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A Nonparametric Bayesian Multipitch Analyzer
Based on Infinite Latent Harmonic Allocation
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Abstract—The statistical multipitch analyzer described in this
paper estimates multiple fundamental frequencies (F0s) in poly-
phonic music audio signals produced by pitched instruments.
It is based on hierarchical nonparametric Bayesian models that
can deal with uncertainty of unknown random variables such as
model complexities (e.g., the number of F0s and the number of
harmonic partials), model parameters (e.g., the values of F0s and
the relative weights of harmonic partials), and hyperparameters
(i.e., prior knowledge on complexities and parameters). Using
these models, we propose a statistical method called infinite latent
harmonic allocation (iLHA). To avoid model-complexity control,
we allow the observed spectra to contain an unbounded number
of sound sources (F0s), each of which is allowed to contain an
unbounded number of harmonic partials. More specifically, to
model a set of time-sliced spectra, we formulated nested infinite
Gaussian mixture models based on hierarchical and generalized
Dirichlet processes. To avoid manual tuning of influential hyper-
parameters, we put noninformative hyperprior distributions on
them in a hierarchical manner. For efficient Bayesian inference,
we used a modern technique called collapsed variational Bayes.
In comparative experiments using audio recordings of piano and
guitar solo performances, iLHA yielded promising results and
we found that there would be room for improvement based on
modeling of temporal continuity and spectral smoothness.

Index Terms—Bayesian nonparametrics, Dirichlet process, infi-
nite latent harmonic allocation (iLHA), multipitch analysis.

I. INTRODUCTION

U NCERTAINTY is inherent in music analysis. A musical
piece about which we have little prior knowledge can

often be interpreted in various ways. One might, for example,
have various degrees of belief in different possible interpreta-
tions of tempo and semantic structures, and when we try to tran-
scribe the music we hear in an audio recording, we often find
difficult to identify the notes with absolute confidence. Even if
in the end we need to determine which interpretation or tran-
scription is the most reasonable, during the analysis it is impor-
tant to keep all possibilities open with various degrees of belief.
We should therefore take an approach that can evaluate, propa-
gate, and integrate the uncertainties of interdependent musical
elements or musical notes.
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A natural way to manage uncertainty is to take a Bayesian
approach and use Bayesian probabilities to indicate degrees of
belief. For example, suppose we have a distorted die. If the prob-
abilities of getting the numbers 1, 2, 3, , 6 (called parameters)
are known, we can evaluate the likelihood for a set of numbers
(called observed data) obtained by casting the die many times.
Note that the true values of the parameters do not vary stochasti-
cally. When the parameters are unknown, a probabilistic distri-
bution is used as a means of representing how strongly possible
values are believed to be the true values. Such degrees of be-
lief vary according to the amount of observed data. Before we
get observed data, prior distributions tend to be widely spread.
The more data we get, the sharper the peaks of posterior distri-
butions become. That is, the degree of belief on a certain possi-
bility increases. The objective of Bayesian inference is to calcu-
late posterior distributions of unknown variables by formulating
probabilistic models defined by likelihood functions and prior
distributions.

A critical problem in the conventional Bayesian approach
is that we have to specify the complexity of the probabilistic
models in advance (complexity means the number of mixtures
in Gaussian mixture models (GMMs) and the number of states
in hidden Markov models (HMMs)). If model complexities are
unknown, both the uncertainty of model complexities and that of
model parameters should be dealt with appropriately. The con-
ventional approach, however, forces us to train many models
of different complexities independently and then select one ac-
cording to some criteria. Such fine-comb model selection, or
model-complexity control, is often impractical, especially in the
optimization of combinatorial-complexity models.

A nonparametric Bayesian approach avoiding the model se-
lection problem has recently attracted a lot of attention [1]. Here
the term “nonparametric” means that the size of a parameter
space (complexity) is not fixed and in theory an infinite number
of parameters (infinite complexity) are considered. If an infi-
nite amount of observed data were available, an infinite number
of parameters would be needed to represent variety of the data.
Actually, however, only a limited number of parameters are
needed because the amount of observed data is limited. The ef-
fective complexities of nonparametric models can be automati-
cally adjusted according to observed data. Such nonparametric
models are essentially different from conventional parametric
models. In a single nonparametric model, an infinite number of
parametric models with different complexities are stochastically
overlapped.

