Decoding drums, instrumentals, vocals, and mixed sources in music using human brain activity with fMRI

Vincent K.M. Cheung¹, Lana Okuma², Kazuhisa Shibata², Kosetsu Tsukuda³, Masataka Goto³, Shinichi Furuya¹

¹ Sony Computer Science Laboratories, Tokyo, ² RIKEN Center for Brain Science, ³ National Institute of Advanced Industrial Science and Technology (AIST), Japan

Image: Sony CSL Image: CSL

Motivation

- Decomposing a sound mixture into a linear combination of instrumental sources is a wellestablished MIR task
- However, current brain decoding models only classify musical instruments from single- or a few notes [1,2], or via attention deployment to a given source [3,4]
- We show that instrument sources in natural music can be decoded from human auditory cortex activity using

Experiment

- 96 loudness-normalised stimuli were derived from the first 15s of the chorus in 24 unreleased pop/rock songs separated into four sources using Demucs v4 [5]:
 - Drums
 - Vocals
 - Instrumentals (= bass + others)
 - Mixed (= drums + vocals + instrumentals)
- Brain activity from 24 healthy adults was recorded

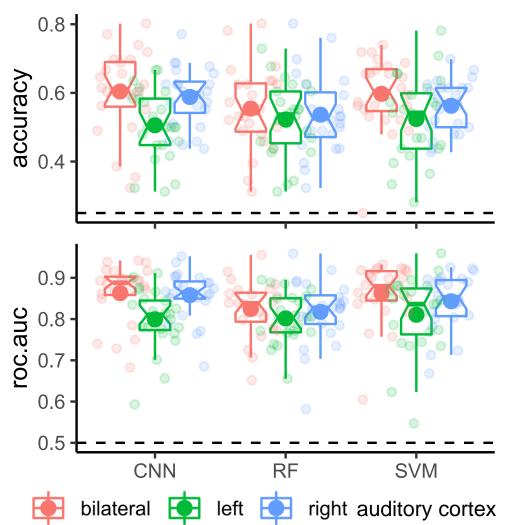
functional magnetic resonance imaging (fMRI)

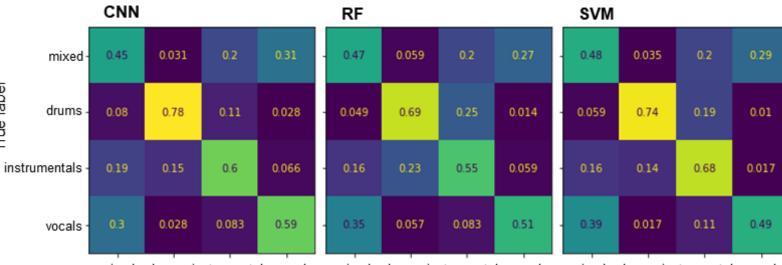
nce imaging (fMRI) using 3T MRI scanner during stimulus presentation

Results (using leave-one-subject-out cross-validation)

