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ABSTRACT
This paper presents a statistical method called Infinite La-
tent Harmonic Allocation (iLHA) for detecting multiple
fundamental frequencies in polyphonic audio signals. Con-
ventional methods face a crucial problem known as model
selection because they assume that the observed spectra are
superpositions of a certain fixed number of bases (sound
sources and/or finer parts). iLHA avoids this problem by
assuming that the observed spectra are superpositions of
a stochastically-distributed unbounded (theoretically infi-
nite) number of bases. Such uncertainty can be treated in a
principled way by leveraging the state-of-the-art paradigm
of machine-learning called Bayesian nonparametrics. To
represent a set of time-sliced spectral strips, we formulated
nested infinite Gaussian mixture models (GMMs) based
on hierarchical and generalized Dirichlet processes. Each
strip is allowed to contain an unbounded number of sound
sources (GMMs), each of which is allowed to contain an
unbounded number of harmonic partials (Gaussians). To
train the nested infinite GMMs efficiently, we used a mod-
ern inference technique called collapsed variational Bayes
(CVB). Our experiments using audio recordings of real pi-
ano and guitar performances showed that fully automated
iLHA based on noninformative priors performed as well as
optimally tuned conventional methods.

1. INTRODUCTION

Multipitch analysis of polyphonic audio signals [1–11] is
one of the most important issues because it is the basis
of many applications such as music transcription, chord
recognition, and musical instrument recognition. We focus
on principled methods based on machine learning, which
have recently yielded promising results. Some researchers,
for example, have proposed generative probabilistic mod-
els that explain how multiple spectral/signal bases (compo-
sitional units) are mixed to form polyphonic music [3–6].
The model parameters can be trained by means of statisti-
cal inference. Others have used nonnegative matrix factor-
ization (NMF) to decompose polyphonic spectra into indi-
vidual spectral bases [7–11]. NMF can be interpreted from
the viewpoint of statistical inference [10–12].
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Figure 1. Methodological advantage of our method.

A crucial problem in these methods, known as model
selection, is that they perform best only if an appropriate
model complexity (the number of bases) is specified in ad-
vance. One might think that the optimal number of bases
must be equal to the number of sound sources, but it is not
clear how many bases are most suited to represent a single
source if the spectral shape varies through time. Although
uncertainty is inherent in model selection, conventional
methods assume that a certain complexity exists uniquely
as an oracle. As shown in Figure 1, they require possible
models to be examined separately and exhaustively and the
optimal model selected in retrospect. Such a determinis-
tic framework is not easy-to-use in practice although opti-
mally tuned methods can achieve good performance.

To avoid model selection, we propose a novel statistical
method called Infinite Latent Harmonic Allocation (iLHA)
based on a modern paradigm of machine learning called
Bayesian nonparametrics. Note that the term “nonpara-
metric” means that we do not have to fix model complexity
uniquely. We assume that an unbounded but finite number
of bases stochastically appears in a limited amount of avail-
able data although an infinite number of bases theoretically
exists in the universe. Uncertainty in model selection can
be treated reasonably in a probabilistic framework.

iLHA can be derived by taking the infinite limit of con-
ventional finite models [3, 4]. Conventionally, each spec-
tral basis is often parameterized by means of a Gaussian
mixture model (GMM) in which a fixed number of Gaus-
sians corresponds to the spectral peaks of harmonic par-
tials, and a time-sliced polyphonic spectral strip is modeled
by mixing a fixed number of GMMs. Here, we consider
both the number of bases and the number of partials to ap-
proach infinity, where most are regarded as unnecessary
and automatically removed through statistical inference.

A fundamental and practically-important advantage of
iLHA is that precise prior knowledge is not required. Con-
ventional methods [3–5] heavily rely on prior distributions
regarding the relative strengths of harmonic partials, which
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have too much impact on performance, and forced us to
tune priors and their weighting factors by hand according
to the properties of target sound sources. iLHA, in contrast,
can be fully automated by layering noninformative hyper-
priors on influential priors in a hierarchical Bayesian man-
ner. This is consistent with the fact that humans can adap-
tively distinguish individual notes of various instruments.
One of major contributions of this study is to embody the
fundamental Bayesian principle “Let the data speak for it-
self” in the context of multipitch analysis.