In this paper, we propose a nonparametric Bayesian method
for multipitch analysis, which is the basis of music transcription
and music information retrieval (MIR). The method is called in-
finite latent harmonic allocation (iLHA), and our goal is to esti-
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Fig. 1. Advantage of our method: We are not required to specify the number
of spectral bases and the number of harmonic partials in advance. In addition,
we do not have to adjust hyperparameters carefully.

mate multiple fundamental frequencies (F0s) from polyphonic
audio signals. Instead of determining the values of F0s (parame-
ters) and the number of them (complexity) uniquely, our method
estimates a joint posterior distribution of all unknown variables
when amplitude spectra of musical audio signals are given as ob-
served data. We formulate nested infinite GMMs for observed
spectra by using nonparametric priors called Dirichlet processes
(DPs). These models can be obtained by taking the limit of the
nested finite GMMs proposed by Goto [2] and Kameoka et al.
[3] as the number of mixtures goes to infinity. More specifically,
each spectral strip is allowed to contain an unbounded number of
sound sources (harmonic structures), each of which is allowed
to contain an unbounded number of harmonic partials. An im-
portant problem is that the parameters of the DPs (called hyper-
parameters) should be given appropriately because they affect
the effective number of mixtures.

To avoid hyperparameter tuning, our models are formulated
in a hierarchical Bayesian manner by putting prior distributions
(called hyperprior distributions) on influential hyperparame-
ters. Conventionally, we need to specify the hyperparameters
of Dirichlet prior distributions on the relative weights of
harmonic partials [2], [3]. Although these hyperparameters
strongly impact the accuracy of F0 estimation, it is difficult
to optimize them by hand. We instead put noninformative
hyperprior distributions on the hyperparameters of DP priors
of the infinite number of F0s and harmonic partials. This is
reasonable because we have little knowledge of the hyperpa-
rameters. As shown in Fig. 1, we can completely automate
iLHA by leveraging natural Bayesian treatment of parameters,
complexities, and influential hyperparameters.

The reminder is organized as follows. Section II introduces
related work. Section III compares parametric models of con-
ventional methods and nonparametric models of our method.
Section IV describes a finite version of our method (LHA) and
Section V explains our method (iLHA). Section VI reports our
experiments. Section VII concludes this paper.

II. RELATED WORK

Many researchers have applied probabilistic models to mul-
tipitch analysis. Goto [2] proposed a probabilistic model for a
single-frame amplitude spectrum (spectral strip) that contains
multiple harmonic structures (see Section III) and used it to es-
timate the F0s of melody and bass lines from polyphonic audio
signals. Kameoka et al. [3] estimated multiple F0s by using a
similar model for grouping frequency components into multiple

sound sources. Kameoka et al. [4] extended the model by cap-
turing the temporal continuity of harmonic structures. Raphael
[5] formulated a HMM based on a large number of chord hy-
potheses. Cemgil et al. [6] used a dynamic Bayesian network
(DBN) to represent the sound generation process, i.e., to asso-
ciate a music-score level with an audio-signal level. Raczyński
et al. [7] also used a DBN to model temporal dependencies be-
tween musical notes. Emiya et al. [8] proposed a probabilistic
model that jointly represents spectral envelopes and harmonic
partials.

Recently, nonnegative matrix factorization (NMF) [9] has
been considered to be promising. It regards time–frequency
spectra as a nonnegative matrix and decomposes it into the
product of two nonnegative matrices, one corresponding to a set
of spectral bases and the other corresponding to a set of temporal
activations. Smaragdis et al. [10] pioneered the use of NMF for
music transcription. Virtanen et al. [11] and Peeling et al. [12]
proposed Bayesian extensions of NMF. Raczyński et al. [13] and
FitzGerald et al. [14] proposed harmonicity constraints for spec-
tral bases, and Bertin et al. [15] further introduced smoothness
constraints for temporal activations. Vincent et al. [16] proposed
a method of training spectral bases from audio signals of isolated
tones and adapting them to target polyphonic audio signals.
Cont [17] developed NMF with sparsity constraints for real-time
pitch tracking. Several variants of NMF—such as the complex
NMF proposed by Kameoka et al. [18], the Itakura–Saito (IS)
divergence NMF proposed by Févotte et al. [19], and the gamma
process NMF proposed by Hoffman et al. [20]—have been
applied to spectrogram decomposition, but F0s have not been
estimated from the spectral bases thus obtained.

Many other approaches have been also proposed (see [21]
for a review). For example, Marolt [22] and Klapuri [23]
proposed auditory-model-based methods that use a peripheral
hearing model. Computationally efficient approaches based
on harmonic sums [24] and correlograms [25] have also been
investigated. Pertusa and Iñesta [26] proposed a spectral-peak
clustering method. Bello et al. [27] tackled grouping of fre-
quency components by using a heuristic set of rules.