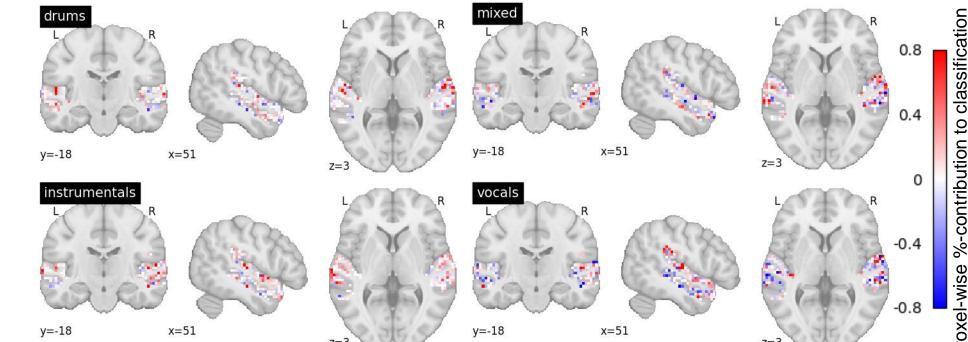
Frue lab

Four-way classification

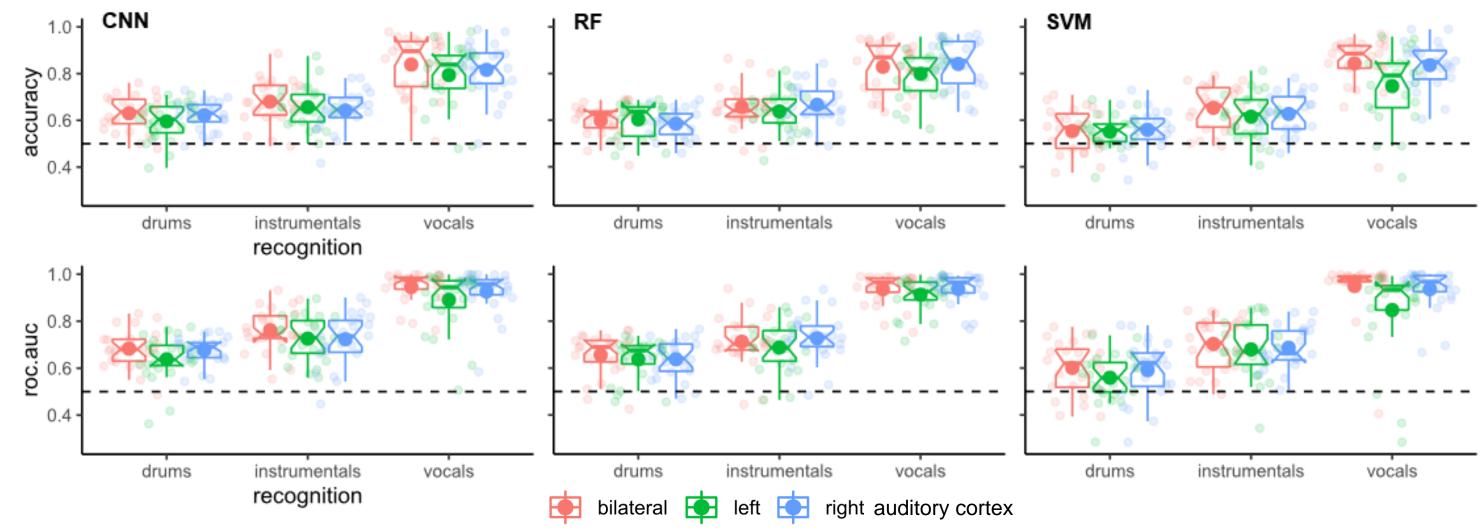




mixed drums instrumentals vocals mixed drums instrumentals vocals mixed drums instrumentals vocals Predicted label

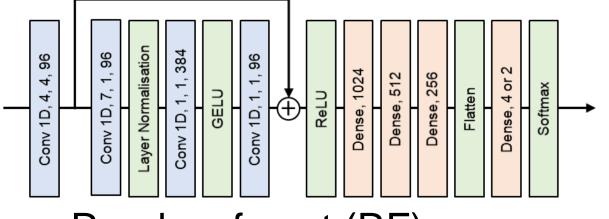


Source recognition



Brain decoders

ConvNeXt [6]-inspired CNN



- Random forest (RF)
- Support vector machine (SVM)

	CNN		RF		SVM	
	acc	auc	acc	auc	acc	auc
Four-way	y classif	ication				
lAC	.506	.799	.523	.802	.524	.810
r AC	.588	.858	.536	.817	.563	.843
l+rAC	.604	.863	.554	.824	.597	.863
l+rPV	.301	.560	.319	.554	.253	.510
l+r SM	.304	.547	.332	.550	.276	.554
Drums re	ecogniti	on				
lAC	.595	.638	.603	.637	.550	.559
r AC	.622	.677	.586	.638	.559	.591
l+rAC	.630	.683	.599	.655	.553	.601
l+rPV	.507	.505	.528	.533	.526	.531
l+r SM	.517	.544	.530	.545	.490	.500
Instrume	ntals re	cognitio	n			
lAC	.656	.726	.638	.688	.615	.679
r AC	.642	.723	.666	.727	.627	.687
l+rAC	.680	.762	.657	.712	.652	.703
l+rPV	.577	.593	.585	.611	.495	.509
l+r SM	.558	.576	.580	.600	.517	.553
Vocals re	cognitie	on				

lAC.891 .913 .746 .847 .794 .799 .937 .926 .841 .836 r AC .816 .936 .829 .936 .950 l+rAC.839 .946 .843 .527 .525 l+rPV.527 .541 .495 .502 .516 .581 l+rSM.544 .563 .516 .552 acc = accuracy, auc = ROC AUC; I/r/I+r = left/right/bilateral; AC = auditory, PV = primary

visual, SM = somatosensory-motor cortices

References

[1] Paquette, et al., "Cross-classification of musical and vocal emotions in the auditory cortex," *Annals of the New York Academy of Sciences*, vol. 1423, no. 1, pp. 329–337, 2018.

[2] Ogg, et al., "Separable neural representations of sound sources: Speaker identity and musical timbre," *NeuroImage*, vol. 191, pp. 116–126, 2019.
[3] Cantisani, et al., "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music," in Proceedings of the Speech, Music and Mind (SMM), Satellite Workshop of Interspeech 2019, 2019.

[4] Cantisani, et al., "Neuro-steered music source separation with eeg-based auditory attention decoding and contrastive-nmf," in *Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing*, ser. ICASSP 2021, 2021.

[5] Rouard, et al., "Hybrid transformers for music source separation," in *Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing*, ser. ICASSP 2023, 2023.

[6] Liu, et al., "A convnet for the 2020s," in *Proceedings of the IEEE/CVF* conference on computer vision and pattern recognition, 2022, pp. 11 976–11 986.

Conclusions

- Spatial representations in the human auditory cortex activity provide useful information across classifiers towards decoding different instrument sources
- High performance in recognising vocals suggests enhanced perceptual sensitivity towards vocal information during music listening
- Future work could exploit neural representations as an alternative to subjective tests such as MUSHRA or MOS