn; μδ(sn), σ2
δ(sn)IDz ), (14)

where μα(xn) and σα(xn) are the outputs of a DNN with parame-
ters α that takes xn as input, μ‡(sn, xn) and σ‡(sn, xn) (‡ = β or γ)
are the outputs of a DNN with parameters ‡ that takes sn and xn

as input, and μδ(sn) and σδ(sn) are the outputs of a DNN with
parameters δ that takes sn as input.

Substituting both of the generative model given by Eq. (1) with
Eqs. (2)–(6) and the recognition model given by Eq. (10) with
Eqs. (11)–(14) into Eq. (9), the variational lower bound LX can
be rewritten as the sum of {LX

n }Nn=1 (LX =
∑

nLX
n ) as follows (Ap-

pendix A.1):

LX
n =Eq[log pθ(xn|sn, an, gn)+log pφ(sn|zn)+log p(an)

+log p(gn)+log p(zn)−log qα(sn|xn)

−log qβ(an|sn, xn)−log qγ(gn|sn, xn)−log qδ(zn|sn)]

=Eq[log pθ(xn|sn, an, gn)]+Eq[log pφ(sn|zn)]

−Eq[log qα(sn|xn)]−Eq[KL(qβ(an|sn, xn)||p(an))]

−Eq[KL(qγ(gn|sn, xn)||p(gn))]−Eq[KL(qδ(zn|sn)||p(zn))],
(15)

where the first term represents the fidelity of a pose sn with an
original image xn having features an and gn, the second term rep-
resents the plausibility of sn, the third term prevents the overfitting
of the recognition model α, and the fourth to sixth terms evaluate
the similarities between the recognition models β, γ, and δ and
the priors on an, gn, and zn, respectively.
3.3.2 Parameter Optimization

Because Eq. (15) still includes intractable expectations, we per-
form Monte Carlo integration using samples sn, an, gn, and zn

obtained by reparametrization trick [24] as follows:

εs
n ∼ N(0, IDs ), (16)

εa
n ∼ N(0, IDa ), (17)

ε
g
n ∼ N(0, IDg ), (18)

εz
n ∼ N(0, IDz ), (19)

sn = μα(xn) + εs
n � σα(xn), (20)

an = μβ(sn, xn) + εa
n � σβ(sn, xn), (21)

gn = μγ(sn, xn) + εg
n � σγ(sn, xn), (22)

zn = μδ(sn) + εz
n � σδ(sn), (23)

where � indicates the element-wise product. Although in theory
a sufficient number of samples should be generated to perform
accurate Monte Carlo integration, we generate only one sample
for each variable as in the standard VAE [24].

Using these techniques, the lower bound LX given by Eq. (15)
can be approximately computed, and can thus be maximized with
respect to θ, φ, α, β, γ, and δ (Fig. 2). First, the recognition mod-
els α, β, γ, and δ are used to deterministically generate samples
sn, an, gn, and zn in Eqs. (20)–(23), and to calculate the last four
regularization terms of Eq. (15), respectively. Given the sam-
ples sn, an, gn, and zn, the generative models θ and φ are used to

calculate the first two reconstruction terms of Eq. (15), respec-
tively. The recognition models α, β, γ, and δ, and the generative
models φ and θ can thus be concatenated in this order with the
reparametrization trick given by Eqs. (20)–(23), and are jointly
optimized in an autoencoding manner with an objective function
given by Eq. (15).

3.4 Supervised Learning
We explain the supervised learning of the proposed model us-

ing paired data of X and S. This approach follows the manner
of the semi-supervised learning of a VAE [23]. While the varia-
tional lower bound LX of log p(X) is maximized in the unsuper-
vised condition (Section 3.3), we aim to maximize the variational
lower bound LX,S of log p(X, S), which is given by

log p(X, S) ≥
∫

q(Θ|S,X) log
p(X,Ω)

q(Θ|S,X)
dΘ

def
= LX,S, (24)

where Θ = Ω\S = {A,G,Z}. As in Eq. (10), q(Θ|S,X) is factor-
ized as

q(Θ|S,X) = qβ(A|S,X)qγ(G|S,X)qδ(Z|S)

=

N∏
n=1

qβ(an|sn, xn)qγ(gn|sn, xn)qδ(zn|sn), (25)

where qβ(an|sn, xn), qγ(gn|sn, xn), and qδ(zn|sn) are given by
Eqs. (12)–(14), respectively. Substituting both of the probabilistic
model given by Eq. (1) with Eqs. (2)–(6) and the inference model
given by Eq. (25) with Eqs. (12)–(14) into Eq. (24), LX,S can be
rewritten as the sum of {LX,S

n }Nn=1 (LX,S =
∑

nLX,S
n ) as follows

(Appendix A.1):

LX,S
n = Eq[log pθ(xn|sn, an, gn) + log pφ(sn|zn) + log p(an)

+ log p(gn) + log p(zn) − log qβ(an|sn, xn)

− log qγ(gn|sn, xn) − log qδ(zn|sn)]

= Eq
[
log pθ(xn|sn, an, gn)

]
+ Eq[log pφ(sn|zn)]

− KL(qβ(an|sn, xn)||p(an)) − KL(qγ(gn|sn, xn)||p(gn))

− KL(qδ(zn|sn)||p(zn)). (26)

A major problem in such supervised learning is that the recog-
nition model qα(sn|xn), which plays a central role in human pose
estimation from images, cannot be trained because it does not ap-
pear in Eq. (26). To solve this problem, we add a term to assess
the predictive performance of qα(sn|xn) to Ln, following [23] as

LX,S
n,λ = LX,S

n + λ log qα(sn|xn), (27)

log qα(sn|xn)

= −1
2

Ds∑
ds=1

⎛⎜⎜⎜⎜⎜⎝log
(
2πσ2

α,ds
(xn)
)
+

(sn − μα,ds (xn))2

σ2
α,ds

(xn)

⎞⎟⎟⎟⎟⎟⎠ , (28)

where λ is a hyperparameter that controls the balance between
purely generative learning and purely discriminative learning. In
our method, we empirically used λ = 0.01 in all experiments.
The new objective function LX,S

λ =
∑

nLX,S
n,λ can be maximized

with respect to θ, φ, α, β, γ, and δ jointly in the same way as the
unsupervised learning described in Section 3.3.2, where an, gn,
and zn are obtained by using Eqs. (21)–(23), and sn is given.
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3.5 Semi-supervised Learning
In the semi-supervised condition, where X is only partially an-

notated, we define a new objective function L by accumulating
LX

n used for unsupervised learning or LX,S
n,λ used for supervised

learning as follows:

L def
=

∑
n: xn is given

LX
n + η

∑
n: xn & sn are given

LX,S
n,λ , (29)

where η is a weighting factor, which was set to 1 in our experi-
ments reported in Section 5, because this choice is theoretically
reasonable in terms of probabilistic modeling and we found no
significant difference in pose estimation performance between
η = 0.25, 0.50, 1.0, 2.0, 4.0. All generation and recognition mod-
els can be trained for all samples regardless of the availability of
their annotations. We will discuss the effectiveness of the cur-
riculum learning based on the pre-training of each component of
MirrorNet and the joint training of the whole MirrorNet in Sec-
tion 5.4.