The rest of this paper is organized as follows: Section 2
describes statistical interpretation of polyphonic spectra.
Section 3 discusses related work. Sections 4 and 5 explain
finite models (LHA) and infinite models (iLHA). Section 6
reports our experiments. Section 7 concludes this paper.

2. STATISTICAL INTERPRETATION

We interpret polyphonic spectra as histograms of observed
frequencies that independently occur. This interpretation
basically follows conventional studies [3–5].

2.1 Assumptions

Suppose given polyphonic audio signals are generated from
K bases, each of which consists of M harmonic partials
located on a linear frequency scale at integral multiples of
the fundamental frequency (F0). Note that each basis can
be associated with multiple sounds of different temporal
positions if these sounds are derived from the same pitch
of the same instrument. We transform the audio signals
into wavelet spectra. Let D be the number of frames. If a
spectral strip at frame d (1 ≤ d ≤ D) has amplitude a at
frequency f , we assume that frequency f was observed a

times in frame d. Assuming that amplitudes are additive,
we can consider each observed frequency to be generated
from one of M partials in one of K bases.

These notations are for the finite case. In Bayesian non-
parametrics, we take the limit as K and M go to infinity.

2.2 Observed and Latent Variables

Let the total observed variables over all D frames be rep-
resented by X = {X1, · · · ,XD}, where Xd is a set of
observed frequencies Xd = {xd1, · · · ,xdNd

} in frame d.
Nd is the number of frequency observations. That is, Nd is
equal to the sum of spectral amplitudes over all frequency
bins in frame d. xdn (1 ≤ n ≤ Nd) is an one-dimensional
vector that represents an observed frequency.

Let the total latent variables corresponding to X be sim-
ilarly represented by Z = {Z1, · · · ,ZD}, where Zd =

{zd1, · · · ,zdNd
}. zdn is a KM-dimensional vector in which

only one entry, zdnkm, takes a value of 1 and the others take
values of 0 when frequency xdn is generated from partial
m (1 ≤ m ≤ M) of basis k (1 ≤ k ≤ K).

3. COMPARISON WITH RELATED WORK

The properties of iLHA are intermediate between those of
two successful approaches–statistical inference and NMF–
which are discussed here for comparison and to clarify the
positioning of our approach.
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Figure 2. Probabilistic model of a single basis.
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3.1 Statistical Inference

Statistical methods [3–6] assume probabilistic models us-
ing a limited number of parameters to represent the gen-
erative process of observed spectra (audio signals). F0 es-
timation directly corresponds to finding model parameters
that provide the best explanations of the given data.

Goto [3] first proposed probabilistic models of harmonic
sounds by regarding frequency spectra as probabilistic den-
sities (histograms of observed frequencies).

As shown in Figure 2, the spectral distribution of basis
k (1 ≤ k ≤ K) is modeled by a harmonic GMM:

Mk(x) =

M
∑

m=1

τkmN (

x
∣

∣μk + om,Λ−1
k

)

, (1)

where x is a one-dimensional vector that indicates an ob-
served frequency [cents]. 1 The Gaussian parameters, mean
μk and precision Λk, indicate F0 [cents] of basis k and a
degree of energy concentration around the F0 in the fre-
quency domain. τkm is a relative strength of the m-th har-
monic partial (1 ≤ m ≤ M) in basis k. We set om to
[1200 log2 m]. This means M Gaussians are located to have
harmonic relationships on the logarithmic frequency scale.

As shown in Figure 3, the spectral strip of frame d is
modeled by mixing K harmonic GMMs as follows:

Md(x) =
K
∑

k=1

πdkMk(x) (2)

where πdk is a relative strength of basis k in frame d. There-
fore, the polyphonic spectral strip is represented by nested
finite Gaussian mixture models.

