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activity with tMRI

Vincent K.M. Cheung?!, Lana Okuma?, Kazuhisa Shibata?,
Kosetsu Tsukuda3, Masataka Goto?3, Shinichi Furuyal

1 Sony Computer Science Laboratories, Tokyo, 2 RIKEN Center for Brain Science,

@t Raes

sony CsL a4 AIST

3 National Institute of Advanced Industrial Science and Technology (AIST), Japan

Motivation

ReS U |tS (using leave-one-subject-out cross-validation)

INnto a linear
s a well-

Decomposing a sound mixture
combination of Instrumental sources
established MIR task

However, current brain decoding models only classify
musical instruments from single- or a few notes [1,2],
or via attention deployment to a given source [3,4]

We show that instrument sources Iin natural music can
be decoded from human auditory cortex activity using
functional magnetic resonance imaging (fMRI)

Experiment

96 loudness-normalised stimuli were derived from the
first 15s of the chorus in 24 unreleased pop/rock songs
separated into four sources using Demucs v4 [5]:

* Drums

* \ocals

* Instrumentals (= bass + others)

* Mixed (= drums + vocals + instrumentals)

Brain activity from 24 healthy adults was recorded
using 3T MRI scanner during stimulus presentation

Brain decoders
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Conclusions

Spatial representations Iin the human auditory cortex activity provide useful
Information across classifiers towards decoding different instrument sources

High performance In

recognising vocals suggests enhanced perceptual

sensitivity towards vocal information during music listening

Future work could exploit neural representations as an alternative to subjective

tests such as MUSHRA or MOS

visual, SM = somatosensory-motor cortices
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