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Self-Supervised Contrastive Learning for
Singing Voices

Hiromu Yakura , Kento Watanabe , and Masataka Goto

Abstract—This study introduces self-supervised contrastive
learning to acquire feature representations of singing voices. To
acquire robust representations in an unsupervised manner, regu-
lar self-supervised contrastive learning trains neural networks to
make the feature representation of a sample close to those of its
computationally transformed versions. Similarly, we employ two
transformations—pitch shifting and time stretching—considering
the nature of singing voices. Nevertheless, we use them reversely:
we train networks to push away representations of the transformed
versions. The networks then attempt to discriminate changes in
vocal timbres introduced by pitch shifting without time stretching
and those in singing expressions introduced by time stretching
without pitch shifting. Consequently, the acquired representations
become attentive to vocal timbre and singing expression. This was
confirmed through a singer identification task, where we trained
a classifier to learn the relationship between the feature repre-
sentations to the corresponding singer labels of 500 singers. As a
result, the employed transformations helped the classifier improve
the classification accuracy by 9.12% (top-1 accuracy: 63.08%)
compared with the case where the feature representations fed to
the classifier were acquired without the transformations (top-1
accuracy: 53.96%). Furthermore, the proposed approach can be
extended to acquire feature representations attentive to either vocal
timbre or singing expression but not to the other by changing how
the transformations are incorporated. We particularly explored the
characteristics of such vocal timbre- or singing expression-oriented
feature representations against song genre, singer gender, and vocal
technique, and confirmed that they successfully capture different
aspects of singing voices.

Index Terms—Singer identification, self-supervised contrastive
learning, singing information processing, representation learning.

I. INTRODUCTION

F EATURE representation learning is an important task in
music information retrieval (MIR) [1], [2] because the

acquired representations can be used in various applications,
e.g., music recommendation [3], [4]. However, learning meth-
ods dedicated to singing voices have not been investigated
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Fig. 1. (a) We introduce self-supervised contrastive learning for singing
voices.1 (b) Acquired feature representations capture the characteristics of each
singer so effectively that they can enable a shallow classifier to achieve high
accuracy in singer identification.

extensively, although singing voices are one of the most salient
components of people’s musical tastes [5]. This can be attributed
to the demand for a large-scale dataset from deep learning
techniques and the difficulties related to preparing such a dataset,
particularly when corresponding annotations are required.

This study introduces self-supervised contrastive learning to
realize feature representation learning in a manner specialized
to singing voices separated from polyphonic music (Fig. 1). In
image and video processing, self-supervised contrastive learn-
ing [6], [7] has improved the performance of various tasks
without requiring annotated datasets. Here, the core concept is
training neural networks to make the feature representation of a
sample close to those of its transformed versions while pushing
representations from different samples away. The networks then
acquire representations that are robust to such transformations.
For example, existing methods in image processing frequently
involve noise addition, color distortion, and flipping [7].

The proposed approach involves transformations that reflect
the nature of singing voices. Importantly, we apply them back-
wardly, i.e., we train networks to make the feature representa-
tion of the original sample and those of its transformed ver-
sions dissimilar. Then, the networks are expected to acquire

1Our source code is available at https://github.com/hiromu/contrastive-
singing-voices
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representations that are sensitive to specific transformations.
Here, we consider two transformations, i.e., pitch shifting and
time stretching. Naïve pitch shifting without time stretching,
which is achieved by time-domain resampling operation fol-
lowed by time-stretching operation, can change both pitch and
formants [8]. Since formants are the core component of vocal
timbre [9], discriminating pitch-shifted versions would yield
representations attentive to vocal timbre. Additionally, time
stretching without pitch shifting affects singing expression by
modifying expressive articulations, e.g., vibrato rate and funda-
mental frequency (F0) contour in note transitions [10]. Thus,
discriminating time-stretched versions would yield representa-
tions attentive to singing expression.

The proposed approach can be used not only for acquiring
singer-specific feature representations that are attentive to both
vocal timbre and singing expression. When we train networks
to make representations of the pitch-shifted versions close to
that of the original sample while pushing representations of the
time-stretched versions away, we can acquire representations
that are attentive to singing expression but inattentive (i.e.,
robust) to vocal timbre. This broadens the applicability of the
acquired feature representations. For example, without using
annotated data, we can retrieve singing dissimilar in terms of
vocal timbre but similar in terms of singing expression, which
would be difficult to realize using conventional features, such as
Mel-frequency cepstral coefficients (MFCCs).