There have been attempt to estimate F0 contours of melody
lines (vocal parts) from polyphonic audio signals. Dressler [28]
used instantaneous frequency estimation, sinusoidal extraction,
psychoacoustics, and auditory stream segregation. Ryynänen
and Klapuri [29] formulated a HMM based on acoustic and mu-
sicological modeling, and Durrieu et al. [30] proposed a sta-
tistical method of extracting the main melody by using source/
filter models. Poliner et al. [31] have reported a comparative
evaluation of several approaches.

Most methods mentioned above can achieve good results if
the number of sound sources and/or manual parameters are ap-
propriately specified. However, it is difficult to always bring out
the full potential of these methods in practice.

III. PROBABILISTIC MODELS

Our method is based on nonparametric Bayesian extension
of conventional finite mixture models proposed by Goto [2] and
Kameoka et al. [3]. Here we explain the conventional models for
observed spectra and then derive our infinite mixture models by
extending the conventional models.
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Fig. 2. Gaussian mixture model for the �th basis (single basis). Each Gaussian
corresponds to a harmonic partial, and the mixing weights represent the relative
strengths of � harmonic partials.

A. Notations

Suppose that given polyphonic audio signals contain bases,
each of which consists of harmonic partials located at inte-
gral multiples of the F0 on a linear frequency scale. Each basis
can be associated with multiple sounds of different temporal po-
sitions if these sounds are derived from the same pitch of the
same instrument. We transform the audio signals into wavelet
spectra. Let be the number of frames. Note that and
are finite integers that in conventional methods are specified in
advance. Our method considers that and go to infinity.

B. Conventional Finite Models and MAP Estimation

Probabilistic models can evaluate how likely observed data is
to be generated by using a limited number of parameters. There-
fore, estimation of multiple F0s corresponds directly to finding
model parameters that give the highest probability to the gener-
ation of the observed data (called model training).

Goto [2] first proposed probabilistic models of harmonic
structures by regarding an amplitude spectrum (a spectral strip
of a single frame) as a probability density function. As shown
in Fig. 2, the amplitude distribution of basis can
be modeled by a harmonic GMM as follows:

(1)

where is a one-dimensional vector indicating a logarithmic
frequency [cents].1 The Gaussian parameters (mean and vari-
ance ) represent the F0 of basis and the degree of en-
ergy spread around the F0. is the relative strength of the

th harmonic partial in basis . We set to
. This means that Gaussians are located to have

the harmonic relationship on the logarithmic frequency scale.
One might think that the value of can be precomputed be-
cause the basis sound consists of sinusoidal signals (see Ap-
pendix I in [4]). This is true if these sinusoidal signals are sta-
tionary, but frequency-modulated sounds (e.g., vibrato) result
in a larger value of because of the uncertainty principle of
time–frequency resolution.

As shown in Fig. 3, the spectral strip of frame is modeled
by mixing harmonic GMMs as follows:

(2)

1Linear frequency � in hertz can be converted to logarithmic frequency �
in cents as follows: � � ���� ��� �� ��		��� 

.

Fig. 3. Nested Gaussian mixture model for mixed multiple bases. It is obtained
by mixing multiple Gaussian mixture models in a weighted manner under the
assumption of amplitude additivity.

TABLE I
MULTIPITCH ANALYSIS METHODS

where is a relative strength of basis in frame . Con-
sequently, the polyphonic spectral strip can be represented by
means of a nested finite GMM.

Several methods that have been proposed for parameter es-
timation are listed in Table I. Goto [2] proposed a predomi-
nant-F0 estimation method (PreFEst) that estimates only rel-
ative strengths and by allocating many GMMs ( and
are fixed) to cover the entire frequency range as F0 candidates.
Kameoka et al. [3] proposed harmonic clustering (HC), which
estimates all the parameters and selects the optimal number of
bases by using the Bayesian information criterion. Although
these methods yielded the promising results, they analyze the
spectral strips of different frames independently. Kameoka et
al. [4] therefore proposed harmonic-temporal-structured clus-
tering (HTC), which captures the temporal continuity of spectral
bases. Because all the above methods use a maximum a poste-
riori (MAP) estimation strategy to train the finite models, a prior
distribution of relative strengths has a large effect on the ac-
curacy of F0 estimation.

C. Our Infinite Models and Bayesian Inference

We would like to discuss the limit of (1) and (2) as and
diverge to infinity. There is a reason that taking the infinite

limit is reasonable even though there are a finite number of
discrete pitches (e.g., the standard piano has 88 keys). The
F0s and spectral shapes of many instruments (strings, wood-
winds, brasses, etc.) vary infinitely according to playing styles
(vibrato, marcato, legato, staccato, etc.), and it is difficult to
capture these variations when using a parametric model of fixed
complexity.

