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ABSTRACT

This paper proposes a new music source separation (MSS)

model based on an architecture with MLP-Mixer that lever-

ages multilayer perceptrons (MLPs). Most of the recent

MSS techniques are based on architectures with CNNs,

RNNs, and attention-based transformers that take wave-

forms or complex spectrograms or both as inputs. For

the growth of the research field, we believe it is impor-

tant to study not only the current established methodolo-

gies but also diverse perspectives. Therefore, since the

MLP-Mixer-based architecture has been reported to per-

form as well as or better than architectures with CNNs

and transformers in the computer vision field despite the

MLP’s simple computation, we report a way to effec-

tively apply such an architecture to MSS as a reusable in-

sight. In this paper we propose a model called TFC-MLP,

which is a variant of the MLP-Mixer architecture that pre-

serves time-frequency positional relationships and mixes

time, frequency, and channel dimensions separately, us-

ing complex spectrograms as input. The TFC-MLP was

evaluated with source-to-distortion ratio (SDR) using the

MUSDB18-HQ dataset. Experimental results showed that

the proposed model can achieve competitive SDRs when

compared with state-of-the-art MSS models.

1. INTRODUCTION

Music source separation (MSS) is the task of obtaining

individual source signals — such as vocals, drums, and

bass — from real music acoustic signals. This is an es-

sential technique for various applications, including music

information retrieval and music listening interfaces, where

the characteristics of individual sound sources are ana-

lyzed and utilized. MSS has actually been used to add

effects to individual source (instrument) sounds for mu-

sic appreciation [1] and adjust their volume [1–4], to im-

prove the cochlear implant user’s musical experience by

adjusting the volume of preferred instruments [5], to syn-

thesize singing voices [6], to acquire feature expressions of

singing voices [7], to identify singers [8], to achieve audio-

to-lyrics alignment [9,10], to create music mashups [11], to
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separate sources for music education [12], and to estimate

compatibility between vocals and accompaniment [13].

Currently, the mainstream approaches for MSS use

deep neural networks [14, 15], and their performance is

improving year by year. For their performance compar-

ison to measure the improvement, MUSDB18 [16] had

been used as the common standard data set for the four

target sound sources (Vocals, Drums, Bass, and Other).

Then MUSDB18-HQ [17], an extended frequency band-

width version of MUSDB18, was released and has been

used for recent evaluations.

As for the current state-of-the-art MSS models, the top-

ranked models [18, 19] in the Music Demixing (MDX)

Challenge 2021 [20] and the two models presented in

two arXiv papers in 2022 [21, 22] have an average SDR

(source-to-distortion ratio) over 7 dB for the four sources

when using MUSDB18-HQ as training, validation, and test

data. These models are explained in the next section.

Such deep MSS models can be classified in terms of the

type of input and output used for separation and the type

of architecture. The input and output of the models are se-

lected from waveforms, amplitude spectrograms, complex

spectrograms, phase spectrograms, etc. The architecture

of the models is mainly selected from ResNet, DenseNet,

U-Net, and Transformer and is used with layers of Con-

volutional Neural Networks (CNNs) or Recurrent Neural

Networks (RNNs). Simpler architectures based on multi-

layer perceptrons (MLPs), however, have not been used in

state-of-the-art MSS models.

Meanwhile, in the field of computer vision, high-

performance architectures based on MLPs have recently

been proposed and reported to perform as well as or bet-

ter than architectures using CNNs or transformers [23,24].

In addition, those simpler MLP-centric architectures have

also been applied in audio-related research, with cases of

singing voice synthesis [25] and speech enhancement [26].

However, such MLP-centric architectures have not been

applied in the MSS domain, though fully connected layers

and MLPs have been used for linear transformation such

as embedding and expansion. Since we believe that new

perspectives, in addition to the development of established

methodologies, are important for the advancement of the

research field, this paper investigates how MLP-based ar-

chitectures can be effectively leveraged for MSS.

As such a modern MLP-centric high-performance ar-

chitecture, Tolstikhin et al. proposed the MLP-Mixer [23]

that applies MLPs to a Tp × Cp matrix to estimate the

840



Table 1. SDRs in MUSDB18-HQ for the state-of-the-art models and our proposed TFC-MLP. The “Avg.” column means

the average of the SDR results for the four sources. The “Per-source” column means that the per-source adjustment/tuning

has been implemented. The “Extra” column indicates the number of songs added as extra training data, and † means that

only mixed sounds were added. Models with “*” are evaluated in MUSDB18 [16], and SDRs for models with “**” are

recalculated in MUSDB18-HQ using the pretrained model. A bold font indicates the maximum value at each source.