Several inference methods that have been proposed for
parameter estimation are listed in Table 1. Goto [3] pro-

1 Linear frequency fh in hertz can be converted to logarithmic fre-
quency fc in cents as fc = 1200 log2(fh/(440

3
12

−5)).
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#(bases) #(partials) Temporal modeling
PreFEst [3] Fixed Fixed None

HC [4] Inferred Fixed None
HTC [5] Fixed Fixed Continuity treated
NMF [7] Fixed Not used Exchangeable

iLHA Infinite Infinite Exchangeable

Table 1. Comparison of multipitch analysis methods.

posed a method called PreFEst that estimates only relative
strengths τ and π while μ and Λ are fixed by allocating
many GMMs to cover the entire frequency range as F0 can-
didates. Kameoka et al. [4] then proposed harmonic clus-
tering (HC), which estimates all the parameters and selects
the optimal number of bases by using the Akaike informa-
tion criterion (AIC). Although these methods yielded the
promising results, they analyze the spectral strips of differ-
ent frames independently. Thus, Kameoka et al. [5] pro-
posed harmonic-temporal-structured clustering (HTC) that
captures temporal continuity of spectral bases. Note that
all these methods are based on maximum-likelihood and
maximum-a-posteriori training of the parameters by intro-
ducing prior distributions of relative strengths τ , which
have a strong impact on the accuracy of F0 estimation.

Our method called iLHA is based on hierarchical non-
parametric Bayesian modeling that requires no prior tuning
and avoids specifying K and M in advance. More specif-
ically, the limit of the conventional nested finite GMMs is
considered as K and M diverge to infinity.

3.2 Nonnegative Matrix Factorization
NMF-based methods [7–12] factorize observed frequency
spectra into the product of spectral bases and time-varying
envelopes under the nonnegativity constraint. K bases are
estimated by sweeping all frames of the given spectra. Al-
though several methods [10, 12] take temporal continuity
into account, standard methods are based on temporal ex-
changeability. In other words, exchange of arbitrary frames
does not affect the factorized results. Although such tem-
poral modeling is not sufficient, it is known to work well
in practice. Therefore, iLHA adopted the exchangeability.

4. LATENT HARMONIC ALLOCATION

This section explains LHA, the finite version of iLHA, as a
preliminary step to deriving iLHA. We formulate the con-
ventional nested finite GMMs in a Bayesian manner.

4.1 Model Formulation
Figure 4 illustrates a graphical representation of the LHA
model. The full joint distribution is given by

p(X,Z,π, τ ,μ,Λ)

= p(X|Z,μ,Λ)p(Z|π, τ )p(π)p(τ)p(μ,Λ) (3)

where the first two terms on the right-hand side are likeli-
hood functions and the other three terms are prior distribu-
tions. The likelihood functions are defined as

p(X|Z,μ,Λ) =
∏

dnkm

N (

xdn

∣

∣μk + om,Λ−1
k

)zdnkm (4)

p(Z|π, τ ) =
∏

dnkm

(πdkτkm)zdnkm (5)
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Figure 4. A graphical representation of LHA.

Then, we introduce conjugate priors as follows:

p(π) =

D
∏

d=1

Dir(πd|αν) ∝
D
∏

d=1

K
∏

k=1

π
ανk−1
dk (6)

p(τ ) =
K
∏

k=1

Dir(τk|βυ) ∝
K
∏

k=1

M
∏

m=1

τβυm−1
km (7)

p(μ,Λ) =

K
∏

k=1

N (

μk

∣

∣m0, (b0Λk)
−1

)W (

Λk

∣

∣W 0, c0
)

(8)

where p(π) and p(τ) are products of Dirichlet distributions
and p(μ,Λ) is a product of Gaussian-Wishart distributions.
αν and βυ are hyperparameters and α and β are called
concentration parameters when ν and υ sum to unity. m0,
b0, W 0, and c0 are also hyperparameters; W 0 is a scale
matrix and c0 is a degree of freedom.

4.2 Variational Bayesian Inference
The objective of Bayesian inference is to compute a true
posterior distribution of all variables: p(Z,π, τ ,μ,Λ|X).
Because analytical calculation of the posterior distribution
is intractable, we instead approximate it by using iterative
inference techniques such as variational Bayes (VB) and
Markov chain Monte Carlo (MCMC). Although MCMC
is considered to be more accurate in general, we use VB
because it converges much faster.