Although there are theoretically infinite number of mixing
weights and , in the



720 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

finite amount of observed data in practice there are a finite
number of bases and a finite number of harmonic partials. Most
of mixing weights must therefore be almost equal to zero. In
other words, only a limited number of bases and a limited
number of harmonic partials are allowed to become active.
To realize such “sparse” GMMs, we put nonparametric prior
distributions on mixing weights as sparsity constraints. We
developed a method of Bayesian inference called iLHA to train
the nested infinite GMMs (see Section V).

1) Definition of Observed Data: In the context of Bayesian
inference we need to explicitly define the observed data from the
statistical viewpoint. More specifically, we regard each spectral
strip as a histogram of observed frequencies as in [32]. If a spec-
tral strip at frame has amplitude at frequency ,
we assume that frequency was observed times in frame

, where is a scaling factor of wavelet spectra. In other words,
we suppose there are countable frequency “particles” (sound
quanta), each corresponding to an independent and identically
distributed (i.i.d.) observation. Note that there is a nontrivial
issue in determining the value of (see Section III-C3). As-
suming that amplitudes are additive, we can consider each ob-
servation to be generated from one of partials in one of
bases.

Let the total observations over all frames be represented
by , where is a set of observed fre-
quencies in frame . is the number
of frequency observations (i.e., the sum of spectral amplitudes
over all frequency bins in frame ) and is a
one-dimensional vector that represents an observed frequency.
We let be the total number of observations over
all frames.

Let the total latent variables corresponding to be
similarly represented by , where

. is a -dimensional vector
in which only one entry, , takes a value of 1 and the
others take values of 0 when frequency is generated from
partial of basis .

2) Positioning of Our Method: Our method can be viewed
as an extension of a well-known topic modeling method called
latent Dirichlet allocation (LDA) [33]. LDA was developed as
a Bayesian extension of probabilistic latent semantic analysis
(pLSA) [34] in the field of natural language processing. In LDA,
each document is represented as a weighted mixture of multiple
topics that are shared over all documents contained in observed
data. Our method similarly represents frames as weighted mix-
tures of bases. An important difference between our method and
LDA, however, is that iLHA represents each basis as a contin-
uous distribution (a GMM) on the frequency space while LDA
represents each topic as a discrete distribution over words (a set
of unigram probabilities).

Another relevant extension of pLSA is probabilistic latent
component analysis (PLCA) [35]. PLCA has been applied to
source separation by assuming the time–frequency spectrogram
to be a two-dimensional histogram of sound quanta. A major dif-
ference between our method and PLCA is that iLHA is based on
a continuous distribution on the frequency space at each frame
while PLCA is based on a two-dimensional discrete distribution
on the space of frame-frequency pairs.

Our method is also similar to the standard NMF [10] based
on temporal exchangeability of spectral strips (see Table I). Our
method simultaneously trains GMMs of all frames contained in
the observed spectra. In other words, if we permute a temporal
sequence of spectral strips, the same results would be obtained.
Although such temporal modeling is not appropriate for music,
it is known to work well in practice.

As discussed above, we fuse the topic modeling framework
into the NMF-style decomposition. This is reasonable because
any (local) maximum-likelihood solution of pLSA is proven to
be a solution of NMF that uses Kullback–Leibler (KL) diver-
gence as a cost function [36]. In addition, we propose a non-
parametric Bayesian extension.

3) Limitations of Our Method: The amplitude quantization
and i.i.d. assumption are not justified in a physical sense. The
amplitudes at the integral multiples of a F0 are correlated to
each other when they were generated from a single harmonic
sound. Besides this, there is arbitrariness in determining the total
number of observations (the scaling factor multiplied to
raw wavelet spectra). The larger is, the more observations we
have, resulting in a more compact posterior distribution because
of reduced uncertainty. This criticism can be applied not only to
topic models like [32], [35] but also to probabilistic models of
NMF with KL divergence. This NMF assumes the value of am-
plitude to follow a Poisson distribution that is defined over non-
negative integers and has no scale parameter. Note that another
NMF with IS divergence [19] does not have such a problem
because it assumes the value of power (squared amplitude) to
follow an exponential distribution that is defined over nonneg-
ative real numbers and has a scale parameter. Therefore, NMF
with IS divergence is scale invariant.

This is more problematic in the context of “nonparametric”
Bayesian inference because the larger number of observations
allows iLHA to activate more relatively small mixture compo-
nents (i.e., bases and harmonic partials). We therefore need to
perform a thresholding process according to the value of after
training the weights of bases. In our experiments, the accuracy
of multipitch analysis little varied if we changed the value of
(see Section VI).