Model Test SDR in dB

Name Per-source Extra Avg. Vocals Drums Bass Other

KUIELab-MDX-Net (w/o Demucs) [18]* ✓ 7.28 8.91 7.07 7.33 5.81

TFC-MLP (ours) 7.30 8.91 7.18 6.96 6.14

KUIELab-MDX-Net [18]** ✓ 7.48 8.97 7.20 7.83 5.90

Hybrid Transformer Demucs [22] 7.52 7.93 7.94 8.48 5.72

Hybrid Demucs [19] 7.64 8.35 8.12 8.43 5.65

Band-Split RNN [21] ✓ 8.24 10.01 9.01 7.22 6.70

TFC-MLP (ours) 120 7.78 9.68 7.75 7.23 6.46

Hybrid Demucs [19] 800 8.34 8.75 9.31 9.13 6.18

Hybrid Transformer Demucs [22] 150 8.49 8.56 9.51 9.76 6.13

Hybrid Transformer Demucs [22] 800 8.80 8.93 10.05 9.78 6.42

Band-Split RNN [21] ✓ 1750† 8.97 10.47 10.15 8.16 7.08

Hybrid Transformer Demucs [22] ✓ 800 9.00 9.20 10.08 10.39 6.32

Sparse HT Demucs [22] ✓ 800 9.27 9.37 10.83 10.47 6.41

class of an image. The matrix is obtained by dividing the

image into patches and embedding each patch into a Tp-

dimensional vector, which is called a token, and the num-

ber of tokens is the channel dimension Cp. Here, a token-

mixing MLP, a full connection within an individual token,

and a channel-mixing MLP, a full connection between to-

kens (i.e., channel direction), are applied alternately. Given

sufficient training data, MLP-Mixer was shown to perform

as well as or better than CNNs or transformers.

By extending this MLP-Mixer, for the image recon-

struction task, Mansour et al. proposed the Image-to-Image

Mixer [24] that performs better when trained with fewer

images than the original MLP-Mixer. The Image-to-Image

Mixer transforms images as a 3D tensor (W × H × C)

instead of the 2D matrix (Tp × Cp) and preserves the rel-

ative positions of patches to induce a bias towards natu-

ral images. In other words, the token-mixing MLP and

the channel-mixing MLP are split into three processes

of width-mixing MLP, height-mixing MLP and channel-

mixing MLP. This also keeps the total number of trainable

parameters low, since the size of each dimension of the 2D

matrix (i.e., Tp and Cp) obtained by transformation from

the 3D tensor is relatively large.

In investigating such MLP-based architectures in the

MSS domain, we decided to use a complex spectrogram,

which is a reasonable representation for MSS, as the input.

Since the size of its complex time-frequency representation

is larger than the size of typical images in the computer

vision domain, we apply the memory-efficient Image-to-

Image Mixer to MSS and report its experimental results.

2. RELATED WORK

As described in Section 1, the state-of-the-art models [18,

19, 21, 22] in the MSS study show that the average SDR

score for the four source separations exceeds 7 dB in the

evaluation using MUSDB18-HQ. The SDRs for each of the

four sources based on these models are shown in Table 1.

KUIELab-MDX-Net was proposed by Kim et al. [18].

It is an architecture that combines an extended version

of TFC-TDF-U-Net [27], which separates in the time-

frequency domain (i.e., complex spectrogram), and De-

mucs [28], which separates in the time domain (i.e., wave-

form). Each source signal i separated by those sub-

networks is mixed using source-dependent weights wi.

Specifically, wi was set to 0.5, 0.5, 0.7, and 0.9 for bass,

drums, other, and vocals in MDX Challenge 2021 [20] 1 .

In KUIELab-MDX-Net, to improve performance, a mech-

anism called Mixer was used to remix the music acoustic

signal with the separated signal by using the 1x1 convo-

lution, and different FFT frame sizes were used for each

sound source by applying a frequency cut-off trick [20].

TFC-TDF-U-Net used in the KUIELab-MDX-Net is

a variant of U-Net architecture that combines the time-

frequency convolutions (TFC) block with the time-

distributed fully-connected networks (TDF) block. Here,

TFC is a dense block of 2D CNNs, and TDF is a block that

extracts nonlocal features along the frequency axis, such as

correlations between harmonics, by fully connecting the

entire frequency range of a single frame of the spectro-

gram. TDF was inspired by the Frequency Transformation

Block (FTB) proposed by Yin et al. [29] and was intro-

duced specifically to help separate singing voices [27]. As

the other component of KUIELab-MDX-Net, Demucs [28]

is a U-Net encoder/decoder structure with waveforms as

input and BiLSTM applied to the innermost layer between

the encoder and decoder to provide long-range context.

Hybrid Demucs was proposed by Défossez et al. [19].