In the VB framework, we introduce a variational pos-
terior distribution q(Z,π, τ ,μ,Λ) and make it close to the
true posterior p(Z,π, τ ,μ,Λ|X) iteratively. Here, we as-
sume that the variational distribution can be factorized as

q(Z,π, τ ,μ,Λ) = q(Z)q(π, τ ,μ,Λ) (9)

To optimize q(Z,π, τ ,μ,Λ), we use a variational ver-
sion of the Expectation-Maximization (EM) algorithm [13].
We iterate VB-E and VB-M steps until a variational lower
bound of evidence p(X) converges as follows:

q∗(Z) ∝ exp
(

Eπ,τ ,μ,Λ [log p(X,Z,π, τ ,μ,Λ)]
)

(10)

q∗(π, τ ,μ,Λ) ∝ exp (EZ [log p(X,Z,π, τ ,μ,Λ)]) (11)

4.3 Updating Formula
We derive the formulas for updating variational posterior
distributions according to Eqns. (10) and (11).

4.3.1 VB-E Step

An optimal variational posterior distribution of latent vari-
ables Z can be computed as follows:

log q∗(Z) = Eπ,τ ,μ,Λ [log p(X,Z,π, τ ,μ,Λ)] + const.

= Eμ,Λ [log p(X|Z,μ,Λ)] + Eπ,τ [log p(Z|π, τ )] + const.

=
∑

dnkm

zdnkm log ρdnkm + const. (12)
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where ρdnkm is defined as

log ρdnkm = Eπd [log πdk] + Eτk [log τkm]

+Eμk,Λk

[

logN (

xdn

∣

∣μk + om,Λ−1
k

)]

(13)

q∗(Z) is obtained as multinomial distributions given by

q∗(Z) =
∏

dnkm

γzdnkm
dnkm (14)

where γdnkm is given by γdnkm = ρdnkm∑
km ρdnkm

and is called
a responsibility that indicates how likely it is that observed
frequency xdn is generated from harmonic partial m of ba-
sis k. Here, let ndkm be an observation count that indicates
how many frequencies were generated from harmonic par-
tial m of basis k in frame d. ndkm and its expected value
can be calculated as follows:

ndkm =
∑

n

zdnkm E[ndkm] =
∑

n

γdnkm (15)

For convenience in executing the VB-M step, we com-
pute several sufficient statistics as follows:

Sk[1]≡
∑

dnm

γdnkm Sk[x] ≡
∑

dnm

γdnkmxdnm (16)

Sk[xx
T ]≡

∑

dnm

γdnkmxdnmxT
dnm (17)

where xdnm is defined as xdnm = xdn − om.

4.3.2 VB-M Step

Consequently, an optimal variational posterior distribution
of parameters π, τ ,μ,Λ is shown to be given by

q∗(π, τ ,μ,Λ) =
D
∏

d=1

q∗(πd)
K
∏

k=1

q∗(τk)
K
∏

k=1

q∗(μk,Λk) (18)

Since we use conjugate priors, each posterior has the same
form of the corresponding prior as follows:

q∗(πd) = Dir(πd|αd) (19)

q∗(τk) = Dir(τk|βk) (20)

q∗(μk,Λk) =N (

μk

∣

∣mk, (bkΛk)
−1)W (

Λk

∣

∣W k, ck
)

(21)

where the variational parameters are given by

αdk = ανk + E[ndk·] βkm = βυm + E[n·km] (22)

bk = b0 + Sk[1] ck = c0 + Sk[1] (23)

mk =
b0m0 + Sk[x]

b0 + Sk[1]
=

b0m0 + Sk[x]

bk
(24)

W−1
k =W−1

0 + b0m0m
T
0 + Sk[xx

T ]− bkmkm
T
k (25)

Here dot (·) denotes the sum over that index.

5. INFINITE LATENT HARMONIC ALLOCATION

This section derives hierarchical nonparametric Bayesian
models, i.e., nested infinite GMMs for polyphonic spectra.

5.1 Model Formulation

First we let K approach infinity, where the infinite number
of harmonic GMMs is assumed to exist in the universe.
More specifically, the dimensionality of the Dirichlet dis-
tributions in Eqn. (6) is considered to be infinite. At each
frame d, πd is an infinite vector of normalized probabili-
ties (mixing weights) drawn from the infinite-dimensional
Dirichlet prior. Such stochastic process is called a Dirichlet
process (DP). Every time frequency xdn is generated, one
of the infinite number of harmonic GMMs is drawn accord-
ing to πd. Note that most entries of πd take extremely tiny
values because all entries sum to unity. If we can observe
the infinite number of frequencies (Nd → ∞), the infinite
number of harmonic GMMs can be drawn. However, Nd

is finite in practice. Therefore, only the finite number of
harmonic GMMs, K+ � ∞, is drawn at frame d. Here,
a problem is that harmonic GMMs that are actually drawn
at frame d are completely disjointed from those drawn at
another frame d′. This is not a reasonable situation.

