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Abstract

This paper presents a method to detect acoustic events that
can be used to find “hot spots” in podcast programs. We fo-
cus on meaningful non-verbal audible reactions which suggest
hot spots such as laughter and reactive tokens. In order to de-
tect this kind of short events and segment the counterpart utter-
ances, we need accurate audio segmentation and classification,
dealing with various recording environments and background
music. Thus, we propose a method for automatically estimat-
ing and switching penalty weights for the BIC-based segmen-
tation depending on background environments. Experimental
results show significant improvement in detection accuracy by
proposed method compared to when using a constant penalty
weight.
Index Terms: acoustic event detection, laughter detection, pod-
cast, Bayesian Information Criterion

1. Introduction
In recent years, there has been an increase of audio media (MP3
audio files, etc.) on the internet, including podcasts, internet ra-
dio, and audio blogs. Unlike text-based content, audio content
cannot be fully understood if we do not listen to the entirety of
the content. Thus, it is difficult to search and browse audio con-
tent because speech, music, and sound effects are not visible.

As a solution to this problem, some applications such as
Podscope 1, Google Audio Indexing 2, and PodCastle 3 have
been developed to search and browse through transcriptions of
audio data by applying automatic speech recognition (ASR). In
Podcastle, language model is adaptated using RSS metadata,
and acoustic model training is enhanced by user-corrected tran-
scripts [1, 2]. Google Audio Indexing transcribes election video
material and makes the content searchable [3]. However, even
the state-of-the-art ASR systems cannot accurately transcribe
all audio data, because their content and recording environ-
ments are of a wide variety. They contain not only speech but
also music, sound effects, and environmental sound. Another
problem for ASR is that most of speech is spontaneous, conver-
sational, and often in dialogue-style.

To circumvent these difficulties in ASR, we focus on au-
dible reactions, present in the content, which have non-verbal
information and were ignored in the traditional ASR. For ex-
ample, laughter occurs after talking about interesting things.
Applause often comes after utterances which impress the au-
dience favorably. In addition, a certain kind of reactive tokens

1http://www.podscope.com/
2http://labs.google.com/gaudi
3http://podcastle.jp/

Hot spot Audible reaction

Figure 1: Audible reaction and hot spot

in back-channel responses during dialogue suggest a level of in-
terest in the topic of conversation [4]. By detecting these mean-
ingful audible reactions, we expect we can detect “hot spots”
without recognizing the speech. Here, we define hot spots as
segments in which the listeners would be interested in the audio
data 4, and hot spot candidates exist right before these events
as shown in Figure 1. Our goal is to detect not only the audi-
ble reactions but also segment the preceding utterances, which
potentially make up hot spots.

The rest of the paper is organized as follows: section 2
describes the conventional segmentation method based on BIC
and the issues involved in detecting acoustic events in podcasts.
In section 3, we present a method for optimally deciding penalty
weights for the BIC-based method. Our proposed system is de-
scribed in section 4, and the experimental results are reported in
section 5. Finally, conclusions and future work are discussed in
section 6.

2. Acoustic event detection in podcasts
In this work, we focus on laughter and reactive tokens which are
frequently observed acoustic events in podcasts and presumed
to be closely related to hot spots. We also address the problem
of segmentation of speech by different speakers and cassifica-
tion of speech, music, and speech mixed with music. We regard
all these categories as acoustic events in this paper.

2.1. Audio segmentation and classification in podcasts

The conventional framework for acoustic event detection
(AED) or audio segmentation and classification is based on
either explicit models or metrics. These methods are mainly
studied targeting at broadcast news and recordings of meetings.
Whereas broadcast news rarely contain dialogue, there are many
dialogue-style programs in podcasts, thus containing a number
of short utterances. Moreover, background music is often used
in podcasts while it never appears in meetings. These issues
combined make it very difficult to conduct audio segmentation
and classification of podcasts.