It is a bi-U-Net encoder-decoder model that combines 1D

convolution in the time domain and along the frequency

1 https://github.com/kuielab/mdx-net/blob/

Leaderboard_A/README_SUBMISSION.md
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axis in the complex time-frequency domain. BiLSTM and

local attention were used in the innermost layer, and resid-

ual branches, group normalization [30] and GELU were

introduced. In addition, better generalization and stability

were achieved by penalizing the largest singular value in

each layer [31], and overall performance was improved by

bagging multiple models.

Band-Split RNN was proposed by Luo et al. [21]. It is

a state-of-the-art spectrogram-based model that uses com-

plex spectrograms as input and output. By splitting the

complex spectrogram input into subbands specifically de-

signed for each sound source, the intrinsic properties and

patterns of each source signal are utilized. For a 3D ten-

sor representing the time dimension, frequency dimension,

and subband dimension, similar to the Dual-path RNN

[32], a sequence-level RNN is first applied across the time

dimension, then a band-level RNN is applied across the

band dimension. In fact, for Vocals, results showed that the

modified utterance-level SDR can be improved by more

than 2 dB by setting the bandwidth appropriately. In ad-

dition, semi-supervised fine tuning was performed by us-

ing pseudo-targets separated from the mixtures using a pre-

training model in order to make effective use of songs with

only mixtures (1750 songs). The Band-Split RNN cur-

rently achieves a state-of-the-art SDR of 8.24 dB in the

evaluation using only MUSDB18-HQ as training data.

Hybrid Transformer Demucs was proposed by Rouard

et al. [22]. The innermost layer, called the bottleneck,

of the Hybrid Demucs [19] is replaced by a cross-domain

transformer encoder (i.e., time domain and time-frequency

domain) that uses self-attention within each domain and

cross-attention across domains. Compared to the Hy-

brid Demucs, the performance is lower when trained with

MUSDB18-HQ only, but the SDR was 0.46 dB better

when 800 additional training songs were used. Sparse HT

Demucs [22], which extended the receptive field using a

sparse attention kernel, achieved a state-of-the-art result of

9.27 dB SDR by fine-tuning for each source.

As described above, the MLP-centric architecture has

never been applied in state-of-the-art MSS models where

the average SDR exceeds 7 dB on MUSDB18-HQ.

3. TFC-MLP

This paper proposes Time-Frequency-Channel-MLP (TFC-

MLP), which is a model that leverages the Image-to-Image

Mixer architecture [24] to separate music sources using a

complex spectrogram as input. This is realized by replac-

ing the height, width, and color (RGB) in the image with

the time, frequency, and channel in the complex spectro-

gram, respectively. In other words, TFC-MLP has a struc-

ture that alternates mixing in the time, frequency, and chan-

nel dimensions. In this way, we expect to be able to take

into account the nonlocal structure. Especially with respect

to the frequency dimension, we expect to extract nonlocal

relationships along the frequency axis, such as harmonic

structures, by connecting the entire frequency range of the

spectrogram, as in the FTB [29] and the TDF [27].

The process of the TFC-MLP model is shown in Fig-

ure 1. The complex spectrogram XSTFT ∈ C
F0×T0×2 of

a 2-channel (stereo) mixture signal is first converted to a

4-channel 3D tensor XCaC ∈ R
F0×T0×4 with the real and

imaginary parts represented as channels, a.k.a. complex-

as-channels (CaC) [27]. Here T0 is a fixed length. Then, as

with the MLP-Mixer and Image-to-Image Mixer as well as

the Vision Transformer (ViT) [33], the patch embedding is

first performed using C linear weights of size PT ×PF ×4

(Figure 2). This reduces the frequency dimension F0 to

F0/PF and the time dimension T0 to T0/PT , which re-

duces the matrix size and memory consumption in the fol-

lowing frequency-mixing MLP and time-mixing MLP. To

compensate for the information loss due to decreasing the

resolution in the time-frequency plane and the loss of con-

tinuity in the time-frequency direction, we increase the di-

mension in the channel direction.

The embedded tensor then passes through N MLP-

Mixer layers. As shown in Figure 3, each MLP-Mixer

layer mixes the tensor with the frequency dimension, then

the time dimension, and finally the channel dimension.

Such mixing is passed through an MLP consisting of a lin-

ear layer, a GELU nonlinearity, and another linear layer,

and output without changing the tensor size. The dimen-

sion of the tensor at the input/output layer of the MLP is

kept constant, and the dimension at the hidden layer is ad-

justed by multiplying it by a factor f depending on the

input dimension. Skip connections and channel layer nor-

malization have also been added to help with the optimiza-

tion. Here, following the implementation of the Image-to-

Image Mixer [24], skip connections are placed before and

after the two mixing steps of frequency and time (“Type

A”). In addition to that, a version with skip connection and

layer normalization added before time-mixing MLP was

also implemented (“Type B”). After mixing the time, fre-

quency, and channel dimensions, patch expansion is used

to restore the number of time and frequency dimensions for

inverse transformation into waveforms and also to match

the channel dimension to the number of separated sources.