In this study, we first examined the effectiveness of the pro-
posed approach, which is based on self-supervised contrastive
learning, by applying the acquired feature representations to
singer identification. We trained a classifier to learn the rela-
tionship between the acquired representations and singer labels
and achieved an accuracy of 63.08% with 500 singers, 9.12% of
which was attributed to the introduced transformations. Then,
we explored feature representations trained to be attentive to
either vocal timbre or singing expression. The results of our
analysis suggest that, even without annotated data, we can
retrieve singing voices that are similar in terms of only vocal
timbre or singing expression. These results indicate that the
proposed approach can be a powerful tool for developing new
MIR applications.

II. RELATED WORK

A. Representation Learning for Singing Voices

We share part of our motivation with singer identification
because it is one of the downstream tasks that can leverage fea-
ture representations acquired by the proposed approach. Singer
identification is a central topic in singing information process-
ing [11], [12]; thus, it has been the focus of several previous
studies [13]–[23]. Typically, traditional approaches [13]–[18]
have trained classifiers on MFCCs or linear prediction coeffi-
cients (LPCs) to capture vocal timbre. Some methods [19]–[21]
have attempted to capture singing expressions by designing
handcrafted features that can capture vibrato in singing voices.
In addition, recent methods [22], [23] leveraged deep learning
techniques to classify singing voices from their spectrograms

without relying on handcrafted features. However, these meth-
ods were explicitly designed for singer identification and not
assumed for similarity computations, limiting their use in other
MIR applications.

There are relatively few methods that allow similarity compu-
tation of singing voices. Early attempts [24]–[26] applied Gaus-
sian mixture models or latent Dirichlet allocation on MFCCs
or LPCs. Whereas these were unsupervised, their dependency
on MFCCs or LPCs made the computed similarities only reflect
vocal timbre. Some recent methods [27], [28] enable similarity
computation using feature representation learning in a similar
manner to us. The adoption of contrastive learning is common
to the proposed approach; however, these methods were not
self-supervised. They employed supervised training to make
feature representations of the singing voices of the same singer
close to each other while pushing those of different singers away.
By contrast, the proposed approach allows us to acquire feature
representations that can be used for similarity computations
without depending on annotated datasets because it computa-
tionally transforms samples to be self-supervised.

Here, we acknowledge that this study can be associated with
speaker identification, which has been actively researched for
many years [29], [30]. Particularly, i-vector and x-vector are
known to capture the characteristics of individual speakers [31],
[32], and indeed, some existing methods [33], [34] have lever-
aged them for singer identification. On the other hand, Xia et
al. [35] showed that their speaker identification method employ-
ing self-supervised contrastive learning outperformed i-vector
and x-vector. Analogously, we can expect that the introduction
of self-supervised contrastive learning for singing voices allows
us to acquire feature representations that effectively capture
the characteristics of each singing voice, whereas it is under
researched.

B. Self-Supervised Contrastive Learning

Given this context, we explain the scheme of self-supervised
contrastive learning. As discussed in Section I, self-supervised
contrastive learning [36], [37] is a powerful paradigm that en-
ables feature representation learning without annotated datasets.
As shown in Fig. 2(a), it introduces both positive and negative
anchors. Here, positive anchors are generated by applying com-
putational transformations to a sample in a dataset, and negative
anchors refer to other samples in the dataset. Self-supervised
contrastive learning yields robust representations that can distin-
guish different samples in a dataset by training networks to make
the feature representation of a sample similar and dissimilar
to those of its positive and negative anchors, respectively. The
acquired representations are known to bring performance im-
provement in various tasks, e.g., image classification and object
recognition in the image domain and action recognition in the
video domain [6], [7].

Let us assume that we are trying to acquire such feature
representations by training a network fθ(·) using a dataset
X = {x1,x2, . . . ,xN}. We also use K+ positive anchors
X+

i = {x+
i,1,x

+
i,2, . . . ,x

+
i,K+} andK− negative anchorsX−

i =
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Fig. 2. (a) Regular self-supervised contrastive learning framework transforms
the original sample to generate positive anchors to acquire robust feature
representations. (b) The proposed approach employs pitch shifting and time
stretching to generate negative anchors to make the acquired feature represen-
tations attentive.