To solve this problem, we use the hierarchical Dirichlet
Process (HDP) [14]. More specifically, we assume that
infinite-dimensional hyperparameter ν in Eqn. (6), which
is shared among all D frames, is a draw from a top-level
DP. A generative interpretation is that after an unbounded
number of harmonic GMMs is initially drawn from the top-
level DP, an unbounded subset is further drawn according
to the local DP at each frame. This effectively ties frame d

to another frame d′. As shown in Figure 5, ν is known to
follow the stick-breaking construction [14] as follows:

νk = ν̃k

k−1
∏

k′=1

(1− ν̃k′) ν̃k ∼ Beta(1, γ) (26)

where γ is a concentration parameter of the top-level DP.
Therefore ν can be converted into ν̃.

Now we let M approach infinity, where each harmonic
GMM consists of the infinite number of harmonic partials.
To put effective priors on τ , we use generalized DPs called
Beta two-parameter processes as follows:

τkm = τ̃km

m−1
∏

m′=1

(1− τ̃km′) τ̃km ∼ Beta(βλ1, βλ2) (27)

where β is a positive scalar and λ1 + λ2 = 1.
Because α, β, γ and λ are influential hyperparameters,

we put Gamma and Beta hyperpriors on them as follows:

p(α) = Gam(α|aα, bα) p(γ) = Gam(γ|aγ , bγ) (28)

p(β) = Gam(β|aβ, bβ) p(λ) = Beta(λ|u1, u2) (29)

where a{α,β,γ} and b{α,β,γ} are shape and rate parameters.
Figure 6 shows a graphical representation of the iLHA

model. The full joint distribution is given by

p(X,Z,π, τ̃ ,μ,Λ, α, β, γ,λ, ν̃) = p(X|Z,μ,Λ)p(μ,Λ)

p(Z|π, τ̃ )p(π|α, ν̃)p(τ̃ |β,λ)p(α)p(β)p(γ)p(λ)p(ν̃|γ) (30)

where p(Z|π, τ̃ ) is obtained by plugging Eqn. (27) into
Eqn. (5) and p(π|α, ν) is the same as Eqn. (6). p(ν̃|γ) and
p(τ̃ |β,λ) are defined according to Eqns. (26) and (27) as

p(ν̃|γ) =
∏

k

Beta(τ̃k|1, γ) p(τ̃ |β,λ) =
∏

km

Beta(τ̃km|βλ)(31)

312

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



d
π

�
D

km
τ
~

00
,bm

00
,cW

K

β
ββ ba ,

α
αα
ba ,

γ
k

ν
~

M

∞→M

∞→K

k
µ

k
Λ

γγ
ba ,

dn
z

dn
x

λ u

Figure 6. A graphical representation of iLHA.

5.2 Collapsed Variational Bayesian Inference
To train the HDP model we use a sophisticated version of
VB called collapsed variational Bayes (CVB) [15]. CVB
enables more accurate posterior approximation in the space
of latent variables where parameters are integrated out.

Figure 7 shows a collapsed iLHA model. By integrating
out π, τ̃ ,μ,Λ, we obtain the marginal distribution given by

p(X,Z, α, β, γ,λ, ν̃)

= p(X|Z)p(Z|α, β,λ, ν̃)p(α)p(β)p(γ)p(λ)p(ν̃|γ) (32)

where the first two terms are calculated as follows:

p(X|Z) = (2π)−
n···
2

∏

k

(

b0
bzk

) 1
2 B(W 0, c0)

B(W zk, czk)
(33)

p(Z|α, β,λ, ν̃) =
∏

d

Γ(α)

Γ(α+ nd··)

∏

k

Γ(ανk + ndk·)
Γ(ανk)

∏

km

Γ(β)Γ(βλ1 + n·km)Γ(βλ2 + n·k>m)

Γ(βλ1)Γ(βλ2)Γ(β + n·k≥m)
(34)

where bzk,W zk, czk are obtained by substituting zdnkm for
γdnkm in calculating Eqns. (23) and (25).