4. EVALUATION

The proposed TFC-MLP was evaluated using the

MUSDB18-HQ dataset [17]. 86 songs were used as train-

ing data, 14 songs as validation data, and 50 songs as test

data. The music acoustic signals were stereo with a sam-

pling frequency of 44.1 kHz, and four sound sources –

“Vocals,” “Drums,” “Bass,” and “Other” – were used for

separation. Separation performance was evaluated by cal-

culating SDR using the museval Python package 2 . As in

most previous studies ( [19, 21], etc.), the SDR of each

source was calculated by taking the median values over all

1-second segments of each song to obtain the SDR of the

track and then taking the median of all tracks.

4.1 Experimental setting

The proposed model was optimized using Adam [34] for

the L1 loss between its separated signals and the ground-

2 https://github.com/sigsep/sigsep-mus-eval
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Figure 1. Overview of the TFC-MLP model.
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Figure 2. Patch embedding. After dividing the CaC tensor

of size F0×T0× 4 into patches of size PF ×PT × 4, each

patch was linearly transformed into 1 × 1 × C to obtain a

3D tensor of size F0/PF × T0/PT ×C (i.e., F × T ×C).

This can be implemented as a nonoverlapping CNN.

truth source signals. The Adam parameters were set as

no weight decay, learning rate 0.0003, β1 = 0.9, and

β2 = 0.999. The waveform for calculating the CaC spec-

trogram to be input to the model was normalized so that

the mean amplitude of the music acoustic signal was 0 and

the standard deviation was 1. The training was distributed

across multiple GPUs, with a batch size of 4 on each GPU.

In training, we used data augmentation techniques [19], in-

cluding pitch shift and tempo stretch, randomly swapping

channels, random sign flip, random scaling of amplitude,

and remixing of stems within one batch.

4.2 Base hyperparameters

Due to the many hyperparameters required for the building

of the proposed TFC-MLP model, hyperparameters related

to the short-time Fourier transform (STFT) were first deter-

mined through preliminary experiments. To obtain XCaC,

the STFT frame size (i.e., FFT size) was chosen as 4096,

which had the highest SDR when compared among 512,

1024, 2048, and 4096. As Kim et al. [18] also stated,

the performance tended to increase with larger FFT size.

Therefore the frequency dimension F0 is 2048. Related to

the FFT size, the STFT hop size was investigated among

128, 256, 512, and 1024, and 1024 was selected. Also re-

lated to the FFT size and STFT hop size, the number of

time frames T0 in the complex spectrogram was selected

as 128 from 32, 64, 128, 256, and 512.

The number of time frames T0 of 128 based on an FFT

size of 4096 and an STFT hop size of 1024 is input to the

model, thus the waveform size required for this is equal

to Tw = 1024 × 128 − 1 (about 3 seconds). Therefore,

it is necessary to train the model while cutting out an ap-

Mixer layer (Type B)

Mixing MLPs

Frequency-mixing MLP

Time-mixing MLP

Channel-mixing MLP

Input dim. Hidden dim. Output dim.

skip connections skip connections skip connections

skip connections skip connections

Layer

norm

Freq.

mixing

Time

mixing

Layer

norm

Channel

mixing

Layer

norm

Layer

norm

Layer

norm

Freq.

mixing

Time

mixing

Channel

mixing

Mixer layer (Type A)

F Ff F
T Tf T
C Cf C

Fully

connected

Fully

connected
GELU

Figure 3. The Mixer layer contains one frequency-mixing

MLP, one time-mixing MLP, and one channel-mixing

MLP. Before each MLP, a transposition is performed to

apply the MLP to the frequency dimension F , the time di-

mension T , and the channel dimension C. Transposition

is also performed before every layer normalization to nor-

malize along the channel dimension C.

proximately 3-second segment of the waveform, and the

shift size of 16384 (about 0.37 seconds) was used. Luo

et al. [21] found that the shorter the shift, the better the

modified utterance-level SDR, and they used 0.5 seconds.

The above 16384 is short enough compared to 0.5 seconds

and can be considered sufficient in this study.

As hyperparameters regarding the model, the dimen-

sions C of the patch embedding were investigated by us.

Specifically, 128 and 256 were investigated and 256 was

selected. As hyperparameters related to the Mixer layer, 8

and 16 were investigated as the number of layers N and 16

was selected, and the parameter f for adjusting the num-

ber of dimensions of the hidden layer of each MLP was

selected as 4 from 1, 2, and 4. Dropout in the MLP [25]

and skip connections before and after the Mixer layer were

also investigated, but they have not yielded better results.

