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1. LINKING MUSIC INFORMATION
PROCESSING WITH THE REAL WORLD

Music information processing has been widely de-

ployed in music industries over the years. Of course,

technologies oriented to musicians have long been studied

including sound synthesis on music synthesizers, desktop

music production based on MIDI sequencers, and various

kinds of support for composing, performing, and recording

music. Such tools have already become an essential part of

the music-production process. But more recently, focus has

shifted from these conventional tools to new technologies

that target the direct enjoyment of music by end users who

are not musicians. For example, it has become relatively

easy to ‘‘rip’’ audio signals from compact discs (CD) and

compress them and to deal with many musical pieces on a

personal computer. It has also become possible to load a

huge number of songs onto a portable music player (e.g.,

Apple iPod) enabling anyone to carry their personal

collection of music anywhere and to listen to it at anytime.

A variety of factors can be given for this trend

including advances in computer hardware (high processing

speeds and large-capacity/small-size memory and hard

disks), spread of the Internet, and provision of low-cost

audio input/output devices as standard equipment. The

standardization of MPEG Audio Layer 3 (MP3) in 1992

and its spread in the latter half of the 1990s and the

establishment of MP3-based businesses in response to end-

user demand have also played a role here. This trend is

accelerating all the more in the first half of the 2000s with

the proposal of Ogg Vorbis, MPEG-4 AAC, Windows

Media Audio (WMA), and other compression systems

following on the heels of MP3. Enterprises for delivering

music via the Internet are also appearing in rapid

succession.

End users who are not musicians are not generally

proficient in music — their knowledge of notes, harmony,

and other elements of music is usually limited. Further-

more, they generally have little desire to create music.

They are quite interested, however, in retrieving and

listening to their favorite music or a portion of a musical

piece in a convenient and flexible way. Recent research

themes of music information processing reflect such end-

user demand. The target of processing is expanding from

the internal content of individual musical pieces (notes,

chords, etc.) to entire musical pieces and even sets of

musical pieces. Accordingly, research is becoming active

in music systems that can be used by people with no

musical knowledge. Typical technologies driving this trend

are technology for computing similarity between musical

pieces and for retrieving and classifying music; technology

for referring to what music friends and other people listen

to and for selecting music accordingly; and technology for

creating advanced music-handling interfaces.

Focusing on this emerging research trend, this paper

introduces recent studies on music information processing

from a unique perspective.

2. HANDLING SETS OF MUSICAL PIECES

In contrast to past research that focused on the internal

contents of individual musical pieces, the past ten years

have seen the growth of a new research field targeting the

retrieval, classification, and management of large sets of

music in which a single musical piece is treated as a unit.

This field, which is called Music Information Retrieval

(MIR), has become quite active, and since 2000, the

International Conference on Music Information Retrieval

(ISMIR) has been held annually. A variety of topics are

being researched in this field, but in the following, we

introduce three ways of retrieving music based on audio

signals as opposed to text searches based on bibliographic

information (such as titles and artist names from CDDB, an

online database of CD information).

2.1. Research on Melody: Query by Humming

As the name implies, Query by Humming (QBH)
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enables one to retrieve the title of a musical piece by

humming or singing its melody using sounds like ‘‘la-la-

la. . .’’ In other words, humming or singing a melody

becomes the search key for finding a musical piece with

that melody. The use of such search keys raises some

issues, however, such as how to deal with errors when

singing off key and how to absorb differences in key and

tempo. Specific methods differ in terms of the database

used, which may consist of melodies only [1–5], standard

MIDI files (SMF) of entire musical pieces [6–8], or audio

signals of entire musical pieces [9,10]. If we use a melody-

only database, similarity with a search key can be directly

computed, but for SMF, the track containing a melody

must be identified before computing similarity. In the case

of audio signals, similarity with a melody included in a

mixture of sounds must be computed, which is even harder

to achieve.

2.2. Research on Music Fragments: Retrieving a

Musical Piece Containing a Certain Fragment

For someone who would like to know the title of a

musical piece that is currently playing on the street or

elsewhere, this retrieval method enables that title to be

identified based on a fragment of that piece, which can be

recorded on a cellular phone. The fragment is therefore the

search key and the method searches for the musical piece

containing that fragment. Important issues here are how to

achieve efficient searching and how to absorb acoustic

fluctuations caused by noise and distortion on the trans-

mission path. Proposed methods include the time-series

active search method based on histograms of vector-

quantized power-spectrum shapes [11] and a method based

on patterns of power-spectrum peaks [12].

2.3. Research on Entire Musical Pieces: Retrieval

Based on Similarity between Pieces

Given that one likes certain musical pieces, this method

searches for another musical piece having a similar feeling.