Another limitation is that our method represents harmonic
sounds in an oversimplified manner. We assume that harmonic
sounds consist only of several sinusoidal signals corresponding
to harmonic partials. Actually, however, measurable noisy com-
ponents are widely distributed along the frequency axis even if
the target musical pieces are played only by pitched instruments.
iLHA is thus forced to use too many harmonic GMMs to rep-
resent such noisy components. This is another reason that we
need the thresholding process in the end.

IV. LATENT HARMONIC ALLOCATION

This section explains LHA, the finite version of iLHA, as a
preliminary step to deriving iLHA. LHA deals with nested finite
GMMs described in Section III in a Bayesian manner. First,
we mathematically represent the LHA model by putting prior
distributions on unknown variables. Then, we explain a training
method of estimating posterior distributions.



YOSHII AND GOTO: NONPARAMETRIC BAYESIAN MULTIPITCH ANALYZER BASED ON iLHA 721

Fig. 4. Graphical representation of nested finite Gaussian mixture models for
LHA. First, finite sets of mixing weights, ��� and ��� , are stochastically generated
according to Dirichlet prior distributions. At the same time,�� Gaussian dis-
tributions are stochastically generated according to a Gaussian–Wishart prior
distribution. Then one of � harmonic partials in one of � bases is stochas-
tically selected as a latent variable ��� according to multinomial distributions
defined by��� and ��� . Finally, frequency��� is stochastically generated according
to a Gaussian distribution specified by ��� .

A. Model Formulation

Fig. 4 shows a graphical representation of the LHA model.
The full joint distribution is given by

(3)
where the first two terms are likelihood functions and the other
three terms are prior distributions. The likelihood functions are
defined as

(4)

(5)

Then, we introduce conjugate priors as follows:

(6)

(7)

(8)

where and are products of Dirichlet distributions and
is a product of Gaussian–Wishart distributions.

and are normalization factors, and and are hyper-
parameters. We let and sum to unity, respectively. and
are often called concentration parameters. , , , and
are also hyperparameters: is a Gaussian mean, is a scaling
factor of the precision matrix, is a scale matrix, and is a
degree of freedom.

B. Variational Bayesian Inference

The goal of Bayesian inference is to compute a true poste-
rior distribution of all unknown variables: .
Because analytical calculation of the posterior distribution is
intractable, we use an approximation technique, called varia-
tional Bayes (VB) [37], that limits the posterior distribution to
an analytical form and optimizes it iteratively in a deterministic
way. Another possible technique is Markov chain Monte Carlo

(MCMC) [38], which sequentially generates samples (the con-
crete values of unknown variables) from the true posterior dis-
tribution in a stochastic way by constructing a Markov chain
that has the target distribution as its equilibrium distribution. It
is generally difficult, however, to tell whether or not a Markov
chain has reached a stationary distribution from which we can
get samples within an acceptable error.

In the VB framework, we introduce a variational posterior
distribution and make it close to the true pos-
terior iteratively. Here we assume that the
variational distribution can be factorized as

(9)

To optimize , we use a variational version of
the expectation–maximization (EM) algorithm [37]. We iterate
VB-E and VB-M steps alternately until a variational lower
bound of evidence converges as follows:

(10)

(11)

C. Variational Posterior Distributions

We derive the formulas for updating variational posterior dis-
tributions according to (10) and (11).

1) VB-E Step: An optimal variational posterior distribution
of latent variables can be computed as follows:

(12)

where is defined as

(13)

where . Consequently, is obtained as
multinomial distributions given by

(14)

where is called a responsibility
that indicates how likely it is that observed frequency is
generated from harmonic partial of basis . Let be the
number of frequencies that were generated from harmonic par-
tial of basis in frame . This number and its expected value
can be calculated as follows:

(15)

For convenience in executing the VB-M step, we calculate
several sufficient statistics as follows:

(16)
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(17)

(18)

2) VB-M Step: Similarly, an optimal variational posterior
distribution of parameters is given by

(19)

This distribution can be factorized into the product of posterior
distributions of respective parameters as follows:

(20)

Since our model is based on the conjugate prior distributions,
each posterior distribution has the same form of the corre-
sponding prior distribution as follows:

(21)

(22)

(23)

where the variational parameters are given by

(24)

(25)

(26)

(27)

(28)

(29)

where we introduced a dot notation for improved readability.
We let dot “ ” denote the sum over that index. For convenience
in the subsequent sections, we also introduce notations using
comparison operators ( and ). For example, we write

(30)

The three terms of (13) can therefore be calculated as follows:

(31)

(32)

(33)

where is the digamma function, which is defined as the loga-
rithmic derivative of the gamma function.