4.3 Experiment

Using the set of hyperparameters determined in Section 4.2

as a basis, we report the SDR scores obtained under the fol-

lowing various conditions for the other hyperparameters.

• Investigation of the results of complex spectrogram

loss [21].
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Table 2. SDRs for different hyperparameters of the proposed model. The “Seed” column indicates random seeds. In the

“Loss” column, “W” indicates that only waveform loss was used, and “W+S” indicates that complex spectral loss was

added. The “Epoch” column indicates the number of epochs with the smallest validation loss and the specified number

of epochs, where “*” means that validation loss was not considered. Note that “†” means the cases where the number of

epochs with the smallest validation loss did not change when training beyond 200 epochs (i.e., the same model was used

for the evaluation). A bold font indicates the maximum value at each source, both without and with extra training songs.

TFC-MLP Test SDR in dB

Type Seed (PF , PT ) Loss Epoch Extra Avg. Vocals Drums Bass Other

A seed 1 (4, 4) W 134† / 200 7.30 8.91 7.18 6.96 6.14

A seed 2 (4, 4) W 166† / 200 7.26 8.84 7.07 6.89 6.22

A seed 3 (4, 4) W 109 / 200 6.97 8.32 6.98 6.57 5.99

A seed 3 (4, 4) W 283 / 300 6.93 8.49 6.80 6.55 5.87

B seed 1 (4, 4) W 190 / 200 7.17 8.92 6.95 6.83 5.96

B seed 2 (4, 4) W 191 / 200 7.02 8.59 6.78 6.68 6.01

B seed 3 (4, 4) W 157 / 200 6.95 8.56 6.58 6.73 5.91

A seed 1 (2, 2) W 189 / 200 7.13 8.58 7.02 6.99 5.91

A seed 1 (1, 1) W 175 / 200 6.38 7.40 6.33 6.49 5.30

A seed 1 (4, 4) W+S 197 / 200 6.83 8.76 6.60 6.14 5.83

A seed 1 (4, 4) W+S 253 / 300 6.72 8.39 6.69 6.02 5.79

A seed 1 (4, 4) W 142 / 200 120 7.71 9.42 7.66 7.37 6.39

A seed 1 (4, 4) W 200* / 200 120 7.78 9.68 7.75 7.23 6.46

Table 3. The number of model parameters and the average

Real Time Factor (RTF) value. The Hybrid Transformer

Demucs is denoted as “HT Demucs”. Column “GPU”

shows the RTF with a single GPU, and column “CPU”

shows the RTF under the condition without a GPU.

Model GPU CPU Params.

Hybrid Demucs 0.14 1.87 83.9 M

HT Demucs 0.17 2.55 26.9 M

TFC-MLP 0.51 12.28 43.2 M

• Investigation of patch size (PF , PT ) between (4, 4),

(2, 2), and (1, 1), using (4, 4) as the basis, halving

the FFT size and time dimension T for (2, 2), and

halving it further for (1, 1). For (1, 1), the STFT hop

size was set to 512 since the FFT size is 1024.

• The number of epochs for training was set to 200

or 300, and models with the smallest validation loss

within each epoch-condition were evaluated.

• The results of adding 120 full-length songs (sung in

English) to the training data were evaluated.

• For the basic parameter condition, we trained three

times with different random seeds.

In the test phase, the model with the smallest validation

loss was used for evaluation in each training condition. The

signal separated by the proposed model was divided into

segments of fixed length Tw with shift width Tw/4, which

were weighted overlap-added to obtain the final signal. In

addition, the shift trick [28] was performed 10 times.

4.4 Results and discussions

In addition to the evaluation of SDRs using the

MUSDB18-HQ test set, the number of parameters and the

Real Time Factor (RTF) will also be discussed, as file size

and the time required for separation may be important in

some situations depending on how the MSS model is used.

4.4.1 SDRs

The experimental results are shown in Table 2. The high-

est SDR score, up to 7.30 dB, was obtained for the Type

A model using the patch size of (4, 4) and waveform L1

loss in addition to the base hyperparameters. This was not

significantly higher than the state-of-the-art values shown

in Table 1, but close performance was achieved.

Focusing on the results for each source with respect to

our TFC-MLP, as shown in Table 1, the SDRs for Vocals

and Other were 8.91 dB and 6.14 dB, respectively, which

were higher than the 8.35 dB and 5.65 dB SDRs for the

Hybrid Demucs and the 7.93 dB and 5.72 dB SDRs for

the Hybrid Transformer Demucs. This model’s SDR score

for Other also exceeded the one obtained using KUIELab-

MDX-Net, 5.90. Here, in comparison to the KUIELab-

MDX-Net results without waveform information (i.e., ex-

cluding processing by Demucs), it is possible that similar

or better performance was obtained for Drums and Vocals,

although an exact comparison cannot be made because the

test data is different (i.e., MUSDB18 was used). In com-

parison to the Band-Split RNN results, TFC-MLP could

not yield a higher SDR for all sound sources. However,

the current TFC-MLP does not include a source-specific

framework, so addressing this issue is a future challenge.