The search key is musical pieces themselves and the

method searches for a similar piece. To this end, similarity

must be defined based on various features such as timbral

texture within a piece (power-spectrum shape) [13,14],

rhythm [14–17], modulation spectrum [18], and singer

voice [19]. Similarity is also important for purposes other

than retrieval. For example, the use of similarity to

automatically classify musical pieces (into genres, music

styles, etc.) is also being researched [14,17–20]. It is

difficult, however, to compute the appropriate similarity

between musical pieces considering various factors. This in

conjunction with the understanding of musical audio

signals as introduced in the following section needs further

research in the years to come.

3. UNDERSTANDING MUSICAL
AUDIO SIGNALS

Research related to the understanding of musical audio

signals has developed significantly over the last ten years.

Before that, it was common to research the segregation and

extraction of individual sound components making up an

audio signal (sound source segregation) and to use that

information to automatically generate a musical score

(automatic transcription). But in 1997, in reconsideration

of what it means for human beings to understand music, a

new research approach was proposed on music under-

standing (Sect. 3.2, Music scene description [21–23])

based on the viewpoint that listeners understand music

without segregating sound sources and without mentally

representing audio signals as musical scores [24]. Research

themes conforming to this approach, including beat

tracking, melody extraction, and music structure analysis,

have also been proposed.

This major development on the understanding of

musical audio signals has been supported by advances in

hardware and in techniques for processing audio signals.

Ten years ago, it was still difficult to calculate a Fast

Fourier Transform (FFT) in real time, but nowadays, it can

be performed so fast that the time required for its

computation can essentially be ignored. This jump in

processing performance has let researchers devise compu-

tationally intensive approaches that could not be consid-

ered in the past, and has also promoted the use of a wide

range of statistical techniques. For example, techniques

based on probabilistic models such as the Hidden Markov

Model (HMM) and various techniques making use of

maximum likelihood estimation and Bayes estimation have

been proposed.

3.1. Sound Source Segregation and Pitch (F0) Estima-

tion

Automatic transcription has a long history as a research

theme going back to the 1970s, and has progressed steadily

as the difficulty of the target music has increased from

monophonic sounds of melodies to polyphonic sounds

from a single instrument and a mixture of sounds from

several instruments. This progression has been accompa-

nied by a shift toward more specialized research topics,

namely, sound source segregation and estimation of

fundamental frequency (F0, perceived as pitch).

Because space does not allow an exhaustive introduc-

tion to the many studies in this research field, we here focus

on new approaches that first appeared in the past ten years.

In 1994, Kashino et al. introduced a method based on a

probabilistic model and implemented as a process model

called OPTIMA [25,26]. This method was novel in its use

of a graphical model to describe the hierarchical structure
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of frequency components, musical notes, and chords and in

determining the most likely interpretation based on this

hierarchical relationship. Then, in 1999, Goto proposed a

predominant-F0 estimation method (PreFEst) that does not

assume the number of sound sources [21,23,27]. This

method prepares probability distributions that represent the

shape of harmonic structures for all possible F0s, and

models input frequency components as a mixture (weighted

sum) of those distributions. It then estimates the parameters

of this model — the amplitude (weight) of each component

sound in the input sound mixture and the shape of its

harmonic structure — by using Maximum A Posteriori

Probability (MAP) estimation executed by the Expectation-

Maximization (EM) algorithm. This method can be

extended, in principle, to an inharmonic structure [23,27],

and as such, can be considered a framework for under-

standing general sound mixtures.

Other proposed methods include a method for sequen-

tially determining the components in a sound mixture by

repeatedly estimating the predominant F0 and removing its

harmonic components [28]; a method for estimating model

parameters such as the number of simultaneous sounds, the

number of frequency components making up each sound,

F0s, and amplitude by modeling the signal as a weighted

sum of sound waveforms in the time domain and applying

the Markov Chain Monte Carlo (MCMC) algorithm [29]; a

method for estimating notes, tempo, and waveforms by

associating them with a graphical model that models the

waveform-generation process when performing a musical

score at a certain (local) tempo [30]; and a method that

formalizes the problem as the clustering of frequency

components under harmonic-structure constraints and

determines the number of clusters (sound sources) that

minimizes the Akaike Information Criterion (AIC) so as to

estimate the median (F0) and weight (amplitude) of each

cluster [31].