{x−
i,1,x

−
i,2, . . . ,x

−
i,K−} prepared for each sample xi. Then, reg-

ular self-supervised contrastive learning framework trains the
network via optimizing the parameter of the network θ so as to
minimize the following loss function:

L (θ)=−
N∑
i=1

K+∑
j=1

log
L̂θ

(
xi,x

+
i,j

)
L̂θ

(
xi,x

+
i,j

)
+
∑K−

k=1 L̂θ

(
xi,x

−
i,k

)

L̂θ (a, b) = exp

(
fθ (a) · fθ (b)

τ

)
(1)

Here, τ is a hyperparameter that controls the concentration level
of the feature representations [37], [38]. As mentioned above,
the positive anchors X+

i can be prepared by applying various
computational transformations toxi, while the negative anchors
X−

i are commonly supplied with X \ {xi} by setting K− =
N − 1.

Based on this formulation, various techniques have been
proposed to enhance the effectiveness or efficiency of

self-supervised contrastive learning. For example, SimCLR [36]
generates positive anchors stochastically instead of preparing a
fixed number of positive anchors a priori. Specifically, SimCLR
sets K+ = 1 and dynamically generates x+

i,1 iteratively during
training through applying transformations to xi by varying their
parameters. Consequently, the diversity of the positive anchors
increases, and the acquired feature representations become more
robust. Then, MoCo [37] introduced a momentum encoder to im-
prove the computational and memory efficiency of the training.

C. Self-Supervised Contrastive Learning in MIR

Despite its effectiveness, the use of self-supervised contrastive
learning in MIR remains limited [39]–[41]. For example, Spi-
jkervet and Burgoyne [41] proposed CLMR, extending Sim-
CLR [36] to generate positive anchors by adding Gaussian
noise, applying frequency filters, etc. They reported that CLMR
achieved state-of-the-art performance in semantic music tag-
ging. However, such methods did not consider the application
to singing voices and were not designed to reflect multiple
aspects, whereas the proposed approach considers vocal timbre-
or singing expression-oriented representations.

For the purpose of acquiring feature representations of human
speech, several methods leveraging self-supervised contrastive
learning [42], [43] have been proposed. While they exhibited
substantial performance improvement when the feature repre-
sentations were applied to speech recognition, they were not
designed to capture the identity of speakers. Hence, it is unclear
whether they can be applied to singer identification or speaker
identification. The same can be said for other methods [44]–[46]
that attempt to acquire general feature representations of vari-
ous auditory events, e.g., speech commands and instrumental
sounds. Therefore, in this study, we explored how to exploit
self-supervised contrastive learning, especially in a manner spe-
cialized to singing voices.

III. SELF-SUPERVISED CONTRASTIVE LEARNING FOR

SINGING VOICES

A. Proposed Approach

In the proposed approach, we apply self-supervised con-
trastive learning, specifically MoCo [37] because of its perfor-
mance and memory efficiency, by introducing transformations
that reflect the nature of singing voices. As in the regular frame-
work of self-supervised contrastive learning (Fig. 2(a)), MoCo
trains networks to make the feature representation of a sample
similar to those of its positive anchors, i.e., its transformed
versions, in terms of their cosine similarity. In the proposed
approach, we modified MoCo to use our introduced transforma-
tions to generate negative anchors (rather than positive anchors)
and make their representation dissimilar to that of the original
sample (Fig. 2(b)). Consequently, we can acquire feature repre-
sentations sensitive to changes caused by the transformations.

A similar approach was introduced in video processing by
Tao et al. [47], who reported that using shuffled videos, where
video frames are shuffled in temporal order, as negative an-
chors yielded feature representations that achieve high action
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recognition performance. In fact, we attempted shuffling singing
voices temporally to generate negative anchors and examined the
acquired representations. However, we found that the temporal
shuffling produced unnatural artifacts in audio signals, e.g.,
noncontinuous changes, and resulted in representations that are
merely sensitive to the artifacts. This taught us that we should
generate negative anchors that are likely to appear in a dataset as
a natural singing voice but make us feel like other singers sang
them. In this sense, we introduce two transformations, i.e., pitch
shifting and time stretching.

These transformations allow trained neural networks to dis-
tinguish vocal timbres and singing expressions, respectively.
The vocal timbre depends on spectral envelopes and for-
mants [9], which are altered substantially after naïve pitch
shifting2(without time stretching); hence, pitch-shifted singing
voices tend to be perceived as having different vocal timbres.
Therefore, training networks to distinguish pitch-shifted ver-
sions (i.e., adding pitch-shifted singing voices as negative an-
chors) leads to feature representations that are sensitive to the
spectral changes in vocal timbres.