As for the patch size, the FFT size and other condi-

tions were different due to memory capacity. Therefore, al-

though exact comparisons are not possible, the best results

were obtained for (4, 4) in the current results. However, ad-

ditional study is needed for (2, 2), since it gave results sim-

ilar to those given by (4, 4). As for complex spectrogram
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loss, its SDR was slightly lower than that of all conditions

using only waveform loss. Not only comparisons using the

real and imaginary parts of the complex numbers, but also

losses based on amplitude and phase could be considered.

We also showed that the performance of the models was

further improved by using additional training data. As

shown in Table 1, compared to the current world’s best

model Sparse HT Demucs with 800 songs added as the

training data, we obtained competitive results with an SDR

of 9.68 dB for the Vocals and 6.46 dB for the Others.

4.4.2 RTF and the number of parameters

As comparison, models were trained for each of the Hy-

brid Demucs and Hybrid Transformer Demucs. Based

on the published source codes, a model parameter setting

“80a68df8” 3 was used for Hybrid Demucs, and the default

parameter setting was used for Hybrid Transformer De-

mucs. The same implementation for audio synthesis was

used for all TFC-MLP, Hybrid Demucs, and Hybrid Trans-

former Demucs. We used the 50 songs in the MUSDB18-

HQ test set to obtain the average of their RTFs.

Table 3 shows the results. The RTF values of TFC-MLP

were slower than the other two models. TFC-MLP had an

RTF lower than 1.0 (faster than real time) when a GPU

was used, but the computation time was long without GPU.

This could be due to the large size of the time-frequency

spectrogram. As for the number of model parameters,

TFC-MLP had more parameters than Hybrid Transformer

Demucs, but fewer parameters than Hybrid Demucs.

4.4.3 Comparison with the state-of-the-art models

The proposed TFC-MLP model has some similarities to

the state-of-the-art MSS models, which potentially have

led to the competitive performance achieved.

• The frequency-mixing MLP is similar to the full

connection of frequency dimensions in TDF [27]

and the band-level RNN applied across band dimen-

sions in Band-Split RNN [21].

• The time-mixing MLP is similar to the sequence-

level RNNs applied across time dimensions in Band-

Split RNN [21].

• Increasing the number of the channel dimensions

through patch embedding and increasing the number

of hidden layer dimensions in MLP are techniques

that are usually used regardless of MSS. For MSS,

the improvement is potentially related to the increase

in channel dimensionality in the encoder part, such

as Hybrid Transformer Demucs [22].

• The extra training data improved performance in the

state-of-the-art models, and we confirmed the per-

formance improvement with extra training data in

TFC-MLP as well.

On the other hand, the following are included in the

existing state-of-the-art MSS models but not currently in-

cluded in our TFC-MLP. They have the potential to im-

prove performance when applied in the future.

3 https://github.com/facebookresearch/demucs/

blob/main/docs/training.md

• As presented by Défossez et al. [19] and Kim

et al. [18], a hybrid approach that also considers

waveforms could improve performance.

• As Kim et al. [18], Luo et al. [21], and Rouard

et al. [22] have shown, the introduction of source-

specific techniques, such as band splitting, could im-

prove separation performance.

• Deep learning techniques such as model selection

methods (e.g., exponential moving average), train-

ing stabilization (e.g., singular value decomposition

and sparsification), and the introduction of a learning

rate scheduler could further improve performance.

Finally, to the best of our knowledge, there are no stud-

ies that mix the channel dimension with the time and fre-

quency dimensions as in TFC-MLP. Such a mixer layer

used in the TFC-MLP architecture has the advantage of re-

ducing the overall memory usage compared to the original

MLP-Mixer, just as the Image-to-Image Mixer reduced the

memory usage. This reusable insight of mixing the chan-

nel dimension separately could be useful for other studies

that have dealt with the time and frequency dimensions so

far, but could be extended to the channel dimension.

4.4.4 Future directions

As future work, we plan to improve the performance of

TFC-MLP by incorporating the ideas discussed above and

further exploring more optimal hyperparameters. For ex-

ample, increasing the FFT window size by utilizing fre-

quency cut-off trick [20] is expected to improve the perfor-

mance. Automatic optimization of hyperparameters could

also be incorporated.