4Wrede et al. [5] used the term “hot spots” for regions in which two
or more participants are highly involved in a meeting discussion. Our
definition is different from this.
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2.1.1. Model-based methods

In the model-based methods, classifiers are trained for a given
set of pre-determined acoustic classes, using Gaussian Mixture
Models (GMMs), Hidden Markov Models (HMMs), or Sup-
port Vector Machines (SVMs) [6, 7]. For example, Knox et al.
presented a method for detection of laughter in meetings using
neural networks [8].

In podcasts, we observe frequent speaker changes as well as
acoustic events of short duration. Thus, it is not easy to apply
explicit models because the decision made with the features of
short duration is not reliable, influenced by local variations.

2.1.2. Metrics-based segmentation method

Segmentation of the audio input is accomplished by measuring
the “uniformity” or distance with different segmentation mod-
els. The methods do not require training data though they can-
not classify the segments into some category. One of the most
widely-used method is based on the Bayesian Information Cri-
terion (BIC) [9, 10]. BIC is used to determine which of para-
metric models M = M1, M2, · · · , Mm best represents N data
samples D = D1, D2, · · · , DN . According to the BIC theory,
the best model maximizes BIC(Mi) as follows:

BIC(Mi) = log P (D1, D2, · · · , DN |Mi) −
1

2
λdi log N (1)

where di is the number of parameters of model Mi, and P is
the maximum likelihood of the data under model Mi.

BIC-based segmentation is realized by computing the BIC
difference between two models: model M0 where X =
xk, k = 1, 2, · · · , N is identically distributed to a single Gaus-
sian N(µ0, Σ0), and model M12 where xk, k = 1, 2, · · · , j is
drawn from one Gaussian N(µ1, Σ1) and xk, k = j + 1, j +
2, · · · , N is drawn from another Gaussian N(µ2, Σ2). Then,
∆BIC(j) = BIC(M0) − BIC(M12) is derived as follows:

∆BIC(j) =
1

2
(N log |Σ0| − j log |Σ1| − (N − j) log |Σ2|)

−1

2
λ(d +

1

2
d(d + 1)) log N (2)

where N is the sample number of the merged segment, d is
the dimension of the feature space, and λ is called the penalty
weight. If j is chosen such that j = arg max1<j<N ∆BIC(j)
and ∆BIC(j) > 0, the frame j is identified as a segment
boundary. One problem with this method is that the penalty
weight λ is usually task-dependent and must be tuned for every
new task [10].

In this work, we adopt a scheme that first applies the BIC-
based segmentation and then classifies each segment using the
GMMs. For segmentation of podcasts with the BIC-based
method, it is hard to fix the appropriate penalty weight because
acoustic characteristics are different when background music
exists and when it does not. Therefore, we propose to switch
the penalty weight λ depending on the audio characteristics.

3. Estimating penalty weight of Bayesian
Information Criterion

3.1. Statistical characteristics of speech, music, and their
mix

The variance of acoustic features is different for speech, music,
and also their mix. Because of a wide variety of instruments
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Figure 2: Dual partitioning of each Gaussian

and tones, apparently acoustic features in music segments have
more variations than in speech segments, and music segments
tend to be split too much if we use the same penalty weight
λ. On the other hand, when several persons speak in the pres-
ence of background music (mix segments), it is hard to find
speaker changes because acoustic features are smeared by the
background music, usually monotone music, while there can be
a variety of music in music-only segments.

Based on the observation, we set up these global three
classes (speech, music and mix) and corresponding classi-
fiers based on GMM as a preprocessing step before the BIC-
based segmentation. For each classified segment, the BIC-
based segmentation is applied by selecting the penalty weights
λspe, λmix, λmus accordingly.

3.2. Automatic estimation of penalty weight of BIC for seg-
mentation

We estimate the appropriate penalty weights in the GMM train-
ing phase. When a GMM for each class is properly set up (with
the same mixture size), we expect each Gaussian of the GMM
represents a proper cluster size, and the penalty weight λ for the
BIC-based segmentation should be decided depending on the
dispersion of the Gaussian distributions. We assume that when
sufficient training data is available and the number of the mix-
tures is large enough, each Gaussian of the GMM corresponds
to a uniform segment and should not be split any more. On the
other hand, clusters of a larger size (smaller mixture size) must
have been split. Thus, ∆BIC for one single Gaussian of the
final GMM and dual partitioned Gaussians from it, as shown in
Figure 2, should satisfy the following formula.