Time stretching yields singing voices that could sound like
they have different singing expressions produced by differ-
ent singers. Here, we focus on singing expressions related to
short-term expressive articulations, e.g., the vibrato rate and
F0 contour in note transitions. The vibrato is one of the clear
expressive features in singing voices [12], and its rate is known
to be fairly constant regardless of a song’s tempo [49]. The
steepness of the F0 contour in note transitions is also a cue to
capture singing expressions because it reflects personal singing
behaviors or styles [50], [51]. Such temporal expressions are al-
tered substantially after time stretching (without pitch shifting).
Thus, training networks to distinguish time-stretched versions
(i.e., adding time-stretched singing voices as negative anchors)
leads to feature representations sensitive to the temporal changes
in singing expressions.

Here, the duration of singing voices can be varied; thus, we
assume that they were cut down to the same duration before
being input to networks. This assumption provides a means to
prepare positive anchors; i.e., we use another cut from the same
sample as a positive anchor because the cuts from the same
sample are considered sung by the identical singer. Thus, their
feature representations should be close to each other.

In summary, given the notation in Equation 1, we can see
that the proposed approach is augmenting the negative anchors
X−

i by using the introduced transformations. Specifically, it
complements X−

i , consisting of other samples in a dataset
analogously to regular self-supervised contrastive learning, with
the pitch-shifted and time-stretched versions of xi. Meanwhile,
the positive anchors X+

i were supplied with x̃i, which was cut
from the same singing voice as xi. Here, as we explain later in
Section III-C, the positive and negative anchors can be generated
stochastically (i.e., via random sampling3) to increase their

2In other words, for pitch shifting, we should not apply existing methods that
can modify pitch while preserving formants, such as TD-PSOLA [48].

3 Although samples (i.e., singing voices) by the same singer might be selected
randomly as negative anchors, this effect is usually ignored in contrastive
learning since its chance is rare.

diversity, inheriting the design of SimCLR [36] and MoCo [37]
(see Section II-B). With this scheme, the proposed approach can
acquire singer-specific feature representations attentive to both
vocal timbre and singing expression.

B. Data

To realize the proposed approach, we must prepare a large
dataset of singing voices. Particularly, self-supervised learning
is known to demonstrate performance improvement in various
tasks when a network is trained with large amounts of data [52].
Thus, inspired by previous studies [41], [53] that crawled 30 s
audio previews of 240 k songs corresponding to Million Song
Dataset [54] from a music streaming service, we constructed a
larger dataset of 30 s previews (audio excerpts for trial listening)
of songs as well as their genre labels by crawling them from a
music streaming service.

The songs were collected with their artist names; however, the
artist names and any other metadata were not used for the self-
supervised learning of the proposed approach. Instead, using the
artist names, we randomly sampled 500 artists from those with
more than 50 songs in the dataset and filtered them out for the
singer identification task in Section IV. As a result, we used
328,418 songs, in which all songs by the 500 sampled artists
were excluded, without the artist names for our self-supervised
training.

We applied Spleeter [55] to all songs to separate the singing
voices from the previews (polyphonic music). We also applied
singing voice detection [56] and cut consecutive silence sections
whose duration was greater than 0.5 s.

C. Implementation and Training Procedure

As explained in Section III-A, the constructed dataset was
used to train neural networks in an unsupervised manner. For
the networks to be trained, we adopted the architecture of
convolutional recurrent neural network (CRNN) [57], which has
been used for singer identification in a supervised situation [23].
We implemented it using PyTorch to take a spectrogram of a 5 s
audio excerpt as input and output a 256-dimensional feature
representation vector. To ensure the diversity of the input, we
did not cut the singing voices in the dataset into 5 s a priori.
Instead, we implemented it to crop each sample of the singing
voices randomly during training.

For the transformations to be applied, we prepared four
types of transformation: raising the pitch by three semitones,
lowering the pitch by three semitones, speeding up by ×1.70,
and slowing down by ×0.65. As explained in Section III-A,
the transformations should not be too aggressive because they
would lead to feature representations that are merely sensitive
to unnatural artifacts, whereas too subtle transformations would
not yield effective anchors for contrastive learning. Given that,
these parameters were decided on the basis of our preliminary
observations to balance the naturalness of the transformed ver-
sions with the degree of distinction from the original sample.

Then, one of the four types was applied at the same probability
to a cut of a singing voice cropped to generate negative anchors.
Correspondingly, another cut cropped from the same sample was
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used as positive anchors without applying any transformations,
as mentioned in Section III-A. Here, we used the SoX utility4

(version 14.4.2) via torchaudio5 to implement the transforma-
tions. Specifically, we invoked SoX with the option of either
pitch +300 or -300 for pitch shifting and either tempo
1.70 or 0.65 for time stretching.