4. Implementation

This section describes the implementation of MirrorNet, which
is based on curriculum learning. First, we separately pre-train
the components of MirrorNet, i.e., the pose recognizer α (Sec-
tion 4.1), the pose-conditioned image VAE with the generator θ
and the recognizers β and γ (Section 4.2), and the pose VAE with
the generator φ and the recognizer δ (Section 4.3). We then train
the whole MirrorNet under a supervised condition (Section 3.4)
and further optimize it under a semi-supervised condition (Sec-
tion 3.5).

Note that, as shown in Fig. 2, the pose-conditioned image VAE
has a human mask estimator as a subcomponent for separating
an image into foreground and background images which helps to
stabilize the training of MirrorNet.

4.1 Pose Recognizer
The image-to-pose recognizer α is the most fundamental part

of pose estimation, and is pre-trained in a supervised manner by
using paired data of X and S. We maximize an objective function
given by

Ln(α)
def
= log qα(sn|xn), (30)

where the variance σ2
α(xn) is fixed to 0.01 for stability.

The network α can be implemented with any DNN that out-
puts the heatmaps of joint positions, e.g., a stack of eight resid-
ual hourglass networks (HGNet) [30], ResNet-50 [50], and high-
resolution sub-networks (HRNet) [42].

4.2 Pose-Conditioned Image VAE
The pose-conditioned image VAE consisting of the image-to-

appearance recognizer β, the image-to-scene recognizer γ (en-
coders), and the appearance/scene-to-image generator θ (decoder)
is pre-trained in an unsupervised manner by using paired data of
X and S. We maximize a variational lower boundL(θ, β, γ) of the
marginal log likelihood log p(X|S). More specifically, we have

log p(xn|sn)≥Eq
[
log pθ(xn|sn, an, gn)+log p(an)+log p(gn)

Fig. 3 Layers used for implementing DNNs.

Fig. 4 The network configuration common in the recognizers β and γ of the
pose-conditioned image VAE taking as input foreground and back-
ground images xfg

n and xbg
n (c = 3), respectively, and the recognizer

δ of the pose VAE taking as input the pose sn (c is the number of
joints).

− log qβ(an|sn, xn)−log qγ(gn|sn, xn)
]

=Eq
[
log pθ(xn|sn, an, gn)

]−KL(qβ(an|sn, xn)||p(an))

−KL(qγ(gn|sn, xn)||p(gn))
def
=Ln(θ, β, γ), (31)

where L(θ, β, γ) =
∑N

n=1Ln(θ, β, γ). The three networks θ, β,
and γ can be optimized jointly by using the reparametrization
tricks [24] given by Eq. (21) and Eq. (22), where the variance
σ2
θ(sn, an, gn) of the generator θ is fixed to 1 for stability.
To encourage the disentanglement between the foreground fea-

tures (appearance) an and the background features (scene) gn, we
separately input foreground and background parts of the original
image xn into the two encoders β and γ, respectively, instead of
directly feeding xn into β and γ. Specifically, an image x∗n ∈ RDx∗

,
a reduced-size version of xn, is first split into foreground and
background images xfg

n and xbg
n as follows:

xfg
n = x∗n � wn, (32)

xbg
n = x∗n � (1 − wn), (33)

where � indicates the element-wise product and wn ∈ RDx∗
rep-

resents a mask image estimated from x∗n with the additional in-
formation of the pose sn. In this paper, we use a neural mask
estimator ψ trained in a supervised manner such that the mean
squared error between the estimated and ground-truth masks is
minimized.

The recognizers β and γ are implemented as stacks of four
residual blocks [16] (Fig. 3 and Fig. 4). Unlike the original
ResNet, a branching architecture is introduced in the last layer
to output the mean and variance of the posterior Gaussian distri-
bution. The generator θ is implemented with a U-Net [39] that
takes as input a stack of the heatmaps of the joints given by sn

and the latent variables an and gn, where a branching architec-
ture is introduced in the last layer to evaluate the pose fidelity
with xn (Fig. 5). The mask estimator ψ is implemented as a U-
Net [39] that takes as input a shrunk image x∗n and a stack of
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Fig. 5 The network configuration of the generator θ of the pose-conditioned image VAE taking as in-
put the pose sn, the appearance an, and the scene gn and yielding the mean μθ(an, gn, sn) and the
variance σθ(an, gn, sn).

Fig. 6 The network configuration of the generator θ of the pose VAE taking
as input the primitives zn and yielding the mean μφ(zn) and variance
σφ(zn).

the heatmaps of the joints given by sn and outputs a mask image
wn. To obtain sharper mask images, we apply a sigmoid function,
ς(x) = (1 + exp (−10x))−1, to every element of the output wn of
the pre-trained estimator ψ.

4.3 Pose VAE
The pose VAE consisting of the pose-to-primitive recognizer δ

and the primitive-to-pose generator φ (decoder) is pre-trained in
an unsupervised manner by using only S. We maximize a varia-
tional lower boundL(φ, δ) of the marginal log likelihood log p(S)
evaluating the pose plausibility. More specifically, we have

log p(sn) ≥ Eq[log pφ(sn|zn) + log p(zn) − log qδ(zn|sn)]

= Eq[log pφ(sn|zn)] − KL(qδ(zn|sn)||p(zn))
def
= Ln(φ, δ), (34)

where L(φ, δ) =
∑N

n=1Ln(φ, δ). The two networks φ and δ are
optimized jointly with the reparametrization trick [24] (Eq. (23)),
where the variance σ2

φ of the generator φ is fixed to 1 for stability.
The recognizer δ is implemented in the same way as the rec-

ognizers β and γ except for the input dimension (Fig. 4). The
generator φ is implemented as a three-layered transposed convo-
lutional network, where a branching architecture was introduced
in the last layer to evaluate the pose plausibility (Fig. 6).

Fig. 7 Sixteen joints dealt with in our experiments.

5. Evaluation

This section reports comparative experiments conducted for
evaluating the effectiveness of our semi-supervised plausibility-
and fidelity-aware pose estimation method. Our goal is to train a
DNN-based pose recognizer α that detects the coordinates of 16
joints (left and right ankles, knees, and hips, left and right wrists,
elbows, and shoulders, pelvis, thorax, upper neck, and head top as
shown in Fig. 7) from an image. We here validate two hypothe-
ses: (A) under a supervised condition, the joint training of the
recognition and generative models α, β, γ, θ, and φ outperforms
the standalone training of the pose recognizer α, and (B) under
a semi-supervised condition, the mirror architecture makes effec-
tive use of non-annotated images for improving performance.

5.1 Datasets and Criteria
We used two standard datasets that have been widely used in

conventional studies on pose estimation.
5.1.1 Leeds Sports Pose (LSP) Dataset

The LSP dataset with its extension [18], [19] contains 12 K im-
ages of sports activities (11 K for training and 1 K for testing) in
total. Each image originally has an annotation about the coordi-
nates of the 14 joints except for the pelvis and thorax. In order
to use the same set of joints as the MPII Human Pose Dataset [1]
(see Section 5.1.2) and use the same configuration of MirrorNet,
we estimated the ground-truth coordinate of the pelvis by aver-
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aging the coordinates of the left and right hips. Similarly, we
estimated the ground-truth coordinate of the thorax by averaging
the coordinates of the left and right shoulders. Each image was
cropped to a square region centering on a person and then scaled
to Dx = 256 × 256.