∆BIC =
1

2
((nGm1 + nGm2) log |ΣGm |

−nGm1 log |ΣGm1 | − nGm2 log |ΣGm2 |)

−1

2
λm(d +

1

2
d(d + 1)) log(nGm1 + nGm2) ≈ 0

(3)

where m = 1, · · · , N is the index of the Gaussians, and nGm1

and nGm2 are the number of samples contributing to Gaussian
m-1 and Gaussian m-2 in the context of the EM estimation. Ac-
tually, the prseudo-equation (3) would stand on the average for
all Gaussians, m = 1, · · · , N , thus we calculate ∆BIC for all
Gaussians of the GMM, and compute the average of λ derived
by ∆BIC being equal to zero, to determine the penalty weight
for each global class.

3.3. Estimation result

Using the training data described in section 5, the penalty
weights λspe, λmus, λmix for the global three classes were esti-
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Figure 3: System overview

mated to be 1.68, 3.48, and 1.22, respectively. We set the num-
ber of mixtures for each GMM to 256, which is obtained by
the optimization by maximizing the BIC (Equation 1) for itera-
tive splits of mixtures from N = 1, 2, 4, to 512. The values of
penalty weights are reasonable because music segments, which
should not be frequently segmented, obtained a larger penalty
weight, and mix segments, which is not easily segmented, re-
ceived a smaller penalty weight compared to speech segments.

4. Proposed AED system
An overview of our proposed acoustic event detection system
is shown in Figure 3. The following sub-sections describe the
details of each process.

4.1. Training phase and feature extraction

The parameters of each GMM are trained with feature vectors
calculated at frame level. Next, the EM algorithm is used to
estimate means, diagonal variance matrices, and weights for
Gaussian components. Additionally, we estimated the penalty
weights for global classes, as mentioned above.

As acoustic features, we use a 26-dimensional vector which
consists of mel-frequency cepstral coefficients (MFCC), delta
MFCC, energy, and delta energy. They are calculated with a 25
msec window (10 msec shift), and normalized by the mean and
variance for the entire training data.

4.2. Preprocessing and BIC-based segmentation

As a preprocessing step, we coarsely segment and classify the
input stream using the GMMs for the global classes (speech-
GMM, music-GMM, and mix-GMM). By selecting the differ-
ent penalty weight for each segment, the BIC-based segmenta-
tion is expected to operate appropriately for further segmenta-
tion. For accurate segmention, we adopt the variable window
scheme described as follows:

1. The window size is initialized by the minimal window
size Wmin (100 frames).

2. If no segment boundary is found in the current window,
the size of the window is increased by adding Wmin until
a segment boundary is found.

3. When a segment boundary is found, the next window be-
gins with the detected boundary, using the minimal win-
dow size.

Table 1: Baseline training data set
cluster training data

Speech (male and female) JNAS [12]
Music RWC-MDB [13]

Mix (male and female) JNAS+RWC-MDB
Silence JNAS, Self-synthesized

Laughter IMADE corpus [14], Web
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Figure 4: Frame-wise accuracy of eight-class segmentation and
classification

4. Until the end of input stream, Step 2 and 3 are repeated.

4.3. Laughter, speech and music segment detection

Each segment obtained by the BIC-based segmentation is clas-
sified among laughter, male-speech, female-speech, male-mix,
female-mix, music, and silence on the basis of the log likeli-
hood of respective GMMs. Speech segments which are shorter
than a constant duration tres (2.0 sec) and have larger log likeli-
hoods of the reactive-token-GMM than a threshold are extracted
as candidates of reactive tokens.

4.4. Reactive token detection

Chang et al. [4] reported that three reactive tokens of “hu:N”,
“he:” and “a:” suggest interest level of listeners in Japanese dia-
logue. Apparently the prolonged vowel can be used as a clue to
detect these tokens, thus we utilize the same algorithm as filled
paused detection [11]. In addition, there is a lexical difference
between these tokens and fillers, so we conduct simple ASR to
identify the tokens.