3.2. Music Scene Description

Music scene description [21–23] aims to achieve an

understanding of musical audio signals at the level of

untrained listeners. This contrasts with most studies in the

past that aimed to achieve it at the level of trained

musicians by identifying all musical notes forming a

musical score or obtaining segregated signals from sound

mixtures. Music scene description features the description

of ‘‘scenes’’ that occur within a musical performance such

as melody, bass, beat, chorus and phrase repetition,

structure of the musical piece, and timbre of musical

instruments. The following introduce methods for obtain-

ing descriptions of such scenes.

Melody and bass lines Estimating the fundamental

frequency (F0) of melody and bass lines in CD

recordings containing sounds of various musical

instruments was first achieved in 1999 by applying

the previously mentioned PreFEst method [21,23,27]

with appropriate frequency-range limitation. Another

method for estimating the F0 of the bass line was later

proposed by Hainsworth et al. [32].

Beat While beat tracking and measure (bar line) estima-

tion for obtaining a hierarchical beat structure (includ-

ing beat and measure levels) were researched in the

1980s using MIDI signals, Goto et al. began a series of

studies [24,33–36] on real-world sound mixtures in

1994. Then, taking a hint from these studies, Scheirer

proposed a beat-tracking method that could accom-

modate changes in tempo [37]. Still later, a variety of

methods having even fewer restrictions were proposed

[38–40]. Methods targeting MIDI signals [41,42] have

also progressed significantly in recent years.

Chorus and phrase repetition, music structure On

entering the 2000s, new approaches appeared based

on the detection of similar sections that repeat within a

musical piece (such as a repeating phrase). These led to

methods for extracting the most representative section

of a musical piece (usually the chorus) from one

location [43–45]; music-summarization methods that

shorten a musical piece leaving only main sections

[46,47]; and the RefraiD method that exhaustively

detects all chorus sections [48]. Among these methods,

RefraiD focuses on chorus detection with the capa-

bility of determining the start and end points of every

chorus section regardless of whether a key-change

occurs.

Timbre of musical instruments The second half of the

1990s saw the development of sound-source identifi-

cation methods [49,50] that recognize the musical-

instrument name of each component sound in a

polyphonic sound mixture simultaneously with F0

estimation. This period also saw the development of

methods for estimating the timing of drum sounds in

musical performances [33,34,36,51,52]. Sound-source

identification methods for isolated monophonic sounds

have also been researched from various viewpoints

[53–58].

4. HANDLING METADATA OF
MUSICAL PIECES

To respond directly to end-user demands for flexible

retrieval of music for one’s listening pleasure, much

research has been targeting the extraction and usage of

metadata to enhance the listening of musical pieces or to

facilitate their retrieval. Such metadata include information

on the composers and performers of musical pieces and the

listener’s preferences with regard to those pieces.
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4.1. Utilization

End users find it convenient if they can refer to a list of

music that other people listened to as a basis for selecting

their own music. On the Internet, music-sales sites (e.g.,

Amazon) and music-review sites (e.g., Allmusic) perform

daily collections of metadata including user evaluations

and impressions and purchase history. This information can

be subjected to collaborative filtering to achieve services

that promote the purchasing of music by recommending

artists and albums to users [59–61] and proposing playlists

[62–65] (The original meaning of ‘‘playlist’’ is a broadcast

or concert program of musical pieces but it here means a

list of musical pieces to be played back on a media player

or other device).

4.2. Extraction

Because collaborative filtering by itself cannot easily

deal with unknown new musical pieces, it can be reinforced

with content-based filtering [61]. This makes the music-

understanding methods described in Section 3 all the more

important. Using the results of those methods can aid in the

generation of more appropriate recommendations and

playlists based on the acoustical features and content of

musical pieces.

As an example of using both metadata and acoustical

features, Whitman et al. have developed methods for

detecting artist styles [20] and identifying artists [66] by

combining acoustical features of artist’s musical pieces

with statistical data on words or phrases on WWW pages

that include that artist’s name. Ellis et al., moreover, have

investigated an automatic measure of the similarity

between artists by extracting metadata from lists of similar

artists on a music-review site, from end-user music

collections, and from statistical data on words or phrases

on WWW pages that include artist names [67]. In addition,

Berenzweig et al. have compared similarity based on such

metadata with similarity based on audio signals [68].

4.3. Description and Standardization

While methods for encoding only musical-score in-

formation have already reached a sufficiently practical

level [69], there are currently several XML-based propos-

als for music-description methods (including metadata) and

their standardization. For example, MusicXML [70] and

WEDELMUSIC [71] have been proposed for describing

music at a symbol level including musical-score informa-

tion. Likewise, MPEG-7 Audio [72] has been standardized

for describing metadata related to musical audio signals

such as melody contour and statistical data on the power

spectrum. We expect various research and development

activities conforming to these proposals to appear.