The performance of pose estimation was measured with the
percentage of correct keypoints (PCK) [53]. The estimated coor-
dinate of a joint was judged as correct if within τlt pixels from
the ground-truth coordinate, where lt is the torso size defined as
the diagonal length of the ground-truth bounding box of the torso
and τ is a relative error tolerance (τ = 0.2 in our experiment).
5.1.2 MPII Human Pose (MPII) Dataset

The MPII dataset [1] contains around 25 K images of daily ac-
tivities (22 K for training and 3 K for testing). Each image anno-
tated with the coordinates of the 16 joints was cropped to a square
region centering on a person, and then scaled to Dx = 256 × 192.

The performance of pose estimation was measured with the
percentage of correct keypoints in relation to head segment length

(PCKh) [1]. The estimated coordinate of each joint was judged
as correct if within τlh pixels around the ground-truth coordinate,
where τ is a constant threshold and lh is the head size correspond-
ing to 60% of the diagonal length of the ground-truth head bound-
ing box. We used τ = 0.5 in our experiment.

5.2 Training Procedures
We randomly selected 20%, 40%, 60%, 80%, and 100% of

the training data as annotated images and regarded the remain-
ing part as non-annotated images. Only the annotated images
were used for supervised training and the entire training data
were used for semi-supervised training. As in the official im-
plementation of Ref. [42], the training data were augmented with
random scaling, rotation, and horizontal flipping [49]. The tar-
get data of sn were made by stacking 16 reduced-size grayscale
images (heatmaps) indicating the coordinates of the 16 joints
(Ds = 16 × 64 × 64 or 16 × 64 × 48). In the test phase, a co-
ordinate taking the maximum value in each of the 16 greyscale
images was detected.

We conducted curriculum learning as described in Section 4
and shown in Fig. 8, where the dimensions of the latent fore-
ground, background and pose features were set to Da = Dg =

Dz = 256 × 8 × 8 or 256 × 8 × 6 (Fig. 8).
( 1 ) Supervised pre-training: The six sub-networks were

trained independently in a supervised manner using the an-
notated images. The pose recognizer α based on the resid-
ual hourglass network (HGNet) [30], ResNet-50 [50], or the
high-resolution network (HRNet) [42] was trained for 100
epochs (Section 4.1). The pose-conditioned image VAE con-
sisting of the generator θ and the recognizers β and γ was
trained for 200 epochs (Section 4.2). The pose VAE consist-
ing of the generator φ and the recognizer δ was also trained
for 200 epochs (Section 4.3). The mask estimator ψ was
trained by using the UPi-S1h dataset [25] containing human
images with silhouette annotations (i.e., masks), where im-
ages included in the LSP or MPII datasets were excluded.
( a ) MirrorNet was built by combining the six sub-networks

and the mask estimator ψ and passed to the step ( 2 ).

Fig. 8 Learning curves obtained with the pose recognizer α based on the
hourglass network [30] on the LSP dataset, in which 40% of the train-
ing data were regarded as annotated images.

( b ) The pose recognizer α was further trained for 100
epochs (i.e., 200 epochs in total) and the parameters at
the last 10 epochs were used for evaluation (baseline).

( 2 ) Supervised fine-tuning: MirrorNet was trained in a super-

vised manner with the same annotated images for 50 epochs,
where the mask estimator ψ was not updated.
( a ) MirrorNet at the last epoch was passed to the step ( 3 ).
( b ) MirrorNet was further trained for 50 epochs and the pa-

rameters of the pose recognizer α at the last 10 epochs
were used for evaluation (supervised MirrorNet).

( 3 ) Semi-supervised fine-tuning: MirrorNet was further
trained in a semi-supervised manner with the annotated
and non-annotated images for 50 epochs, where the mask
estimator ψ was not updated. The parameters at the last
10 epochs were used for evaluation (semi-supervised
MirrorNet).

To make a fair comparison, the pose recognizer α was trained
for 200 epochs in total under any conditions. The performance
of pose estimation was measured by averaging the values of
PCK@0.2 or PCKh@0.5 over the last 10 epochs.

All networks were implemented using PyTorch [33] and opti-
mized using Adam [22] with a learning rate of 0.001. The mini-
batch size was set to 128 images, which are fully annotated in the
supervised training phase or consisted of 96 annotated images and
32 non-annotated images in the semi-supervised training phase.

5.3 Experimental Results
Tables 1, 2, 3, 4, 5 and 6 show the respective performance

of pose estimation obtained by the pose recognizer α (Refs. [30],
[50], or Ref. [42]) trained in the three ways (baseline, supervised
MirrorNet, and semi-supervised MirrorNet) on the LSP and MPII
datasets, respectively, and Fig. 9 comparatively shows the respec-
tive performance listed in the “Total” columns of Tables 1–6.
Under all conditions, the supervised MirrorNet outperformed the
baseline method by 4.61 ± 1.70 points on the LSP dataset and
4.91±1.75 points on the MPII dataset, where the means and stan-
dard deviations were computed over the fifteen conditions, i.e.,
all possible combinations of the pose recognizers [30], [42], [50]
and the five ratios of annotated images (20%, 40%, 60%, 80%,
and 100%). The left five columns of Fig. 9 clearly show that
the supervised MirrorNet significantly outperformed the baseline
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Table 1 Pose estimation performance on the LSP dataset [18], [19] with the pose recognizer α based on
HGNet [30].

Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline [30] 2200 - 92.87 81.50 73.05 70.08 71.81 67.73 65.85 74.94
Supervised MirrorNet 2200 - 93.81 83.83 75.78 73.26 75.18 72.41 68.91 77.80
Semi-supervised MirrorNet 2200 8800 90.68 79.49 69.60 67.97 69.15 66.69 63.33 72.66

Baseline [30] 4400 - 92.51 85.46 79.75 77.67 76.60 77.91 74.49 80.81
Supervised MirrorNet 4400 - 95.07 86.55 80.02 76.08 80.36 79.71 75.64 82.10
Semi-supervised MirrorNet 4400 6600 94.88 88.94 83.32 80.27 82.34 82.41 79.15 84.68

Baseline [30] 6600 - 94.79 87.07 80.59 77.82 80.46 79.36 75.73 82.46
Supervised MirrorNet 6600 - 95.27 89.94 85.90 83.66 83.53 84.82 82.37 86.69
Semi-supervised MirrorNet 6600 4400 95.60 89.39 85.91 83.60 84.06 85.13 83.13 86.87

Baseline [30] 8800 - 94.73 87.83 81.88 79.24 82.06 82.35 79.05 84.10
Supervised MirrorNet 8800 - 95.62 89.71 85.10 83.84 84.51 86.29 83.68 87.19
Semi-supervised MirrorNet 8800 2200 95.63 89.98 85.65 83.98 84.87 86.29 83.44 87.34

Baseline [30] 11000 - 95.85 89.68 84.89 83.25 85.39 86.24 82.41 86.97
Supervised MirrorNet 11000 - 96.79 92.31 89.15 87.64 89.94 90.29 88.30 90.76

Table 2 Pose estimation performance on the LSP dataset [18], [19] with the pose recognizer α based on
ResNet [50].

Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline [50] 2200 - 86.69 69.26 56.62 52.32 57.22 53.37 48.04 60.83
Supervised MirrorNet 2200 - 89.25 76.55 65.97 61.14 65.67 62.69 54.02 68.19
Semi-supervised MirrorNet 2200 8800 85.15 75.49 63.86 58.69 63.58 57.17 47.66 64.89

Baseline [50] 4400 - 89.59 78.16 68.97 63.28 67.74 63.31 55.02 69.68
Supervised MirrorNet 4400 - 90.82 81.23 72.19 67.94 71.68 67.53 60.05 73.30
Semi-supervised MirrorNet 4400 6600 88.39 79.58 70.78 66.42 68.87 64.67 59.78 71.54

Baseline [50] 6600 - 89.59 78.40 69.26 64.51 70.32 64.47 57.23 70.82
Supervised MirrorNet 6600 - 92.50 83.15 75.29 72.23 74.39 71.70 63.62 76.35
Semi-supervised MirrorNet 6600 4400 92.36 83.38 75.31 72.24 75.55 73.27 64.85 77.00

Baseline [50] 8800 - 90.29 78.70 68.40 64.70 69.70 64.79 57.62 70.90
Supervised MirrorNet 8800 - 93.06 84.04 76.79 73.48 76.81 75.11 65.80 78.14
Semi-supervised MirrorNet 8800 2200 93.98 85.24 76.51 72.78 77.08 74.96 66.84 78.40

Baseline [50] 11000 - 92.35 82.93 75.11 69.71 78.66 72.57 62.79 76.60
Supervised MirrorNet 11000 - 94.33 86.94 80.91 76.98 84.64 80.00 72.42 82.56

Table 3 Pose estimation performance on the LSP dataset [18], [19] with the pose recognizer α based on
HRNet [42].

Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline [42] 2200 - 92.18 81.46 73.15 70.59 72.84 71.28 68.06 75.86
Supervised MirrorNet 2200 - 94.04 83.92 78.19 76.61 75.90 74.82 72.30 79.61
Semi-supervised MirrorNet 2200 8800 92.55 84.16 77.90 76.58 73.57 76.14 74.06 79.49

Baseline [42] 4400 - 93.05 83.40 76.19 74.31 75.77 73.53 70.78 78.36
Supervised MirrorNet 4400 - 95.02 88.23 82.45 81.23 81.30 81.16 78.76 84.22
Semi-supervised MirrorNet 4400 6600 94.47 88.48 83.31 82.57 81.63 82.95 80.23 85.02

Baseline [42] 6600 - 93.86 84.90 77.74 75.29 78.69 77.49 74.78 80.65
Supervised MirrorNet 6600 - 95.65 88.82 84.34 82.74 83.42 84.74 82.36 86.22
Semi-supervised MirrorNet 6600 4400 95.69 89.40 85.11 83.37 83.28 84.58 83.23 86.58

Baseline [42] 8800 - 93.99 85.49 79.21 77.20 77.96 78.57 75.70 81.43
Supervised MirrorNet 8800 - 95.61 89.69 85.21 83.90 83.98 85.31 83.67 86.98
Semi-supervised MirrorNet 8800 2200 95.70 89.91 85.52 83.60 82.96 85.78 83.81 86.95

Baseline [42] 11000 - 95.74 90.45 86.20 83.08 88.74 86.92 83.80 88.06
Supervised MirrorNet 11000 - 96.65 92.78 89.71 87.44 91.72 91.57 89.90 91.58
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Table 4 Pose estimation performance on the MPII dataset [1] with the pose recognizer α based on
HGNet [30].

Training data PCKh@0.5

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline [30] 4449 - 93.26 86.86 76.10 69.17 75.07 67.82 63.91 76.91
Supervised MirrorNet 4449 - 94.10 89.27 79.05 72.89 77.64 71.16 67.60 79.63
Semi-supervised MirrorNet 4449 17797 93.34 87.92 77.00 70.03 73.60 67.68 63.02 77.02

Baseline [30] 8899 - 94.32 89.07 78.58 71.36 78.48 71.29 67.29 79.43
Supervised MirrorNet 8899 - 95.12 91.40 81.97 75.57 81.98 75.14 71.20 82.51
Semi-supervised MirrorNet 8899 13347 95.19 92.15 83.27 77.03 81.57 76.30 72.82 83.32

Baseline [30] 13347 - 94.93 91.24 81.63 74.97 81.92 74.41 69.83 82.07
Supervised MirrorNet 13347 - 95.92 93.37 84.96 78.54 85.07 78.80 74.90 85.18
Semi-supervised MirrorNet 13347 8899 95.85 93.56 85.06 79.15 85.35 79.26 75.47 85.47

Baseline [30] 17797 - 94.90 91.32 81.62 74.70 81.06 74.39 70.32 81.94
Supervised MirrorNet 17797 - 95.85 93.45 85.40 79.32 85.24 79.32 75.69 85.54
Semi-supervised MirrorNet 17797 4449 95.76 93.36 85.14 79.21 84.79 79.29 75.64 85.38

Baseline [30] 22246 - 95.08 91.94 82.47 75.98 82.65 75.69 71.58 82.94
Supervised MirrorNet 22246 - 96.13 94.01 86.47 80.05 86.41 80.56 76.85 86.40

Table 5 Pose estimation performance on the MPII dataset [1] with the pose recognizer α based on
ResNet [50].

Training data PCKh@0.5

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline [50] 4449 - 88.71 80.11 64.74 54.85 66.30 54.39 52.14 67.10
Supervised MirrorNet 4449 - 90.71 82.99 69.26 60.25 70.08 59.96 56.31 71.03
Semi-supervised MirrorNet 4449 17797 89.74 82.29 67.98 58.50 66.54 57.14 53.70 69.16

Baseline [50] 8899 - 90.56 82.91 68.39 58.58 70.61 59.16 55.31 70.50
Supervised MirrorNet 8899 - 92.68 87.16 74.86 65.74 76.39 66.54 61.74 76.01
Semi-supervised MirrorNet 8899 13347 92.94 87.31 74.76 66.50 75.14 66.18 61.26 75.87

Baseline [50] 13347 - 90.64 83.58 68.52 58.19 71.63 59.38 55.62 70.79
Supervised MirrorNet 13347 - 92.96 87.84 74.80 65.40 77.32 66.72 62.22 76.32
Semi-supervised MirrorNet 13347 8899 93.02 88.14 75.28 66.15 77.89 67.53 62.67 76.79

Baseline [50] 17797 - 89.49 81.37 65.70 54.90 68.78 56.91 53.50 68.40
Supervised MirrorNet 17797 - 92.36 86.68 73.50 64.19 76.36 65.63 60.34 75.19
Semi-supervised MirrorNet 17797 4449 92.72 87.58 74.04 64.20 76.88 65.92 60.65 75.61

Baseline [50] 22246 - 91.07 84.86 70.31 60.31 72.61 60.84 56.72 72.11
Supervised MirrorNet 22246 - 93.76 89.36 76.86 67.90 79.12 68.87 63.65 78.06

Table 6 Pose estimation performance on the MPII dataset [1] with the pose recognizer α based on HR-
Net [42].

