Infinite Latent Harmonic Allocation: A Nonparametric Bayesian Approach to Multipitch Analysis

Kazuyoshi Yoshii and Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST)

I. Why Take Bayesian Approach? We need a methodology to deal with uncertainty inherent in music analysis **Example: F0 detection from polyphonic sounds**

It is often difficult to make binary decision on the existence of each musical note

III. Conventional Parametric Models

II. "Completely" Bayesian Treatment

Posterior distributions of all unknown variables (not limited to parameters) should be estimated

Finite GMMs for monophonic spectra PreFEst [Goto1999] HC, HTC [Kameoka2004, 2007]

/ Infinite Latent Harmonic Allocation (il HA)								
(2) Hierarchical Bayesian estimation	Posterior distributions		Posterior distributions	Excellent				
(1) Nonparametric Bayesian estimation	Posterior distributions	Posterior distributions		Excellent				
estimation	distributions	specified	specified	Good				

(it does not	Prior on mixing weights Dirichlet Noni	informative		Iterative approximation via the VB-EM algorithm				
mean that there are no parameters)	of harmonic partialsdistributionhyperpriorTraining methodMAP estimationBayesian estimation		Generate the infinite number of mixing weights (probabilities) of sound sources	Hand-tuned prior + Temporal modeling + MAP estimation - MAP estimation				
VII. Conclusion VI. Co		mparative Evaluation	Hand-tune + MAP esti	d prior mation	Nor + Ba	າinfo. pric ayesian es	or st.	
Our contributions		Data: Poly	phonic audio of piano/guitar performances		PreFEst	НТС	LHA	ilha
We proposed an ultimate mixture-model-based method for multipitch analysis This is the first attempt to apply the nonparametric Bayesian framework to multipitch analysis		6 pieces from RWC-MDB-J-2001: Jazz Music 2 pieces from RWC-MDB-C-2001: Classical Music		JNo.1	75.8	79.0	70.7	82.2
				JNo.2	78.5	78.0	69.1	77.9
		23 [s] exc	erpted from the beginning of each piece	JNo.6	70.4	78.3	49.8	71.2
		Frequency analysis: Gabor wavelet transform Evaluation criterion: Frame-level F-measures The completely automated method (iLHA) yielded very competitive results against carefully tuned conventional methods (PreFEst and HTC)		JNo.7	83.0	86.0	70.2	85.5
Future directions We plan to use this framework in a wide range of applications such as content-based clustering of musical pieces and musical structure analysis				JNo.8	85.7	84.4	55.9	84.6
				JNo.9	85.9	89.5	68.9	84.7
				C No.30	76.0	83.6	81.4	81.6
				C No.35	72.8	76.0	58.9	79.6
				Total	79.4	82.0	65.8	81.7