Transformer-Based Beat Tracking with Low-Resolution Encoder and High-Resolution Decoder

Tian Cheng and Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST), Japan

1. Introduction

We address the beat tracking task which is to predict beat times corresponding to the input audio.

Motivation

- To produce good results, the model needs to consider both local timing and global consistency.
- This brings a contradiction on choosing the temporal resolution.

3. Experiment

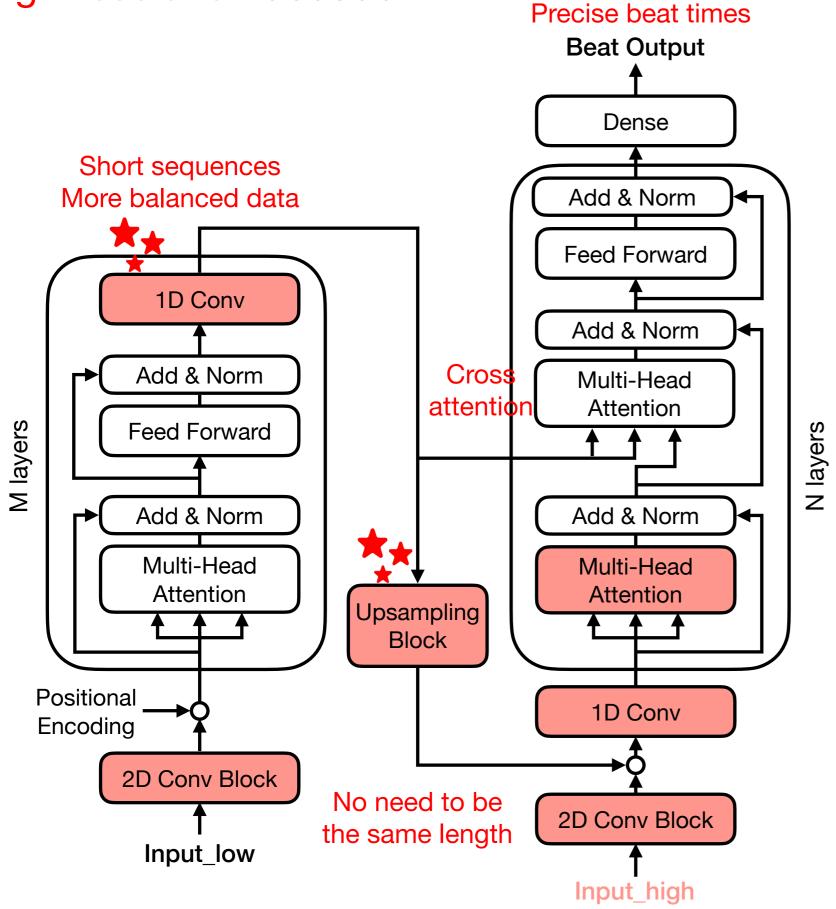
Data augmentation

- Tempo-wise
- Triple data using HPSS

Training

Train the model with the pre-trained encoder

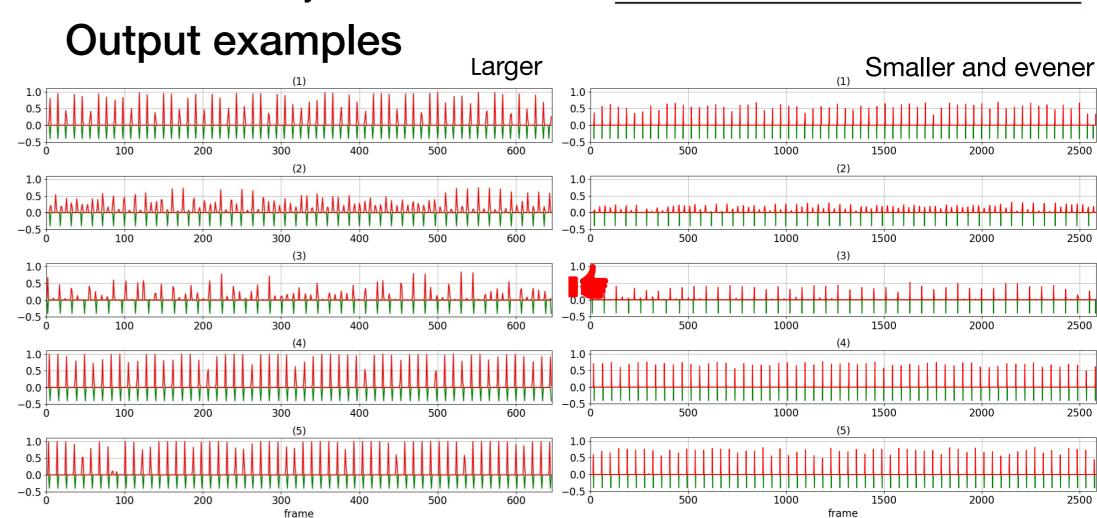
Results


- Impressive results on the encoder by thresholding only.
- The decoder improves results of the Ballroom and GTZAN datasets.
- Post-processing (DBN) improves results especially