Training data PCKh@0.5

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline [42] 4449 - 92.89 86.95 75.44 68.99 74.50 66.80 62.73 76.42
Supervised MirrorNet 4449 - 93.89 89.40 79.90 73.70 77.76 72.07 67.74 80.04
Semi-supervised MirrorNet 4449 17797 93.92 88.89 79.05 72.40 75.14 70.59 66.22 78.91

Baseline [42] 8899 - 93.86 88.27 77.52 70.69 77.62 69.71 66.05 78.52
Supervised MirrorNet 8899 - 95.32 91.82 83.09 76.67 82.71 76.44 72.43 83.35
Semi-supervised MirrorNet 8899 13347 95.32 91.97 83.09 76.77 81.31 76.08 72.26 83.12

Baseline [42] 13347 - 93.83 88.23 78.02 70.78 77.87 69.92 66.26 78.70
Supervised MirrorNet 13347 - 95.84 92.67 84.60 78.04 84.03 77.62 73.76 84.48
Semi-supervised MirrorNet 13347 8899 95.67 92.59 84.67 78.21 84.15 77.95 73.90 84.57

Baseline [42] 17797 - 93.51 87.55 76.84 69.50 75.97 67.84 63.48 77.31
Supervised MirrorNet 17797 - 95.71 92.93 84.31 77.73 83.89 77.41 73.16 84.30
Semi-supervised MirrorNet 17797 4449 95.60 92.81 84.31 77.55 84.09 77.50 73.26 84.30

Baseline [42] 22246 - 92.55 87.22 75.95 69.69 75.68 67.11 63.67 76.92
Supervised MirrorNet 22246 - 95.91 93.77 85.85 79.33 85.48 79.41 75.35 85.69
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Fig. 9 Pose estimation performance (“Total” columns of Tables 1–6). The top and bottom rows show the
respective performance on the LSP dataset [18], [19] and the MPII dataset [1], respectively. From
left to right, the first five columns show the performance under the conditions that 20%, 40%, 60%,
80%, and 100% of the training data were regarded as annotated images, respectively, and the last
two columns show the average respective performance under the 20% and 40% conditions and
those under the 60% and 80% conditions, respectively.

Table 7 Pose estimation performance on the LSP dataset [18], [19] with the pose recognizer α based on
HRNet [42] with respect to the number of training epochs.

Training epochs Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Supervised MirrorNet 200 8800 - 95.61 89.69 85.21 83.90 83.98 85.31 83.67 86.98
Semi-supervised MirrorNet 200 8800 2200 95.70 89.91 85.52 83.60 82.96 85.78 83.81 86.95

Supervised MirrorNet 300 8800 - 96.26 89.83 86.29 84.85 84.20 85.79 83.81 87.47
Semi-supervised MirrorNet 300 8800 2200 95.92 89.85 86.40 84.81 84.50 86.52 83.81 87.61

Table 8 Pose estimation performance on the MPII dataset [1] with the pose recognizer α based on
HGNet [30] with respect to the number of training epochs.

Training epochs Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Supervised MirrorNet 200 17797 - 95.85 93.45 85.40 79.32 85.24 79.32 75.69 85.54
Semi-supervised MirrorNet 200 17797 4449 95.76 93.36 85.14 79.21 84.79 79.29 75.64 85.38

Supervised MirrorNet 300 17797 - 95.96 93.46 85.91 80.13 85.39 80.34 76.70 86.02
Semi-supervised MirrorNet 300 17797 4449 95.92 93.67 86.08 80.17 85.73 80.42 76.73 86.15

method. This strongly supports hypothesis (A) or namely that the
joint training of the generative and recognition models leads to
performance improvement. The fidelity and plausibility of esti-
mated poses, which were evaluated by the pose-to-image genera-
tor θ and the pose VAE, respectively, were key factors for accurate
pose estimation.

We found that the semi-supervised MirrorNet outperformed
the supervised MirrorNet when the ratios of annotated images
were higher in the training data. As shown in the rightmost col-
umn of Fig. 9, the semi-supervised MirrorNet outperformed the

supervised MirrorNet when the annotation ratio was 60% or 80%,
except for the conditions that the HRNet [42] and the HGNet [30]
were used as the pose recognizer α on the LSP dataset and the
MPII dataset, respectively. When the number of epochs was in-
creased from 50 to 100 in each of the steps ( 2 ) and ( 3 ) on
trial, the semi-supervised MirrorNet performed better under those
conditions, as shown in Tables 7 and 8. The performance had
often been degraded temporarily before the pose recognizer α
learned to extract consistent representations from annotated and
non-annotated images. As shown in the second right column
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Fig. 10 Examples of pose estimation obtained by the baseline method [30], the supervised and semi-
supervised versions of MirrorNet. Anatomically implausible poses were corrected by the Mirror-
Net architecture.

Table 9 Network size and computation speed.

GFLOPs GFLOPs
Network #params (LSP) (MPII)

Pose recognizer α
– Hourglass [30] 25.59M 26.17 19.62
– ResNet-50 [50] 34.00M 11.99 8.99
– HRNet [42] 28.54M 9.49 7.12
Pose-conditioned image VAE
– Appear. & scene recognizers β & γ 5.28M 1.11 0.83
– Image generator θ 12.84M 3.25 2.44
– Mask estimator ψ 10.28M 1.42 1.06
Pose VAE
– Primitive recognizer δ 5.29M 1.13 0.85
– Pose generator φ 1.33M 1.13 0.85

MirrorNet (training)
– α (Hourglass [30]), β, γ, δ, θ, φ, & ψ 65.89M 35.32 26.48
– α (ResNet-50 [50]), β, γ, δ, θ, φ, & ψ 74.30M 21.14 15.85
– α (HRNet [42]), β, γ, δ, θ, φ, & ψ 68.84M 18.64 13.98
MirrorNet (runtime)
– only α (Hourglass [30]) 25.59M 26.17 19.62
– only α (ResNet-50 [50]) 34.00M 11.99 8.99
– only α (HRNet [42]) 28.54M 9.49 7.12

of Fig. 9, in contrast, the semi-supervised MirrorNet underper-
formed the supervised MirrorNet when the annotation ratio was
20% or 40%, Under these conditions, the pose-to-image genera-
tor θ and the pose VAE could not appropriately evaluate the fi-
delity and plausibility of estimated poses, i.e., gave wrong feed-
back to the pose recognizer α in steps ( 2 ) and ( 3 ), leading to
the performance degradation. These results conditionally support
hypothesis (B) or namely that the semi-supervised training is ef-
fective under the condition that a sufficient number of annotated
images are available and MirrorNet is sufficiently trained in the
semi-supervised fine-tuning steps.

