Music Source Separation (MSS) with MLP Mixing of Time, Frequency, and Channel

Tomoyasu Nakano Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST), Japan

Introduction

- Music source separation (MSS) is the task of obtaining individual source signals (e.g., vocals and drums) from real music acoustic signals.
- This is an essential technique for various applications, including MIR.
- Currently, the mainstream approaches for MSS use deep neural networks, and their performance is improving year by year.
- Such deep MSS models can be classified in terms of the type of input and output used for separation and the type of architecture.
 - ✓ The input and output are selected from waveforms, amplitude spectrograms, complex spectrograms, phase spectrograms, etc.
 - The architecture is mainly selected from ResNet, DenseNet, U-Net, and Transformer and is used with layers of Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs).
 - ✓ Simpler architectures based on multilayer perceptrons (MLPs) have not been used in state-of-the-art MSS models.
- In the field of computer vision, high performance architectures based on MLPs have recently been proposed and reported to perform as well as or better than architectures using CNNs or Transformers [Tolstikhin+2021, Mansour+2022].

Since we believe that new perspectives are important for the advancement of the research field, this paper investigates how MLP-based architectures can be effectively leveraged for MSS.

MSS models based on CNNs, RNNs, and attention-based Transformers

Proposed model: Time-Frequency-Channel-MLP (TFC-MLP)

This is a model that leverages the Image-to-Image Mixer architecture [Mansour+2022] to separate music sources using a complex spectrogram as input.

- In order to be able to consider local features suitable for MSS, we implemented a function that allows the patch size to be changed vertically and horizontally.
- ✓ In addition to that, a version with skip connection and layer normalization added before time-mixing MLP was also implemented (called "Type B").

Patch

Patch

Vocals

Overview of frequency/ time/ channel-mixing MLPs

TFC-MLP has a structure that alternates mixing in the frequency, time, and channel dimensions.

- We expect to be able to take into account the nonlocal structure.
 - ✓ e.g., to extract nonlocal relationships along the frequency axis, such as harmonic structures, by connecting the entire frequency range
- For MSS, to the best of our knowledge, there are no studies that mix the channel dimension as in TFC-MLP.
 - Such a mixer layer used in the TFC-MLP architecture has the advantage of reducing the overall memory usage compared to applying the original MLP-mixer architecture, just as the Image-to-Image Mixer reduced the memory usage.

Evaluation settings & Results

- Using the MUSDB18-HQ dataset (44.1kHz) [Rafii+2019]
 Training: 86 songs / Valid: 14 songs / Test: 50 songs
 - Iraining: 86 songs / Valid: 14 songs / lest: 50 songs
- TFC-MLP provides competitive results to the SoTA MSS models

TFC-MLP (Type A) outperformed

✓ C:256

✓ f:4

STFT frame size: 4096

✓ STFT hop size: 1024

✓ Time frames: 512

Two different implementations of the mixer layer

The Mixer layer contains one frequency-mixing MLP, one time-mixing MLP, and one channel-mixing MLP.

Type A (Original): Same as the implementation in [Mansour+2022]

Type B (Variant): We expected that the additional skip connections and layer norm would help optimize and yield higher performance.

Mixing MLPs

The dimension at the hidden layer is adjusted by multiplying it by a factor *f* depending on the input dimension.

Comparison with the state-of-the-art models

SDRs in MUSDB18-HQ (+extra training data)

Model	Avg.	Vocals	Drums	Bass	Other
TFC-MLP: Type A (ours) 120	7.78	9.68	7.75	7.23	6.46
Hybrid Demucs 800	8.34	8.75	9.31	9.13	6.18
Hybrid Transformer Demucs 150	8.49	8.56	9.51	9.76	6.13
Hybrid Transformer Demucs 800	8.8	8.93	10.05	9.78	6.42
Band-Split RNN 1750	8.97	10.47	10.15	8.16	7.08
Hybrid Transformer Demucs 800	9	9.2	10.08	10.39	6.32
Sparse HT Demucs 800	9.27	9.37	10.83	10.47	6.41

- TFC-MLP has some similarities to the SoTA MSS models, which potentially have led to the competitive performance achieved ✓ Extract nonlocal relationships
 - The frequency-mixing MLP is similar to the full connection of frequency dimensions in TDF [Choi+2020] and the band-level RNN applied across band dimensions in Band-Split RNN [Luo+2022]
 - The time-mixing MLP is similar to the sequence-level RNNs applied across time dimensions in Band-Split RNN [Luo+2022]
 - ✓ <u>Extract local relationships</u>
 - The patch embedding is related to the increase in channel dimensionality in the encoder part, such as Hybrid Transformer Demucs [Rouard+2022]
 - The channel-mixing MLP is similar to 1x1 convolution used in KUIELab-MDX-Net [Kim+2021] to enhance the independently estimated sources

Contributions

- 1. We proposed a simpler MLP-centric MSS architecture that achieves competitive performance compared to state-of-the-art models
- 2. We discussed the similarities and differences between the state-of-theart models and TFC-MLP, and suggested directions for future research