Future work will also include the visualization of the

inside of TFC-MLP for analysis. We could visualize the

linear weights used in the patch embedding by converting

them back to complex numbers and then calculating their

amplitudes. The visualized results could allow us to ana-

lyze what local patterns the model is focusing on. How-

ever, when we tried it, it was difficult to understand the

behavior of the mixer layer due to the mixing of real and

imaginary parts during the patch embedding. We are there-

fore interested in using the amplitude and phase (group de-

lay) instead of the real and imaginary parts so that we can

analyze the model in a more comprehensive way.

5. CONCLUSION

This paper has described a new MSS architecture called

TFC-MLP that uses complex spectrograms as input. Our

contributions are summarized as follows:

(1) We proposed a simpler MLP-centric MSS architecture

that achieves competitive performance compared to

state-of-the-art models.

(2) We reported on some hyperparameter searches that

will be useful for other researchers exploring this

type of architecture.

(3) We discussed the similarities and differences between

the state-of-the-art models and TFC-MLP, and sug-

gested directions for future research.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

845



6. ACKNOWLEDGMENTS

This work was supported in part by JST CREST Grant

Number JPMJCR20D4 and JSPS KAKENHI Grant Num-

ber JP21H04917, Japan.

7. REFERENCES

[1] J. Woodruff, B. Pardo, and R. Dannenberg, “Remixing

stereo music with score-informed source separation,”

in Proc. the 7th International Conference on Music In-

formation Retrieval (ISMIR 2006), 2006, pp. 314–319.

[2] O. Gillet and G. Richard, “Extraction and remixing of

drum tracks from polyphonic music signals,” in Proc.

the 2005 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA 2005),

2005, pp. 315–318.

[3] K. Yoshii, M. Goto, and H. G. Okuno, “INTER:D: A

drum sound equalizer for controlling volume and tim-

bre of drums,” in Proc. the 2nd European Workshop

on the Integration of Knowledge, Semantic and Digi-

tal Media Technologies (EWIMT 2005), 2005, pp. 205–

212.

[4] K. Itoyama, M. Goto, K. Komatani, T. Ogata, and H. G.

Okuno, “Instrument equalizer for query-by-example

retrieval: Improving sound source separation based on

integrated harmonic and inharmonic models,” in Proc.

the 9th International Conference of Music Information

Retrieval (ISMIR 2008), 2008, pp. 133–138.

[5] J. Pons, J. Janer, T. Rode, and W. Nogueira, “Remixing

music using source separation algorithms to improve

the musical experience of cochlear implant users,” The

Journal of the Acoustical Society of America, vol. 140,

no. 6, pp. 4338–4349, 2016.

[6] Y. Ren, X. Tan, T. Qin, J. Luan, Z. Zhao, and T.-Y. Liu,

“DeepSinger: Singing voice synthesis with data mined

from the web,” in Proc. the 2020 ACM SIGKDD In-

ternational Conference on Knowledge Discovery and

Data Mining (KDD 2020), 2020, pp. 1979–1989.

[7] H. Yakura, K. Watanabe, and M. Goto, “Self-

supervised contrastive learning for singing voices,”

IEEE/ACM Trans. on Audio Speech and Language Pro-

cessing, vol. 30, pp. 1614–1623, 2022.

[8] B. Sharma, R. K. Das, and H. Li, “On the importance

of audio-source separation for singer identification in

polyphonic music,” in Proc. the 20th Annual Confer-

ence of the International Speech Communication As-

sociation (Interspeech 2019), 2019, pp. 2020–2024.

[9] H. Fujihara, M. Goto, J. Ogata, and H. G. Okuno,

“LyricSynchronizer: Automatic synchronization sys-

tem between musical audio signals and lyrics,” IEEE

Journal of Selected Topics in Signal Processing, vol. 5,

no. 6, pp. 1252–1261, 2011.

[10] L. Ou, X. Gu, and Y. Wang, “Transfer learning of

wav2vec 2.0 for automatic lyric transcription,” in Proc.

the 23rd International Society for Music Information

Retrieval Conference (ISMIR 2022), 2022, pp. 187–

195.

[11] J. Huang, J.-C. Wang, J. B. L. Smith, X. Song, and

Y. Wang, “Modeling the compatibility of stem tracks

to generate music mashups,” in Proc. the Thirty-Fifth

AAAI Conference on Artificial Intelligence (AAAI-21),

2021, pp. 187–195.

[12] E. Cano, G. Schuller, and C. Dittmar, “Pitch-informed

solo and accompaniment separation towards its use in

music education applications,” EURASIP Journal on

Advances in Signal Processing, vol. 2014, no. 23, pp.

1–19, 2014.

[13] T. Nakatsuka, K. Watanabe, Y. Koyama, M. Hamasaki,

M. Goto, and S. Morishima, “Vocal-accompaniment

compatibility estimation using self-supervised and

joint-embedding techniques,” IEEE Access, vol. 9, pp.