5. CONSIDERING END-USER INTERFACES

To enable end users without detailed knowledge of

music to deal with music on their own terms, it is important

that new types of interfaces be developed since existing

tools designed for musicians are not sufficient for this

purpose.

5.1. Real-World Oriented Approach

To achieve interfaces that can be used naturally without

hassle, we can consider the use of real-world objects

themselves as interfaces. Here, it is important that such an

approach conforms to conventional usage. The musicBot-

tles [73] and FieldMouse [74] are two examples of this

real-world approach. The musicBottles is a music-playback

interface that associates each musical-instrument part in a

musical piece with different glass bottles and then enables

a user to play the sound of any part only when the cap of

that bottle is in the open position. The FieldMouse is an

input device that combines an ID-tag detector such as a

barcode reader with a relative-position detector such as a

mouse. A user can then select musical pieces and adjust the

playback volume, for example, by moving the FieldMouse

through space to read ID-tags that correspond to those

operations.

In conventional listening stations and media players, an

end user who would like to listen to only the chorus section

of a song must search for it himself by pressing the fast-

forward button repeatedly. To make this task easier for

an end user, SmartMusicKIOSK [75] adds a ‘‘NEXT

CHORUS’’ button by employing the RefraiD method [48]

described earlier. Pressing this button forces a jump to the

next chorus section in that song through automatic chorus

detection. This makes it easy for a user to immediately skip

a section (part) of no interest within a song much like the

‘‘NEXT TRACK’’ button on a CD player enables him to

skip a song (track) of no interest.

5.2. Onomatopoeia

Considering that end users will be faced with various

types of music systems in the future, they should be able to

input musical information (such as melody and rhythm)

associated with specific musical pieces. Effective means to

this end include humming (Sect. 2.1) and onomatopoeia as

introduced in the following. A music notation system

‘‘Sutoton Music’’ [76] enables a melody to be described in

text form in the manner of ‘‘do re mii so-mmi re do’’ for

playback on a computer. A drum-pattern retrieval method

by voice percussion (beatboxing) [77] aims to recognize

the drum part of a musical piece that the user utters using

natural sounds like ‘‘dum ta dum-dum ta’’ and to search for

that piece on the basis of that drum part.
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5.3. Communication Tool

It was mentioned earlier that end users do not generally

have much interest in creating music. Nevertheless, if easy-

to-use support functions for creating music could be

embedded in social networking tools (e.g., Orkut), music

might also become a means of communication for end

users.

One example of music systems that place particular

emphasis on inter-user communication is CosTune [78]. In

this system, pads that control different sounds are attached

to a user’s jacket or pants and touching these pads in a

rhythmical manner enables the user to jam with other

nearby users via a wireless network. Another example is

Music Resonator [79], which enables a user to process and

edit annotated fragments of musical pieces and to share that

music with other users for collaborative music productions.

In addition, RemoteGIG [80] enables remotely located

users to jam together along a repetitive chord progression

like 12-bar blues in real time over the Internet despite its

relatively large latency. This system overcomes the net-

work latency by having users listen to each other’s

performance delayed by just one cycle of the chord

progression (several tens of seconds).

6. EXPANDING MUSIC INFORMATION
PROCESSING

There are other interesting themes not introduced in

this paper that are being actively researched in the field of

music information processing. While we have here focused

on topics related to audio signal processing, research into

symbol-level processing including musical scores and

MIDI has also been progressing. For example, there has

been much work on computing similarity between melo-

dies at a symbol level [81] and research on musical

structure and expression in musical performances [82].

Fusion of symbol processing and audio signal processing is

still far from sufficient and will be targeted as an important

issue in the future. Such fusion will bridge a gap between

them and enable symbol processing to be based on proper

symbol grounding and audio signal processing to cover

abstract semantic computing, eventually achieving music

computing that reflects the manifold meaning of music.

The research environment for music information

processing is also expanding. The years 2000 and 2001

saw the construction of the world’s first copyright-cleared

music database ‘‘RWC Music Database’’ that can be used

in common for research purposes [83]. This database

makes it easier to use music for comparing and evaluating

various methods, for corpus-based machine learning, and

for publishing research and making presentations without

conventional copyright restrictions. Considering that

shared databases of various kinds have long been con-

structed in other research fields and have made significant

contributions to their advancement, we anticipate the RWC

Music Database to contribute to the advancement of music

information processing in a similar way.

Ten years ago, it was necessary for us to explain that

music information processing was not ‘‘amusement’’ but a

real research topic. Today, it is common sense to treat it as

an important research field. This field is now experiencing

the birth of large-scale projects one after another, an

increase in international conferences year by year, and an

ever increasing number of researchers. We look forward to

further advances in music information processing research.
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