Because CVB cannot be applied directly to Eqn. (32),
we introduce auxiliary variables by using a technique called
data augmentation [15]. Let ηd and ξkm be Beta-distributed
variables and sdk and tkm be positive integers that satisfy
1 ≤ sdk ≤ ndk·, 1 ≤ tkm1 ≤ n·km, and 1 ≤ tkm2 ≤ n·k>m.
Eqn. (34) can be augmented as

p(Z,η, ξ, s, t|α, β,λ, ν̃) =
∏

d

ηα−1
d

(1 − ηd)
nd··−1

Γ(nd··)

∏

k

[
ndk·
sdk

]

(ανk)
sdk

∏

km

ξβ−1
km

(1 − ξkm)
n·k≥m−1

Γ(n·k≥m)

[
n·km

tkm1

]

(βλ1)
tkm1

[
n·k>m

tkm2

]

(βλ2)
tkm2

where [ ] denotes a Stirling number of the first kind. The
augmented marginal distribution is given by

p(X,Z,η, ξ, s, t, α, β, γ,λ, ν̃)

= p(Z,η, ξ, s, t|α, β,λ, ν̃)p(α)p(β)p(γ)p(λ)p(ν̃|γ) (35)

In the CVB framework, we assume that the variational
posterior distribution can be factorized as follows:

q(Z,η, ξ, s, t, α, β, γ,λ, ν̃)

= q(α, β, γ,λ)q(ν̃)q(η, ξ, s, t|Z)
∏

dn

q(zdn) (36)

We also use an approximation technique called varia-
tional posterior truncation. More specifically, we assume
q(zdnkm) = 0 when k > K and m > M . In practice, it is
enough that K and M are set to sufficiently large integers.

5.3 Updating Formula
We descrive the formulas for updating variational posterior
distributions.
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Figure 7. A collapsed model with auxiliary variables.

5.3.1 CVB-E Step

A variational probability of zdnkm = 1 is given by

log q∗(zdnkm = 1) = Ez¬dn

[

log
(

G[ανk] + n¬dn
dk·

)]

+ Ez¬dn

[

log

(

G[βλ1] + n¬dn
·km

E[β] + n¬dn
·k≥m

m−1
∏

m′=1

G[βλ2] + n¬dn
·k>m′

E[β] + n¬dn
·k≥m′

)]

+ Ez¬dn

[

log S(xdnm|m¬dn
zk ,L¬dn

zk , c¬dn
zk )

]

+ const. (37)

where subscript ¬dn denotes a set of indices without d and
n, G[x] denotes the geometric average exp(E[log x]), and
S is the Student-t distribution. L¬dn

zk is given by L¬dn
zk =

b¬dn
zk

1+b¬dn
zk

c¬dn
zk W ¬dn

zk , where m¬dn
zk , b¬dn

zk ,W¬dn
zk , c¬dn

zk are ob-
tained by substituting zdnkm for γdnkm required by Eqns.
(23), (24), and (25) and calculating sum without zdn. Each
term of Eqn. (37) can be calculated efficiently [15, 16].

5.3.2 CVB-M Step

First, α, β and γ are Gamma distributed as follows:

q(α)∝ αaα+E[s··]−1e−α(bα−∑
d E[log ηd]) (38)

q(β)∝ βaβ+E[t···]−1e−β(bβ−∑
km E[log ξkm]) (39)

q(γ)∝ γaγ+K−1e−γ(bγ−∑
k E[log(1−ν̃k)]) (40)

Then, λ and τ̃ are Beta distributed as follows:

q∗(λ)∝ λ
u1+E[t··1]−1
1 λ

u2+E[t··2]−1
2 (41)

q∗(ν̃k)∝ ν̃
1+E[s·k]−1
k (1− ν̃k)

E[γ]+E[s·>k]−1 (42)

Finally, the variational posteriors of η, ξ, s, t are given by

q∗(ηd)∝ η
E[α]−1
d (1− ηd)

nd··−1 (43)

q∗(ξkm|Z)∝ ξ
E[β]−1
km (1− ξkm)n·k≥m−1 (44)

q∗(sdk = s|Z)∝
[

ndk·
s

]

G[ανk]
s (45)

q∗(tkm1 = t|Z)∝
[

n·km

t

]

G[βλ1]
t (46)

q∗(tkm2 = t|Z)∝
[

n·k>m

t

]

G[βλ2]
t (47)

To calculate E[sdk] (average sdk over Z), we exactly treat
the case ndk· = 0 and apply second-order approximation
when ndk· > 0 (see details in [15]). E[log ξkm], E[tkm1],
and E[tkm2] can be calculated in the same way.

