
Motivation
• Decomposing a sound mixture into a linear

combination of instrumental sources is a well-

established MIR task

• However, current brain decoding models only classify

musical instruments from single- or a few notes [1,2],

or via attention deployment to a given source [3,4]

• We show that instrument sources in natural music can

be decoded from human auditory cortex activity using

functional magnetic resonance imaging (fMRI)
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Experiment
• 96 loudness-normalised stimuli were derived from the

first 15s of the chorus in 24 unreleased pop/rock songs

separated into four sources using Demucs v4 [5]:

• Drums

• Vocals

• Instrumentals (= bass + others)

• Mixed (= drums + vocals + instrumentals)

• Brain activity from 24 healthy adults was recorded

using 3T MRI scanner during stimulus presentation

Results
Brain decoders

• ConvNeXt [6]-inspired CNN

• Random forest (RF)

• Support vector machine (SVM)

Four-way classification

Source recognition

Conclusions

acc = accuracy, auc = ROC AUC; l/r/l+r =

left/right/bilateral; AC = auditory, PV = primary

visual, SM = somatosensory-motor cortices

• Spatial representations in the human auditory cortex activity provide useful

information across classifiers towards decoding different instrument sources

• High performance in recognising vocals suggests enhanced perceptual

sensitivity towards vocal information during music listening

• Future work could exploit neural representations as an alternative to subjective

tests such as MUSHRA or MOS

(using leave-one-subject-out cross-validation)
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