As shown in Fig. 10, the pose recognizer α trained by us-
ing the MirrorNet architecture yielded anatomically plausible
poses. For a better understanding of how each part of Mirror-
Net works, we show examples of human images generated by
the pose-conditioned VAE in Fig. A·1, pose images by the pose
VAE in Fig. A·2, and silhouette images by the mask estimator φ
in Fig. A·3 in the appendix. As shown in Table 9, the training of
the whole MirrorNet is computationally demanding because the
generative and recognition models of pose and images should be
trained jointly. Note that only the pose recognizer α is used in

the runtime; the pose-conditioned VAE and the pose VAE serve
as regularizers that stabilize the training of the MirrorNet.

5.4 Discussions
Effectiveness of Individual Components. To validate the ef-
fectiveness of each component of MirrorNet, we conducted an
ablation study. We used the semi-supervised MirrorNet with the
HRNet-based pose recognizer α [42] trained on the LSP dataset,
where the ratio of annotated images was 20%, 40%, 60%, or
80%. Tables 10 and 11 show the pose estimation performance
obtained with and without the lower-level mirror system and the
mask estimator. This clearly shows the effectiveness of the lower-
level mirror system and the mask estimator, respectively. Fig-
ure A·4 shows examples of human images generated by the pose-
conditioned VAE with and without the mask estimator. These
results strongly support the design of MirrorNet.
Effectiveness of Curriculum Learning. To validate the effec-
tiveness of the curriculum learning consisting of the pre-training
of the individual sub-networks and the fine-tuning of the whole
network, we conducted another additional experiment. We used
the semi-supervised MirrorNet with the HRNet-based pose rec-
ognizer α [42] trained on the LSP dataset, where the ratio of an-
notated images was 20%, 40%, 60%, or 80%. Table 12 shows
the pose estimation performance obtained with and without the
pre-training. When the ratio of annotated images was larger, Mir-
rorNet without the pre-training outperformed that with the pre-
training, i.e., training the whole network from scratch is more
effective than the stability-aware gradual optimization for find-
ing a better solution. It is thus important to select an appropriate
training procedure for extracting the full potential of the semi-
supervised MirrorNet.
Effectiveness of Semi-supervised Learning. To investigate the
impact of the mini-batch composition in the semi-supervised
training of MirrorNet, we changed the number of annotated
and non-annotated images in each mini-batch to 32+96, 48+80,
64+64, 80+48, or 96+32. We used MirrorNet with the HRNet-
based pose recognizer α [42] trained on the LSP dataset, where
the ratio of annotated images was 20%, 40%, 60%, or 80%. As
shown in Section 5.3, the semi-supervised MirrorNet underper-

c© 2021 Information Processing Society of Japan 417



Journal of Information Processing Vol.29 406–423 (May 2021)

Table 10 Pose estimation performance obtained with and without the lower-level mirror system.

Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

MirrorNet w/o pose VAE 2200 8800 94.43 84.02 76.25 75.09 75.64 72.62 69.10 78.31
MirrorNet w/ pose VAE 2200 8800 92.55 84.16 77.90 76.58 73.57 76.14 74.06 79.49

MirrorNet w/o pose VAE 4400 6600 94.85 86.63 80.74 78.57 79.95 78.80 76.49 82.49
MirrorNet w/ pose VAE 4400 6600 94.47 88.48 83.31 82.57 81.63 82.95 80.23 85.02

MirrorNet w/o pose VAE 6600 4400 95.58 87.75 82.95 81.07 81.32 83.08 80.12 84.77
MirrorNet w/ pose VAE 6600 4400 95.69 89.40 85.11 83.37 83.28 84.58 83.23 86.58

MirrorNet w/o pose VAE 8800 2200 95.46 88.50 83.53 81.33 83.09 83.30 80.96 85.35
MirrorNet w/ pose VAE 8800 2200 95.70 89.91 85.52 83.60 82.96 85.78 83.81 86.95

MirrorNet w/o pose VAE 11000 - 96.98 92.51 89.30 87.89 89.28 90.35 88.38 90.81
MirrorNet w/ pose VAE 11000 - 96.65 92.78 89.71 87.44 91.72 91.57 89.90 91.58

Table 11 Pose estimation performance obtained with and without the mask estimator.

Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

MirrorNet w/o mask estimator 2200 8800 91.62 83.85 77.15 76.38 72.35 74.77 72.49 78.62
MirrorNet w/ mask estimator 2200 8800 92.55 84.16 77.90 76.58 73.57 76.14 74.06 79.49

MirrorNet w/o mask estimator 4400 6600 94.58 88.58 83.52 81.83 81.10 81.77 79.77 84.64
MirrorNet w/ mask estimator 4400 6600 94.47 88.48 83.31 82.57 81.63 82.95 80.23 85.02

MirrorNet w/o mask estimator 6600 4400 95.43 88.60 83.53 81.53 82.77 83.68 81.62 85.49
MirrorNet w/ mask estimator 6600 4400 95.69 89.40 85.11 83.37 83.28 84.58 83.23 86.58

MirrorNet w/o mask estimator 8800 2200 95.55 88.70 84.86 83.63 82.81 85.00 83.45 86.47
MirrorNet w/ mask estimator 8800 2200 95.70 89.91 85.52 83.60 82.96 85.78 83.81 86.95

MirrorNet w/o mask estimator 11000 - 96.91 92.55 89.06 87.79 90.00 90.22 87.53 90.68
MirrorNet w/ mask estimator 11000 - 96.65 92.78 89.71 87.44 91.72 91.57 89.90 91.58

Table 12 Pose estimation performance obtained with and without the supervised pre-training.

Training data PCK@0.2

#annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

MirrorNet w/o supervised pre-training 2200 8800 91.52 82.02 76.37 74.79 73.76 75.15 72.32 78.22
MirrorNet w/ supervised pre-training 2200 8800 92.55 84.16 77.90 76.58 73.57 76.14 74.06 79.49

MirrorNet w/o supervised pre-training 4400 6600 93.54 87.31 82.40 81.38 77.93 81.80 79.11 83.56
MirrorNet w/ supervised pre-training 4400 6600 94.47 88.48 83.31 82.57 81.63 82.95 80.23 85.02

MirrorNet w/o supervised pre-training 6600 4400 95.16 88.84 85.53 84.47 81.82 85.63 83.60 86.61
MirrorNet w/ supervised pre-training 6600 4400 95.69 89.40 85.11 83.37 83.28 84.58 83.23 86.58

MirrorNet w/o supervised pre-training 8800 2200 95.85 91.27 87.68 85.63 85.63 88.09 86.08 88.82
MirrorNet w/ supervised pre-training 8800 2200 95.70 89.91 85.52 83.60 82.96 85.78 83.81 86.95