D. Variational Lower Bound

To judge convergence, we examine the increase of the varia-
tional lower bound. Its maximization is inextricably linked with
minimization of the KL divergence between the true and varia-
tional posteriors. Let be the lower bound given by

(34)

The calculation of these terms is described in Appendix I.

V. INFINITE LATENT HARMONIC ALLOCATION

Our goal is to formulate and train nested infinite GMMs
without model selection and hyperparameter tuning. To do this,
we consider the limit of the nested finite GMMs described in
Section IV as both and approach infinity. In addition,
we put noninformative hyperprior distributions on influential
hyperparameters in a hierarchical Bayesian manner and then
calculate the posterior distributions of those hyperparameters.
As a result of Bayesian inference, likely values are given
large posterior probabilistic densities and unlikely values are
given small densities. Such informative posterior distribu-
tions naturally emerge from noninformative prior distributions
as polyphonic spectra are observed. That is, uncertainty is
decreased by getting additional information. In the end we es-
timate F0s by taking MAP values of the posterior distributions.

A. Mathematical Preparation

We explain the Dirichlet process (DP) and the hierarchical
Dirichlet process (HDP), which can be used as nonparametric
Bayesian priors in our infinite models. In this section, mathe-
matical symbols are defined according to the custom. Therefore,
the definition is valid only in this section.

1) Dirichlet Process: The DP and its extensions play impor-
tant roles in the theory of Bayesian nonparametrics [39]. For-
mally introduced by Ferguson [40] in 1973, in the past 10 years
it has often been used as a building block of infinite mixture
models.

A formal definition of the DP is that its marginal distribu-
tions must be Dirichlet distributed [40]. Let be a positive real
number and be a distribution over a sample space . We say
a random distribution over is DP distributed with concen-
tration parameter and base measure if

(35)

for any finite measurable partition of . The
DP is thus a distribution over distributions. This is written

(36)
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Fig. 5. Stick-breaking construction of the Dirichlet process. Starting with a
stick of length 1, we break it at � � ������� �� and assign � to be the length
of the stick we just broke off. We obtain the infinite number of mixing weights,
�� � � � � � � � � �, by breaking the remaining portion recursively.

Fig. 6. Discretization property of the Dirichlet process. � becomes an infi-
nite-dimensional discrete distribution when� is a continuous distribution. The
smaller� is, the fewer atoms in� occupy most of its total probability mass. This
means that � becomes more sparse.

Then, a concrete sample is drawn from as follows:

(37)

An alternative constructive definition of the DP is known as
the stick-breaking construction (SBC) [41]. As illustrated in
Fig. 5, a random distribution can be written explicitly as a
countably infinite sum of point masses (“atoms”):

(38)

(39)

where is the Dirac delta function that diverges to positive
infinity at , is otherwise equal to 0, and integrates to 1
with respect to . The point mass of is given by

(40)

(41)

The distribution on the infinite number of mixing weights
is often written , where the

letters stand for Griffiths, Engen, and McCloskey.
An important property of the DP is that must be a dis-

crete distribution. As shown in Fig. 6, is an infinite-dimen-
sional discrete distribution when is a continuous distribu-
tion. The DP can therefore be used as a prior distribution to for-
mulate an infinite mixture model. In case of an infinite GMM
(iGMM), for example, is a space of Gaussians (i.e., a space of
means and variances). is usually set to a Gaussian–Wishart
distribution, which is a conjugate prior distribution over Gaus-
sians. drawn from the DP is also a distribution over Gaus-
sians. Every time an observation is generated, Gaussian

Fig. 7. Overview of hierarchical Dirichlet process. � becomes an infinite-di-
mensional discrete distribution when� is a continuous distribution. The smaller
� is, the fewer atoms in � occupy most of its total probability mass. This
means that � becomes more sparse.

is drawn from , where is selected from the infinite number
of Gaussians according to their probabilities

. This is a straightforward extension of a con-
ventional finite GMM.

Several extensions increasing a degree of freedom of the stan-
dard DP have been proposed. For example, a beta two-parameter
process [42] is obtained when

(42)

where positive real numbers and are adjustable parameters
of the beta distribution.