101 994–102 003, 2021.

[14] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis,

D. FitzGerald, and B. Pardo, “An overview of lead

and accompaniment separation in music,” IEEE/ACM

Trans. on Audio Speech and Language Processing,

vol. 26, no. 8, pp. 1307–1335, 2018.

[15] C. Gupta, H. Li, and M. Goto, “Deep learning ap-

proaches in topics of singing information processing,”

IEEE/ACM Trans. on Audio Speech and Language Pro-

cessing, vol. 30, pp. 2422–2451, 2022.

[16] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and

R. Bittner, “The MUSDB18 corpus for music separa-

tion,” https://doi.org/10.5281/zenodo.1117372.

[17] ——, “MUSDB18-HQ - an uncompressed version of

MUSDB18,” https://doi.org/10.5281/zenodo.3338373.

[18] M. Kim, W. Choi, J. Chung, D. Lee, and S. Jung,

“KUIELab-MDX-Net: A two-stream neural network

for music demixing,” in Proc. Music Demixing Work-

shop 2021 (MDX 2021), 2021, pp. 1–7.

[19] A. Défossez, “Hybrid spectrogram and waveform

source separation,” in Proc. Music Demixing Workshop

2021 (MDX 2021), 2021, pp. 1–11.

[20] Y. Mitsufuji, G. Fabbro, S. Uhlich, F.-R. Stöter, A. Dé-

fossez, M. Kim, W. Choi, C.-Y. Yu, and K.-W. Cheuk,

“Music demixing challenge 2021,” Front. Sig. Proc.,

2022.

[21] Y. Luo and J. Yu, “Music source separation with band-

split rnn,” CoRR, arXiv:2209.15174, pp. 1–10, 2022.

[22] S. Rouard, F. Massa, and A. Défossez, “Hybrid

transformers for music source separation,” CoRR,

arXiv:2211.08553, pp. 1–5, 2022.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

846



[23] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer,

X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Key-

sers, J. Uszkoreit, M. Lucic, and A. Dosovitskiy,

“MLP-Mixer: An all-MLP architecture for vision,” in

Proc. the 35th Conference on Neural Information Pro-

cessing Systems (NeurIPS 2021), 2021, pp. 24 261–

24 272.

[24] Y. Mansour, K. Lin, and R. Heckel, “Image-to-

Image MLP-Mixer for image reconstruction,” CoRR,

arXiv:2202.02018, pp. 1–15, 2022.

[25] J. Tae, H. Kim, and Y. Lee, “MLP Singer: Towards

rapid parallel korean singing voice synthesis,” in Proc.

the 2021 IEEE International Workshop on Machine

Learning for Signal Processing (MLSP 2021), 2021,

pp. 1–6.

[26] H. Song, M. Kim, and J. W. Shin, “Speech enhance-

ment using mlp-based architecture with convolutional

token mixing module and squeeze-and-excitation net-

work,” IEEE Access, vol. 10, pp. 119 283–119 289,

2022.

[27] W. Choi, M. Kim, J. Chung, D. Lee, and S. Jung, “In-

vestigating U-Nets with various intermediate blocks

for spectrogram-based singing voice separation,” in

Proc. the 21st International Society for Music Infor-

mation Retrieval Conference (ISMIR 2020), 2020, pp.

192–198.

[28] A. Défossez, N. Usunier, L. Bottou, and F. R. Bach,

“Music source separation in the waveform domain,”

CoRR, arXiv:1911.13254, pp. 1–16, 2021.

[29] D. Yin, C. Luo, Z. Xiong, and W. Zeng, “PHASEN: A

phase-and-harmonics-aware speech enhancement net-

work,” in Proc. the The Thirty-Fourth AAAI Confer-

ence on Artificial Intelligence (AAAI-20), 2020, pp.

9458–9465.

[30] Y. Wu and K. He, “Group normalization,” in Proc. the

15th European Conference on Computer Vision (ECCV

2018), 2018, pp. 3–19.

[31] Y. Yoshida and T. Miyato, “Spectral norm regulariza-

tion for improving the generalizability of deep learn-

ing,” CoRR, arXiv:1705.10941, pp. 1–12, 2017.

[32] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN:

efficient long sequence modeling for time-domain

single-channel speech separation,” in Proc. the 2020

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP 2020), 2020, pp. 46—

-50.

[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-

senborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and

N. Houlsby, “An image is worth 16x16 words: Trans-

formers for image recognition at scale,” in Proc. the

Ninth International Conference on Learning Represen-

tations (ICLR 2021), 2021.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochas-

tic optimization,” in Proc. the 3rd International Con-

ference on Learning Representations (ICLR 2015),

2015, pp. 1–15.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

847