MirrorNet w/o supervised pre-training 11000 - 97.05 93.59 91.51 90.63 91.99 92.73 91.35 92.79
MirrorNet w/ supervised pre-training 11000 - 96.65 92.78 89.71 87.44 91.72 91.57 89.90 91.58

formed the supervised MirrorNet when the mini-batch size was
96+32 and the ratio of annotated images was 20%. Interestingly,
as shown in Table 13, the semi-supervised MirrorNet outper-
formed the supervised MirrorNet under the conditions of 32+96
and 64+64. In the objective function given by Eq. (29), the con-
tributions of annotated and non-annotated images are directly af-
fected by the ratio of annotated images in each mini-batch. Thus,
it is necessary to optimize it for drawing out the full potential of
semi-supervised learning. This should be included as topics for
future work.
Future Directions. One of the most interesting research direc-

tions is to investigate fully unsupervised training of MirrorNet
because it is based on the VAE architecture and can be trained
from only non-annotated images in theory. In this study, the hi-
erarchical mirror system in single-person 2D pose estimation has
successfully been used only under the semi-supervised condition.
Another important research direction is to deal with human im-
ages in which some joints are occluded or out of view. The no-
ticeable advantage of the fully probabilistic modeling underlying
MirrorNet is that unobserved joints could be statistically inferred
during the training. In addition, it is worth extending the current
MirrorNet for multi-person 3D pose estimation by using a hier-
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Table 13 Pose estimation performance with respect to the ratio of annotated images in each mini-batch.

Training data Mini-batch composition PCK@0.2

#annotated #non-annotated #annotated #non-annotated Head Shoulder Elbow Wrist Hip Knee Ankle Total

Supervised MirrorNet 2200 - 128 - 94.04 83.92 78.19 76.61 75.90 74.82 72.30 79.61
Semi-supervised MirrorNet 2200 8800 32 96 94.00 84.86 78.71 77.33 78.07 77.21 74.88 80.95

2200 8800 48 80 94.08 82.55 78.11 76.86 73.89 74.89 72.97 79.28
2200 8800 64 64 93.78 84.89 79.02 77.10 77.28 76.81 73.91 80.61
2200 8800 80 48 92.67 84.45 78.83 76.82 75.38 75.29 72.27 79.59
2200 8800 96 32 92.55 84.16 77.90 76.58 73.57 76.14 74.06 79.49

Supervised MirrorNet 4400 - 128 - 95.02 88.23 82.45 81.23 81.30 81.16 78.76 84.22
Semi-supervised MirrorNet 4400 6600 32 96 94.67 87.71 80.63 79.07 80.92 80.19 77.40 83.14

4400 6600 48 80 95.20 87.86 81.76 80.27 81.92 81.26 78.05 83.94
4400 6600 64 64 95.07 88.84 83.20 81.09 82.33 82.11 79.63 84.82
4400 6600 80 48 94.94 88.30 81.98 80.85 81.75 83.58 80.72 84.82
4400 6600 96 32 94.47 88.48 83.31 82.57 81.63 82.95 80.23 85.02

Supervised MirrorNet 6600 - 128 - 95.65 88.82 84.34 82.74 83.42 84.74 82.36 86.22
Semi-supervised MirrorNet 6600 4400 32 96 95.08 86.98 80.41 78.71 80.76 80.81 77.59 83.11

6600 4400 48 80 95.93 89.18 84.10 81.73 82.45 83.38 80.61 85.50
6600 4400 64 64 95.37 88.21 82.98 82.00 81.76 84.08 81.93 85.43
6600 4400 80 48 95.71 88.62 84.18 82.69 83.02 84.68 82.67 86.15
6600 4400 96 32 95.69 89.40 85.11 83.37 83.28 84.58 83.23 86.58

Supervised MirrorNet 8800 - 128 - 95.61 89.69 85.21 83.90 83.98 85.31 83.67 86.98
Semi-supervised MirrorNet 8800 2200 32 96 94.39 86.12 80.50 78.95 78.67 78.05 76.34 82.05

8800 2200 48 80 94.60 88.22 83.22 81.42 82.54 81.83 80.14 84.78
8800 2200 64 64 94.96 88.47 83.47 82.08 82.87 83.64 82.06 85.58
8800 2200 80 48 95.44 89.62 85.17 83.25 83.55 84.66 82.76 86.56
8800 2200 96 32 95.70 89.91 85.52 83.60 82.96 85.78 83.81 86.95

archical mirror system involving the 3D pose VAE at the lower
level.

6. Conclusion

Inspired by the cognitive knowledge about the mirror neuron
system of humans, this paper proposes a deep Bayesian frame-
work called MirrorNet for 2D pose estimation from human im-
ages. The key idea is to jointly train the generative models of
images and poses as well as the recognition models of appear-
ances, scenes, and primitives in a fully statistical manner. From a
technical point of view, the two-level mirror systems (VAEs) are
jointly trained with the hierarchical autoencoding manner (image
→ pose→ primitive→ pose→ image), such that the plausibility
and fidelity of poses are both considered. Thanks to the nature
of the fully generative modeling, MirrorNet is the first pose es-
timation architecture that could, in theory, be trained from non-
annotated images in an unsupervised manner when appropriate
inductive biases are introduced. We experimentally proved that
the whole MirrorNet could be jointly trained and outperformed
a conventional recognition-model-only method in terms of pose
estimation performance. We also showed that the additional use
of non-annotated images could improve the performance.

The main contribution of this paper is that we shed light on the
mirror neuron system (or motor theory) and built a robust com-
putational model of the human vision system by leveraging the
expressive power of modern deep Bayesian models. The same
framework can be applied to 3D motion estimation from videos
by formulating recurrent versions of the pose and image VAEs
that represent the anatomical plausibility and fidelity of human

motions, respectively. This paper also ushers the new research
field of semi-supervised pose estimation. We believe that Mirror-
Net inspires a new approach to multimedia understanding.
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Appendix

A.1 Lower Bound L
The variational lower bound LX of log p(X) in the unsuper-

vised condition (LX =
∑

nLX
n ) is given by Eq. (A.1). The varia-

tional lower boundLX,S of log p(X,S) in the supervised condition
(LX,S =

∑
nLX,S

n ) is given by Eq. (A.2).

LX
n =Eq(sn ,an ,gn ,zn |xn)[log{pθ(xn|sn, an, gn)pφ(sn|zn)p(an)p(gn)p(zn)}
−log{qα(sn|xn)qβ(an|sn, xn)qγ(gn|sn, xn)qδ(zn|sn)}]
=Eqα(sn |xn)qβ(an |sn ,xn)qγ(gn |sn ,xn)[log pθ(xn|sn, an, gn)]

+Eqα(sn |xn)qδ(zn |sn)[log pφ(sn|zn)]−Eqα(sn |xn)[log qα(sn|xn)]

−Eqα(sn |xn)[KL(qβ(an|sn, xn)||p(an))]

−Eqα(sn |xn)[KL(qγ(gn|sn, xn)||p(gn))]

−Eqα(sn |xn)[KL(qδ(zn|sn)||p(zn))]

=−1
2

Dx∑
dx=1

Eqα(sn |xn)qβ(an |sn ,xn)qγ(gn |sn ,xn)

⎡⎢⎢⎢⎢⎢⎣log(2πσ2
θ,dx

(sn, an, gn))

+

(
xn−μθ,dx (sn, an, gn)

)2
σ2
θ,dx

(sn, an, gn)