2) Hierarchical Dirichlet Process: We discuss how to simul-
taneously train tied infinite mixture models when observed data
consists of multiple groups, e.g., spectral strips (frames). Here
a set of component distributions should be shared across mix-
ture models trained for different groups. Such parameter tying
enables us to directly compare compositions of different groups
in terms of mixing weights of component distributions. This is
similar to vector quantization (VQ) [43]. Let be the number
of groups. In this setting, it is natural to use a DP for modeling
observed data of each group as follows:

(43)

where is a random distribution on for group .
A problem is that if is a continuous distribution, atoms

(component distributions) drawn from for generating ob-
servations are almost surely disjointed from those drawn from

. This is because DPs can independently deter-
mine the positions of the countably infinite number of discrete
atoms (cardinality ) from the uncountably
infinite continuous space (cardinality ).

To solve this problem, we use a HDP [44] as a nonparametric
prior distribution. As shown in Fig. 7, we consider the base mea-
sure itself to be distributed according to a top-level DP as
follows:

(44)
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where is a concentration parameter and a base measure over
. In this model, always becomes a discrete distribution. The

SBC of the top-level DP is given by

(45)

(46)

where and are the point
masses and positions of atoms and we have .
Similarly, the SBC of a lower-level DP is given by

(47)

(48)

where and each is selected from . Note that
can be equal to if because is a discrete dis-

tribution. Another direct representation based on determined
by the top-level DP is as follows:

(49)

where and the hyperparameter controls the
difference between and . Therefore, only point masses

(mixture weights) differ between groups while positions
(component distributions) are shared across groups.

A remaining problem is how to adjust the influential hyperpa-
rameters and . This problem is often solved by putting vague
gamma hyperprior distributions on these hyperparameters and
inferring the posterior distributions.

B. Model Formulation

We explain how to formulate nested infinite GMMs based
on a HDP and generalized DPs by extending the nested finite
GMMs described in Section IV.

First we discuss . An important requirement is that
basis models [harmonic GMMs represented by (1)] should be
shared as a global set across all frames because each basis
sound has a duration and may appear in different frames while
only its weight varies. The HDP can satisfy this requirement
and we can explain the HDP from the generative point of view.
After an unbounded number of bases are initially generated ac-
cording to a top-level DP, an unbounded number of bases are se-
lected in each frame according to a frame-specific DP. In prac-
tice, a limited number of bases are used to represent a spec-
tral strip because the number of observed frequency particles

is limited. Mathematically speaking, in (6) we consider
infinite-dimensional Dirichlet distributions, which are equiva-
lent to the frame-specific DPs, and assume hyperparameter to
be distributed according to the top-level DP as follows:

(50)

(51)

where is a concentration parameter of the top-level DP.

Fig. 8. Graphical representation of nested infinite Gaussian mixture models for
iLHA. First the infinite sets of mixing weights ��� and ��� are stochastically gener-
ated according to a HDP and beta two-parameter processes (generalized DPs).
At the same time, the infinite number of Gaussian distributions are stochasti-
cally generated according to a Gaussian–Wishart prior distribution. Then one of
the harmonic partials contained in one of the bases is stochastically selected as
a latent variable ��� according to multinomial distributions defined by ��� and
��� . Finally, frequency ��� is stochastically generated according to a Gaussian
distribution specified by ��� .

Now we discuss . Because each basis is allowed to
consist of a unique infinite set of harmonic partials (basis models
are independent of each other), instead of (7) we can use beta
two-parameter processes as follows:

(52)

(53)

where is a positive real number and we let and sum to
unity. Note that we used the size-biased permutation property
of the SBC to encourage lower harmonic partials to have larger
weights because roughly speaking, the weights of harmonic par-
tials of an instrument sound decrease exponentially.

Because hyperparameters , , , and are influential, we
put hyperprior distributions on them as follows:

(54)

(55)

(56)

(57)

where and are shape and rate parameters of
the gamma distributions. and are parameters of the beta
distribution. These distributions are set to be vague (

, , and in our experiments
described in Section VI).

Fig. 8 shows a graphical representation of the iLHA model.
The full joint distribution is given by

(58)

where is given by plugging (52) into (5) and
is given by (6). and are defined according to
(50) and (52) as follows:

(59)

(60)
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Fig. 9. Graphical representation of collapsed nested infinite mixture models
for iLHA. After the original parameters ���, ���� , ���, and ��� are integrated out, the
auxiliary variables ���, ���, ���, and ��� are introduced to set up conjugacy between
hyperprior distributions and a marginalized likelihood function.

C. Collapsed Variational Bayesian Inference

There are two problems in training the HDP mixture model.
The first problem is that VB needs to assume the independence
between latent variables and parameters to factorize a posterior
distribution as in (9). This assumption is sometimes too strong
and leads to incorrect posterior approximation. The second
problem is that applying VB to hierarchical Bayesian models
that have no conjugacy between priors and hyperpriors is
generally difficult.