The training was performed for 150 epochs, which took
approximately 2.5 days on a computer with four NVIDIA Tesla
V100 GPUs. We also trained the same network by altering the
combinations of transformations to be used (i.e., four combina-
tions compromising both, either, or no transformation) for com-
parison. Adam [58] was used to optimize the network parameters
with a learning rate of 0.01, which was updated by multiplying
by 0.2 at 25, 50, 75, and 100 epochs. Also, we set the dictionary
size of the momentum encoder, which is analogous to K− under
the scheme of MoCo [37], to 4096.6 After this self-supervised
training, the networks were frozen to be used only for extracting
feature representations.

IV. SINGER IDENTIFICATION

We first performed singer identification to evaluate the effec-
tiveness of the feature representations acquired by the proposed
approach. Here, we trained a classifier to identify the artist names
from the acquired feature representations and compared its
accuracy to when the same classifier trained using conventional
features.

A. Data

For the singer identification task, we used the singing voices
of the 500 artists we previously filtered (see Section III-B). We
sampled 50 songs for each artist from the collected 30 s audio
previews, yielding 25,000 songs in total. They were prepro-
cessed by separating only the singing voices from the polyphonic
music using the singing voice separation and detection technique
in the same manner as Section III-B. Then, they were split into
training, validation, and testing sets (40:5:5) for each artist.

B. Procedure

The singer identification task was performed in a supervised
manner by training a very shallow classifier. It is common
to use a shallow classifier in the evaluation of downstream
tasks to examine the effectiveness of self-supervised contrastive
learning, as we can see in SimCLR [36] and MoCo [37]. This
is because, when even such a classifier performed better in the
downstream tasks by taking the acquired feature representations
as input, it can be considered that the representations capture the
characteristics of samples well.

Specifically, we used a two-layer perceptron with 512 hidden
units in its middle layer and softmax activation in its output layer
to follow the experimental design of CLMR [41]. We trained
the perceptron to learn the relationship between the acquired

4http://sox.sourceforge.net/
5https://pytorch.org/audio/stable/sox_effects.html
6We followed the parameters of Tao et al. [47] and did not conduct hyperpa-

rameter tuning in our study.

TABLE I
ACCURACY OF SINGER IDENTIFICATION (500 SINGERS)

feature representations and the corresponding singer labels. This
supervised training ran for 250 epochs, lasting approximately
2.5 h. We again used Adam [58] with a stepping learning rate,
in which the learning rate is multiplied at certain epochs (see
Section III-C), starting with 0.01.

We compare the proposed approach to CLMR [41], which
achieved state-of-the-art performance in music tagging by em-
ploying self-supervised contrastive learning. To facilitate a
fair comparison, we first performed self-supervised training
of CLMR using the same singing voices separated from the
328,418 songs used in Section III-B. The trained network of
CLMR was subsequently frozen and used to extract the fea-
ture representations of the 25,000 songs (see Section IV-A).
Afterward, we trained the same two-layer perceptron using the
extracted representations as input and evaluated its accuracy.

Additionally, we prepared a baseline using conventional fea-
tures in reference to previous studies (see Section II-A). We
calculated the same audio features as those Wang and Tzane-
takis [27] prepared for their baseline, i.e., 70-dimensional vec-
tors consisting of the mean and standard deviation of chroma
(12-dim), MFCC (20-dim), spectral centroid, spectral roll-off,
and spectral flux (3-dim). We then trained the same two-layer
perceptron using the conventional features similarly.

C. Results

The results are shown in Table I; the proposed approach of
training CRNN using pitch-shifted and time-stretched samples
as negative anchors obtained the best performance (i.e., 63.08%
for top-1 accuracy). Here, a recent study [28] reported an accu-
racy of 39.3% when identifying 500 singers taken from Million
Song Dataset [54]. It is difficult to directly compare it with
ours because of the difference in both the training procedures
employed (e.g., supervised and self-supervised) and the datasets
used, but it can be said that the proposed approach demonstrated
relatively high accuracy.7

7The method proposed by Lee and Nam [28] is not compatible with ours
because its design of employing supervised learning requires annotated datasets.
In addition, it requires a dataset consisting of clean singing voices (i.e., not ones
separated from polyphonic music), such as DAMP [59], to make the acquired
feature representations robust, which hindered us from applying the method to
our dataset. Thus, we did not include it in the baselines; however, merely for
reference, we additionally evaluated the feature representations acquired with
a pretrained network that is trained using DAMP [59] and published by Lee
and Nam [28]. As a result, the same two-layer perceptron being fed their feature
representations achieved 47.9% for top-1 accuracy and 71.2% for top-5 accuracy
in our dataset.

http://sox.sourceforge.net/
https://pytorch.org/audio/stable/sox_effects.html
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The comparison with CLMR [41] further emphasizes the
advantage of the proposed approach. Here, although the number
of its parameters (489 k) is much less than that of CLMR (2.9 M),
the proposed approach achieved comparable performance even
without pitch shifting or time stretching. This is attributable
to the design of CLMR, which follows regular self-supervised
contrastive learning. For example, while it does not employ time
stretching, CLMR applies pitch shifting to generate positive
anchors in contrast to us, which may make the acquired rep-
resentations inattentive to vocal timbre.