⎤⎥⎥⎥⎥⎥⎦

− 1
2

Ds∑
ds=1

Eqα(sn |xn)qδ(zn |sn)

⎡⎢⎢⎢⎢⎢⎣log(2πσ2
φ,ds

(zn))+
(sn−μφ,ds (zn))2

σ2
φ,ds

(zn)

⎤⎥⎥⎥⎥⎥⎦

+
1
2

Ds∑
ds=1

(1+log(2πσ2
α,ds

(xn)))

+
1
2

Da∑
da=1

Eqα(sn |xn)[1+log(σ2
β,da

(sn, xn))

−μ2
β,da

(sn, xn)−σ2
β,da

(sn, xn)]

+
1
2

Dg∑
dg=1

Eqα(sn |xn)[1+log(σ2
γ,dg

(sn, xn))

−μ2
γ,dg

(sn, xn)−σ2
γ,dg

(sn, xn)]

+
1
2

Dz∑
dz

Eqα(sn |xn)[1+log(σ2
δ,dz

(sn))

−μ2
δ,dz

(sn)−σ2
δ,dz

(sn)]. (A.1)

LX,S
n =Eq(an ,gn ,zn |sn ,xn)[log{pθ(xn|sn, an, gn)pφ(sn|zn)

×p(an)p(gn)p(zn)}
−log{qβ(an|sn, xn)qγ(gn|sn, xn)qδ(zn|sn)}]

=Eqβ(an |sn ,xn)qγ(gn |sn ,xn)[log pθ(xn|sn, an, gn)]

+Eqδ(zn |sn)[log pφ(sn|zn)]

−KL(qβ(an|sn, xn)||p(an))−KL(qγ(gn|sn, xn)||p(gn))

−KL(qδ(zn|sn)||p(zn))

=−1
2

Dx∑
dx=1

Eqβ(an |sn ,xn)qγ(gn |sn ,xn)

⎡⎢⎢⎢⎢⎢⎣log(2πσ2
θ,dx

(sn, an, gn))

+

(
xn−μθ,dx (sn, an, gn)

)2
σ2
θ,dx

(sn, an, gn)

⎤⎥⎥⎥⎥⎥⎦

− 1
2

Ds∑
ds=1

Eqδ(zn |sn)

⎡⎢⎢⎢⎢⎢⎣log(2πσ2
φ,ds
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σ2
φ,ds

(zn)

⎤⎥⎥⎥⎥⎥⎦

+
1
2

Da∑
da=1

(1+log(σ2
β,da

(sn, xn))−μ2
β,da

(sn, xn)−σ2
β,da

(sn, xn))

+
1
2

Dg∑
dg=1

(1+log(σ2
γ,dg

(sn, xn))−μ2
γ,dg

(sn, xn)−σ2
γ,dg

(sn, xn))

+
1
2

Dz∑
dz=1

(1+log(σ2
δ,dz

(sn))−μ2
δ,dz

(sn)−σ2
δ,dz

(sn)). (A.2)

A.2 Image Reconstruction and Prediction

Figures A·1, A·2, A·3 show the reconstruction of human im-
ages based on the pose-conditioned image VAE, the reconstruc-
tion of 16-joint heatmaps based on the pose VAE, and the pre-
diction of silhouette images from 16 joint heatmaps based on the
mask estimator φ, respectively. Figure A·4 shows the reconstruc-
tion of human images based on the pose-conditioned image VAE
obtained with and without the mask estimator φ.
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Fig. A·1 Reconstruction of human images based on the pose-conditioned image VAE. The LSP dataset [18],
[19] was used for training. A larger amount of annotation images resulted in a better quality of gen-
erated images.

Fig. A·2 Reconstruction of 16-joint heatmaps based on the
pose VAE. For the purpose of visualization, 16
heatmaps are superimposed to a single heatmap.

Fig. A·3 Prediction of silhouette images (foreground mask images) from 16 joint
heatmaps based on the mask estimator φ. The ground truth images are
taken from Ref. [25].
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Fig. A·4 Reconstruction of human images based on the pose-conditioned
image VAE. The LSP dataset [18], [19] was used for training. The
ratio of annotated images was 20%.

Takayuki Nakatsuka received a B.E. de-
gree in the Department of Applied Physics
and an M.E. degree in the Department of
Pure and Applied Physics from Waseda
University, Japan. He is currently a stu-
dent in the Graduate Schools of Advanced
Science and Engineering and Graduate
Program for Embodiment Informatics at

Waseda University. His primary research interests are in
physically-based animation, human motion analysis, human com-
puter interaction, and music information retrieval.

Kazuyoshi Yoshii received his M.S. and
Ph.D. degrees in informatics from Kyoto
University, Kyoto, Japan, in 2005 and
2008, respectively. He is an Associate
Professor with the Graduate School of In-
formatics, Kyoto University, and concur-
rently the Leader of the Sound Scene Un-
derstanding Team, Center for Advanced

Intelligence Project (AIP), RIKEN, Tokyo, Japan. His research
interests include music informatics, audio signal processing, and
statistical machine learning.

Yuki Koyama is a Researcher at the Na-
tional Institute of Advanced Industrial
Science and Technology (AIST), Japan.
He received his Ph.D. from the Univer-
sity of Tokyo in 2017. His main research
field is the intersection of computer graph-
ics and human-computer interaction. In
particular, he is interested in developing

computational techniques for enabling new interactions, produc-
ing creative artifacts, and enhancing design processes.

Satoru Fukayama received his Ph.D.
degree in information science and tech-
nology in 2013 from the University of
Tokyo. He is currently a senior researcher
at the National Institute of Advanced In-
dustrial Science and Technology (AIST),
Japan. His interests are in music in-
formation retrieval, especially music

generation with probabilistic models. He has received awards,
including IPSJ Yamashita SIG Research Award, several Best
Presentation Awards, and Specially Selected Paper Award from
the Information Processing Society of Japan.

Masataka Goto received his Doctor of
Engineering degree from Waseda Univer-
sity in 1998. He is currently a Prime Se-
nior Researcher at the National Institute of
Advanced Industrial Science and Technol-
ogy (AIST), Japan. Over the past 28 years
he has published more than 270 papers
in refereed journals and international con-

ferences and has received 51 awards, including several best pa-
per awards, best presentation awards, the Tenth Japan Academy
Medal, and the Tenth JSPS PRIZE. In 2016, as the Research
Director he began OngaACCEL Project, a 5-year JST-funded re-
search project (ACCEL) on music technologies.

Shigeo Morishima was born on August
1959. He received his B.S., M.S. and
Ph.D. degrees, all in Electrical Engineer-
ing from the University of Tokyo, in 1982,
1984, and 1987, respectively. He was a
visiting professor of University of Toronto
from 1994 to 1995 and an invited re-
searcher of Advanced Telecommunication

Research institute from 1999 to 2011. Currently, he is a professor
of School of Advanced Science and Engineering, Waseda Uni-
versity. He was a General Chair of ACM VRST2018 and VR/AR
adviser of SIGGRAPH ASIA 2018. He received many awards
and takes an administration board member of several societies.

c© 2021 Information Processing Society of Japan 423