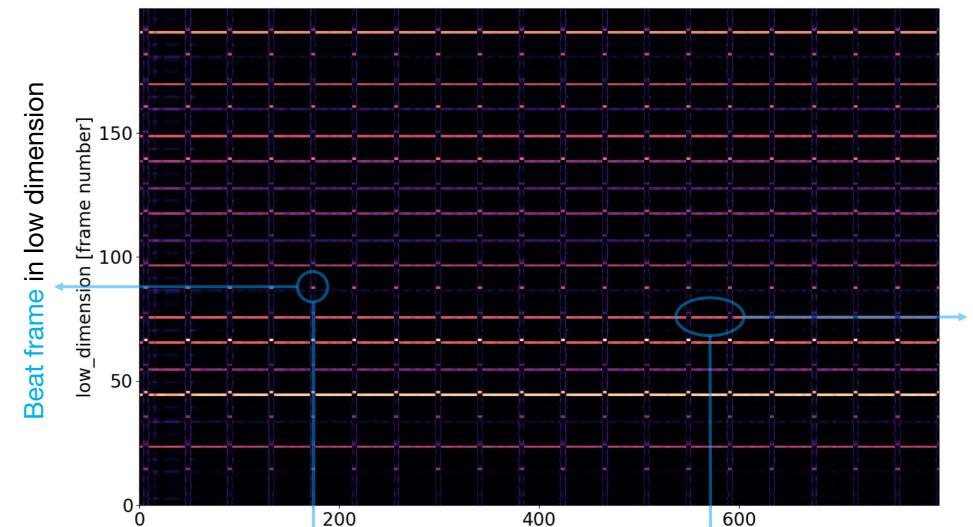
2						
Method	F-measure	CMLt	AMLt			
Da	taset: Ballro	om				
Encoder (Th)	90.7	80.1	85.7			
Encoder	93	87.4	96.1			
Decoder (Proposed)	95	91.1	96.4			
Beat trans [9]	96.8	95.4	96.6			
TF trans [8]	96.2	93.9	96.7			
TCN [7]	96.2	94.7	96.1			
Dataset: Hainsworth						
Encoder (Th)	84.4	66.7	81.8			
Encoder	88.2	81	93.4			
Decoder (Proposed)	87	76.2	93.6			
Beat trans [9]	90.2	84.2	91.8			
TF trans [8]	87.7	86.2	91.5			
TCN [7]	90.4	85.1	93.7			
]	Dataset: SMC	C				
Encoder (Th)	53.9	32.9	45.6			
Encoder	55	45.8	64.1			
Decoder (Proposed)	55.4	45.1	65.6			
Beat trans [9]	59.6	45.6	63.5			
TF trans [8]	60.5	51.4	66.3			
TCN [7]	55.2	46.5	64.3			
Da	ataset: GTZA	N				
Encoder (Th)	87.1	72.8	85.5			
Encoder	87.8	78.5	93.7			
Decoder (Proposed)	88.4	80.8	94			
Beat trans [9]	88.5	80	92.2			
TF trans [8]	88.7	81.2	92			

Low resolution	short sequences, more balanced data, no precise beat times			
High resolution	long sequences, imbalanced data, precise beat times			

2. Proposed model


A novel beat tracking model based on the Transformer with low-resolution encoder and high-resolution decoder.

for continuity-based ones.


IF trans [8]	88.7	81.2	92	
TCN [7]	88.5	81.3	93.1	

Decoder output

Cross Attention Visualisation

Encoder output

Main modifications

1D Conv & Upsampling Block

In comparison to previous models,

our model uses both the encoder and decoder.

- Multi-scale features
- A more reasonable resolution for sequence modelling

 Dots for beats
 high_dimension [frame number]
 Lines for no beats

Beat frame in high dimension

No-beat frame in high dimension

4. Conclusions

- We present a novel Transformer-based model for beat tracking with the encoder and decoder of different resolutions.
- It provides a new framework for handling multi-scale features and learns features jointly by the cross attention in the decoder.
- It enables us to sample the features with more reasonable time resolutions, which helps to model the sequences more efficiently.
- We believe that the above advantages are beyond beat tracking and can be useful for other tasks too.