In addition, the proposed approach boosted its performance
by involving the two introduced transformations. Using either
pitch-shifted or time-stretched versions as negative anchors im-
proved accuracy, and using both showed the best performance.
This met our expectations given that the transformations were
introduced to make the acquired representations attentive to
vocal timbre and singing expression, which allow the proposed
approach to outperform CLMR.

On the other hand, the two-layer perceptron trained with the
conventional features failed to identify singers, as its accuracy
did not differ from the expected value of the random output. This
is consistent with the result of Wang and Tzanetakis [27]; that
is, such conventional features achieved relatively high accuracy
in identifying 20 singers from the artist20 dataset [17], [18]
but are less effective when we apply them to a larger dataset.
Particularly, when we inspected the outputs of the two-layer
perceptron, we found that they were concentrated on a small
number of singers, which led to the accuracy of the chance
level. This implies that learning the relationship between the
conventional features and the corresponding singer labels would
be intractable for the two-layer perceptron. In other words, the
conventional features could not provide enough distinction of
singing voices such that the shallow classifier can distinguish
500 singers.

Conversely, the proposed approach achieved much better
accuracy with the two-layer perceptron. This shows that the
acquired feature representations capture the characteristics of
each singer so effectively that they can enable the shallow
classifier to distinguish 500 singers. Thus, we expect that re-
placing conventional features with the feature representations
acquired by the proposed approach can improve the performance
of various downstream tasks other than singer identification.

D. Effect of Self-Supervised Representation Learning

We also conducted a comparative experiment to confirm the
effectiveness of the self-supervised representation learning of
the proposed approach. Here, we simultaneously trained the
two-layer perceptron with CRNN from scratch using the same
training set comprising 20,000 songs (40 songs × 500 artists) as
Section IV-B.8 Since the architecture and number of parameters
of the entire network were consistent, it is theoretically capable
of achieving the accuracy presented in Section IV-C. In other

8 It is technically possible to use all songs we collected in Section III-B to train
the networks from scratch. However, the self-supervised training in Section III-C
did not involve label information (i.e., artist names); thus, using the songs for this
supervised training would be unfair and would yield a meaningless comparison.

TABLE II
EFFECT OF THE SELF-SUPERVISED TRAINING ON THE ACCURACY

Fig. 3. (a) Vocal timbre-oriented representations were acquired using time-
stretched versions as positive anchors. (b) Singing expression-oriented repre-
sentations were acquired using pitch-shifted versions as positive anchors.

words, the differences in accuracy reflected the effect of the
self-supervised representation learning.

Table II shows the results. Although the network architecture
was consistent, the accuracy was primarily improved with the
help of self-supervised learning. Particularly, the accuracy of
when the networks were trained from scratch was not signif-
icantly different from that obtained when using conventional
features. This supports the effectiveness of the self-supervised
representation learning of the proposed approach, which aligns
with observations in other domains [6], [7].

V. VOCAL TIMBRE- OR SINGING EXPRESSION-ORIENTED

REPRESENTATIONS

While the case of using both pitch shifting and time stretching
to generate negative anchors achieved the best performance in
Section IV-C, we can use either of them to generate positive
anchors, as mentioned in Section I. Specifically, instead of using
the pitch-shifted and time-stretched versions of xi to augment
the negative anchors X−

i , we can consider complementing the
positive anchors X+

i with either of them. Then, the acquired
feature representations are expected to be attentive to either vocal
timbre or singing expression, although the proposed approach
does not require annotations to capture these aspects in its self-
supervised training.