To estimate F0s, we need explicitly compute the varia-
tional posteriors of the integrated-out parameters μ,Λ. To
do this, we execute the standard VB-M step once by using
the responsibilities q(Z) obtained in the CVB-E step.

6. EVALUATION

This section reports our comparative experiments evaluat-
ing the performance of iLHA.
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Piece number Optimally tuned Fully automated
RWC-MDB- PreFEst [3] HTC [5] LHA iLHA
J-2001 No.1 75.8 79.0 70.7 82.2
J-2001 No.2 78.5 78.0 69.1 77.9
J-2001 No.6 70.4 78.3 49.8 71.2
J-2001 No.7 83.0 86.0 70.2 85.5
J-2001 No.8 85.7 84.4 55.9 84.6
J-2001 No.9 85.9 89.5 68.9 84.7

C-2001 No.30 76.0 83.6 81.4 81.6
C-2001 No.35 72.8 76.0 58.9 79.6

Total 79.4 82.0 65.8 81.7

Table 2. Frame-level F-measures of F0 detection.

6.1 Experimental Conditions
We evaluated LHA and iLHA on the same test set used in
[5], which consisted of nine pieces of piano and guitar solo
performances excerpted from the RWC music database [17].
The first 23 [s] of each piece were used for evaluation. The
spectral analysis was conducted by the wavelet transform
using Gabor wavelets with a time resolution of 16 [ms].
The values and temporal positions of actual F0s were pre-
pared by hand as ground truth. We evaluated performance
in terms of frame-level F-measures. The priors and hyper-
priors of LHA and iLHA were set to noninformative uni-
form distributions. K and M were set to sufficiently large
numbers, 60 and 15. iLHA is not sensitive to these values.
No other tuning was required. To output F0s at each frame,
we extracted bases whose expected weights π were over a
threshold, which was optimized as in [5].

For comparison, we referred to the experimental results
of PreFEst and HTC reported in [5]. Although the ground-
truth data was slightly different from ours, it would be suf-
ficient for roughly evaluating performance comparatively.
The number of bases, priors, and weighting factors were
carefully tuned by using the ground-truth data to optimize
the results. Although this is not realistic, the upper bounds
of potential performance were investigated in [5].

6.2 Experimental Results
The results listed in Table 2 show that the performance of
iLHA approached and sometimes surpassed that of HTC.
This is consistent with the empirical findings of many stud-
ies on Bayesian nonparametrics that nonparametric models
were competitive against optimally-tuned parametric mod-
els. HTC outperformed PreFEst because HTC can appro-
priately deal with temporal continuity of spectral bases.
This implies that incorporating temporal modeling would
improve the performance of iLHA.

The results of LHA were worse than those of iLHA be-
cause LHA is not based on hierarchical Bayesian modeling
and requires precise priors. In fact, we confirmed that the
results of PreFEst and HTC based on MAP estimation were
drastically degraded when we used noninformative priors.
In contrast, iLHA stably showed the good performance.

7. CONCLUSION

This paper presented a novel statistical method for detect-
ing multiple F0s in polyphonic audio signals. The method
allows polyphonic spectra to contain an unbounded num-
ber of spectral bases, each of which can consist of an un-

bounded number of harmonic partials. These numbers can
be statistically inferred at the same time that F0s are esti-
mated. Even in experimental evaluation using noninforma-
tive priors, our automated method performed well or better
than conventional methods manually optimized by trial and
error. To our knowledge, this is the first attempt to apply
Bayesian nonparametrics to multipitch analysis.

Bayesian nonparametrics is an ultimate methodological
framework avoiding the model selection problem faced in
various areas of MIR. For example, how many sections
should one use for structuring a musical piece? How many
groups should one use for clustering listeners according to
their tastes or musical pieces according to their contents?
We are freed from these problems by assuming that in the-
ory there is an infinite number of classes behind observed
data. Unnecessary classes are automatically removed from
consideration through statistical inference. We plan to use
this powerful framework in a wide range of applications.
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