In summary, detection of reactive tokens is realized as fol-
lows:

1. Filled pause detection is applied to each candidate, and
the segments which include a prolonged vowel are se-
lected.

2. ASR with a lexicon of filler entries and the three tokens
is conducted, and reactive tokens are detected.

5. Experimental results
We tested our system on eight podcast episodes by choosing two
episodes from four different programs. For training the GMMs,
we used the baseline training data set as listed in Table 1. In
addition, we prepared two sets of podcasts: (a) program-open
set: 19 episodes from programs other than those in the test set,
and (b) program-closed set: 23 (19+4) episodes including one
previous episode of each program used in the test set.

To evaluate the effectiveness of proposed method, we mea-
sure the frame-wise accuracy, laughter detection accuracy, and
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Table 2: Detection accuracy of laughter

Measures R P F
Proposed method 65.0 71.3 68.7

λ = 1.0 91.3 26.4 30.5
λ = 1.5 74.2 42.2 45.9
λ = 2.0 60.0 57.5 57.5

Table 3: Detection accuracy of reactive tokens

Measures R P F
Proposed method 34.0 85.2 64.0

λ = 1.0 35.3 67.9 54.7
λ = 1.5 33.1 79.3 59.9
λ = 2.0 29.2 81.2 57.5

reactive token detection accuracy of the following four meth-
ods.

1. Proposed method (switching penalty weight λ)
2. Using the constant penalty weight: λ = 1.0
3. Using the constant penalty weight: λ = 1.5
4. Using the constant penalty weight: λ = 2.0

The frame-wise accuracy is the accuracy of detection (seg-
mentation and classification) of the eight classes (male speech,
female speech, male mix, female mix, music, silence, laughter,
and reactive tokens). In overlapping segments of two different
events, if one of the correct classes is included, we regard that
the correct class is labeled for the frame. As the detection accu-
racy of laughter and reactive tokens, we adopted the recall R,
the precision P , and the F-measure F . F is defined as follows:

F-measure =
(1 + α2)RP

R + α2P
(4)

where α is a measure of the relative importance of recall and
precision. In this work, α was set to 0.5 because there are a
large number of these events including indistinct ones, and we
should focus on the detection of distinct ones rather than recall
of everything.

The results are shown in Figure 4 and listed in Table 2
and 3. The proposed method switching the penalty weight λ
improved the frame-wise accuracy in both program-open and
program-closed cases. The accuracy was drastically improved
when using previous episodes of the same program (program-
closed case) because there are often same speakers and same
music in the same program even if the episode is different.

In detection of laughter and reactive tokens, there was not
a significant difference between the program-open case and the
program-closed case, thus we report the program-open case. As
seen in Table 2, proposed method significantly improved the
detection rate of laughter. Although the recall rate was de-
graded because it was difficult to detect subtle laughter, most
loud laughter could be detected. Loud laughter is related more
closely to hot spots than subtle laughter, thus we expect that the
low recall does not cause major problems in finding hot spots.

The results listed in Table 3 show that the proposed method
achieved best performance of detection accuracy of reactive to-
kens. The main reason for the low recall is strict constraints
for rejecting fillers and falters. In fact, we obtained the recall

of approximately 70% if we use only filled pause detection. A
trade-off between the recall and the precision can be adjusted by
tuning the thresholds in filled pause detection and GMM-based
classification.

6. Conclusions
We have presented a method for detecting acoustic events in
podcast programs based on the BIC-based segmentation which
uses dedicated penalty weights for different global classes
(speech, music and mix). We also enhance the detection of reac-
tive tokens with the dedicated GMM, filled pause detecter and
ASR. Experimental results for real podcast programs demon-
strate that our system can detect eight acoustic events with
frame-wise accuracy of 74.5%, laughter with F-measure of
68.7%, and reactive tokens with F-measure of 64.0%. It is also
shown that the use of different penalty weights is effective in
segmentation of podcasts.

Future work includes incorporation of clustering of speech
segments for speaker diarization. We also plan to design and
implement a “hot spot browser”.
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