To examine this option, we newly trained neural networks
by switching the usage of the pitch-shifted and time-stretched
versions in such a manner and explored the acquired feature
representations. Specifically, we prepared a network trained with
time-stretched positive anchors and pitch-shifted negative an-
chors (Fig. 3(a)) and another network trained with pitch-shifted
positive anchors and time-stretched negative anchors (Fig. 3(b)).
Similar to Section III-C, we trained CRNN with the same dataset
as Section III-B and extracted the representations of singing
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TABLE III
COMPARISON OF THE VARIANCE OF FEATURE REPRESENTATIONS OF SONGS IN

EACH GENRE 9

voices in the dataset using the networks. Hereafter, we refer to
the representations acquired with the former network as vocal
timbre-oriented and those acquired with the latter as singing
expression-oriented.

A. Song Genre

We first explored the acquired representations regarding song
genres because genres are often associated with singing styles
from the perspective of music theory [60]. By using the genre
labels of the songs in our dataset (see Section III-B), we investi-
gated the diversity of singing voices in each genre in terms of the
difference in their feature representations. Here, we calculated
the variance of the representations of songs in each genre (i.e.,
the squared average of the L2-distance of each representation
from the mean representation of the corresponding genre) and
sorted major genres in order of variance, as shown in Table III.

Hip-Hop/Rap, which is known to have unique singing styles,
was ranked at the bottom in both cases, which means that
Hip-Hop/Rap songs were considered to have similar consistent
singing voices in terms of vocal timbre and singing expression.
Conversely, Alternative, Rock, Pop, and J-Pop, which typically
cover a wide variety of songs, were ranked at the top, which
means that they were judged to have diverse vocal timbres and
singing expressions. It is notable that this distinction seems to
accord with the discussion in music theory regarding the nature
of those genres, while it was learned in an unsupervised manner.
For example, Malaway [60] emphasized the role of rhyme
scheme, rather than articulation or prosody, in the individuality
of singing voices, referring to the critical analysis on Hip-Hop
and Rap by Krims [61].

Similarly, Country songs demonstrated large and small vari-
ances for their vocal timbre- and singing expression-oriented
representations, respectively. This result agrees with the dis-
cussion by Malaway [60], which pointed out that the singing
style of Country songs is “metrically regularized” based on the
anthropological analysis by Feld et al. [62]. In addition, Anime
songs exhibited the opposite trend, i.e., they were judged to have

9Here, lower genres have less diversity in their vocal timbres or singing ex-
pressions according to the acquired vocal timbre- or singing expression-oriented
representations, respectively.

Fig. 4. Feature representations visualized by t-SNE. The plot of (a) vocal
timbre-oriented representations provided a clearer distinction between male and
female singers than (b) singing expression-oriented representations.

similar vocal timbres and diverse singing expressions. A bias to
reduce the diversity of vocal timbres could exist because Anime
songs are often sung by the voice actors of anime characters,
and actors can change their expressions according to the given
anime characters. However, they would have difficulty changing
their timbres drastically because of the physical constraints of
their body structure.

B. Singer Gender

To provide another perspective, we explored the acquired
representations regarding singer gender since the singing voices
of male singers are expected to have similar vocal timbres
when compared with those of female singers, and vice versa.
Since singer gender information is unavailable for our songs, we
sampled five artists for each of the 12 genres listed in Table III
and manually annotated gender labels. We then visualized the
feature representations of their songs by mapping them into
two-dimensional space using t-SNE [63], as shown in Fig. 4.

We can see that the plots of the vocal timbre-oriented repre-
sentations (Fig. 4(a)) present a clearer distinction between male
and female singers than those of the singing expression-oriented
representations (Fig. 4(b)), which agrees with our expectations.
More specifically, we expect that the vocal timbres of male
singers would be more similar to those of other male singers
than those of female singers, and vice versa. Conversely, the
singing expressions of male singers would not necessarily be
similar to those of other male singers, in comparison with those
of female singers. These results suggest that the vocal timbre-
and singing expression-oriented representations have different
characteristics, which can be associated with the vocal timbre
and singing expression of singing voices, respectively.

C. Exploration With VocalSet

We further extracted the feature representations of singing
voices in VocalSet [64] using the two networks to confirm their
characteristics quantitatively. This dataset contains the singing
voices of 20 singers performing various vocal techniques, e.g.,
vibrato and trill. Thus, it can be expected that the vocal timbre-
oriented representations capture the distinction of the singers,
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TABLE IV
DEGREE TO WHICH SINGING VOICES ARE CONSIDERED SIMILAR TO A QUERY

SHARED SINGERS AND VOCAL TECHNIQUES WITH THE QUERY

while the singing expression-oriented representations capture
the distinction of the vocal techniques. We confirmed this by
examining pairs of singing voices considered similar according
to either of the representations.

Specifically, by taking each singing voice in the dataset as
a query, we ranked the other singing voices based on their
similarity calculated using the feature representations. We then
examined whether highly ranked singing voices share their
singers or vocal techniques with the query. Using the same
scheme for information retrieval, we calculated the mean re-
ciprocal ranking (MRR) [65], which takes a value of 1 when
the representations regard a singing voice of the same singer
or vocal technique to the query as the most similar. We also
calculated the precision at k (Prec@k), which is the proportion
of singing voices that share their singers or vocal techniques
with the query among the top-k results. Here, we used the
singing voices of nine techniques10 performed by 20 singers;
thus, random selection would result in 0.05 and 0.11 regarding
singers and vocal techniques, respectively.

The results are shown in Table IV. As expected, the vo-
cal timbre-oriented representations outperformed the singing
expression-oriented representations in terms of retrieving
singing voices by the same singer as a query. Conversely, the
singing expression-oriented representations performed better
when retrieving singing voices with the same vocal techniques.
Additionally, when we conducted Student’s t-test on the basis
of the recommendation by Urbano et al. [66], we found that
all metrics of MRR, Prec@1, and Prec@5 yielded p < 0.001
regarding both singers and vocal techniques. In other words,
the vocal timbre- and singing expression-oriented representa-
tions exhibited significantly different performances in retrieving
singing voices by the same singer or those with the same vocal
techniques.

These results suggest that the proposed approach of using
either time stretching and pitch shifting to generate positive
anchors and the other to generate negative anchors made the
acquired feature representations attentive to either vocal timbre
or singing expression, respectively. Notably, the feature repre-
sentations used here were not trained using VocalSet. The fact
that the acquired representations captured the characteristics of
the singing voices of a different dataset from the one used for
training implies the generalizability of the proposed approach.

10We excluded the singing voices labeled as spoken from 10 vocal techniques
Wilkins et al. [64] used because these are speech samples (rather than singing).

VI. CONCLUSION

In this study, we have introduced self-supervised contrastive
learning in a manner specialized to singing voices. Our contri-
butions are summarized as follows:
� We enabled the acquisition of feature representations atten-

tive to vocal timbre and singing expression in an unsuper-
vised manner by training neural networks to discriminate
pitch-shifted and time-stretched versions.

� We confirmed that the acquired representations help a
classifier improve the accuracy of singer identification, as
we observed an accuracy of 63.08% with 500 singers.

� We further suggested that the proposed approach can be
extended to acquire feature representations to be used to
retrieve singing voices that are similar in terms of either
vocal timbre or singing expression.

While we have focused on the singing voice, we believe
that other MIR tasks can benefit from the idea of the proposed
approach that exploits self-supervised contrastive learning to
capture a specific aspect of input by incorporating the domain
knowledge in this field.

A. Limitations and Future Work

This study has several limitations. First, it is desirable to
conduct a perceptual evaluation to examine the characteristics
of the acquired feature representations in depth. Since the vocal
timbre- and singing expression-oriented representations could
be used in an MIR application that retrieves similar singing
voices, investigating how humans perceive the retrieved singing
voices would facilitate such an application.

Also, the transformation employed in the proposed approach
left room for further exploration. In this study, we prepared fixed
parameters for pitch shifting and time stretching based on our
early observation, as explained in Section III-C. However, by
conducting a comprehensive comparison that involves various
parameters, we can elucidate the boundary of the effective range
of the parameters. Then, we can extend the proposed approach
to randomly sample the parameters within the range during the
training, which would contribute to the further (in)attentiveness
of the acquired feature representations, in an analogous manner
to Chen et al. [36] (see Section II-B).

Other transformations than pitch shifting and time stretching
can also be incorporated into the proposed approach. For exam-
ple, instead of time stretching singing voices as a whole, we can
modify a specific part of singing voices that contains vibrato
in combination with existing methods for detecting vibrato
from singing voices [67]. Considering that it would not affect
the other parts that do not contain vibrato, incorporating this
transformation to generate negative anchors would yield feature
representations that are more attentive to vibrato.

Similarly, we can use singing voice conversion [68], [69] to
acquire feature representations attentive to vocal timbre, sub-
stituting pitch shifting. Specifically, we can generate negative
anchors that alter the vocal timbre of singing voices by using
singing voice conversion techniques while maintaining other as-
pects, such as expressive articulations. While we did not employ
it because applying singing voice conversion to all samples in
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the dataset would be computationally demanding compared with
pitch shifting, the acquired feature representations are expected
to be specifically attentive to vocal timbre. At the same time,
it can pose a possibility of yielding feature representations that
are attentive to artifacts produced by singing voice conversion,
which demands future research.
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