To solve these problems, we use a sophisticated version of
VB called collapsed variational Bayes (CVB) [45]. It instead
assumes independence between individual latent variables in
a “collapsed” space in which parameters are integrated out
(marginalized out). This is reasonable because the dependence
between individual latent variables in the collapsed space is
generally much weaker than the dependence between a set of
parameters and a set of latent variables in the non-collapsed
space. In addition, we introduce auxiliary variables to apply
CVB to hierarchical Bayesian models.

Fig. 9 shows a graphical representation of a collapsed iLHA
model. Integrating out , , , and , we obtain the marginal
distribution given by

(61)

The first term of (61) can be easily calculated by leveraging
conjugacy between and as follows:

(62)

where and are normalization factors
of prior and posterior Gaussian–Wishart distributions. , ,
and are obtained by substituting for in cal-
culating (26), (27), and (29). Similarly, the second term of (61)
can be calculated by leveraging conjugacy between
and as follows:

(63)

where is the gamma function.

We then introduce auxiliary variables by using a tech-
nique called data augmentation [45]. Let and be
beta-distributed variables and and be positive inte-
gers that satisfy , , and

. We can augment (63) as follows:

(64)

where [] denotes a Stirling number of the first kind. We can
confirm that (64) reduces to (63) by marginalizing out auxiliary
variables , , , and . The augmented marginal distribution is
given by

(65)

To apply CVB to approximate the true posterior distribution
, we assume that the variational

posterior distribution can be factorized as follows:

(66)

where we assumed independence between hyperparameters,
auxiliary variables, and elements of . We also use an approxi-
mation technique called variational posterior truncation. More
specifically, we assume that when and

. In practice, we set and to sufficiently large
integers. This does not mean that effective model complexities
are fixed in advance. The larger the truncation levels we use,
the more the accurate approximations we obtain.

To optimize , we use a variational
EM algorithm that iterates the following steps:

(67)

(68)

(69)

(70)

where denotes a set of indices without and .

D. Variational Posterior Distributions

We derive the formulas for updating variational posterior dis-
tributions according to (67)–(70).

1) CVB-E Step: An optimal variational distribution of can
be obtained as the product of multinomial distributions. The
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posterior probability that was generated from the th har-
monic partial of basis is given by

(71)

where is the geometric average
and is the Student-t distribution defined by the three parame-
ters , , and . is given by

(72)

where , , , and are obtained according to
(26)–(29) in which is substituted for and the sums
are calculated without . Each term of (71) can be approxi-
mated efficiently by using first-order and second-order Taylor
expansions [45]–[47].

Equation (71) calculates the geometric averages of three
predictive distributions under posterior distributions. These
predictive distributions are derived from an infinite-dimen-
sional Dirichlet distribution (a DP for an infinite mixture of
iGMMs), stick-breaking construction (a DP for an iGMM), and
a Gaussian distribution. Interestingly, this corresponds to (13)
based on the geometric averages of three likelihood functions
under posterior distributions. This implies that CVB is more
robust to the local-optima problem than standard VB is.

2) CVB-M Step: We can optimize the variational posterior
distributions of the hyperparameters analytically by optimizing
those of the auxiliary variables. First, , , and are gamma
distributed as follows:

(73)

(74)

(75)

and and are beta distributed as follows:

(76)

(77)

Then and are beta distributed as follows:

(78)

(79)

and and are multinomial distributed as follows:

(80)

(81)

(82)

To optimize the variational posterior distributions, we need to
calculate the expectations of these variables. If a random vari-
able follows with shape parameter and rate
parameter , its expectations are given by and

. If follows with pa-
rameters and , its expectations are given by
and . Note that the distributions given
by Equations (79)–(82) are conditioned by . The expectations
must therefore be averaged over . For example, we now have
the following conditional expectation:

(83)

We use Taylor expansion to average over , but
the digamma function diverges to negative infinity much
faster than the logarithmic function does in the vicinity of the
origin. To solve this problem, we use a method that treats the
case exactly and applies second-order approxi-
mation when [45]. We can similarly average the
following conditional expectations:

(84)

(85)

(86)

To estimate F0s in the end, we explicitly compute the varia-
tional posterior distributions of the integrated-out parameters
and . To do this, we need to execute the standard VB-M step
once using obtained in the CVB-E step.

E. Variational Lower Bound

As in LHA, we monitor the increase of the variational lower
bound of evidence , which is given by

(87)

The calculation of these terms is described in Appendix II.

VI. EVALUATION

This section reports the results of two comparative evaluation
experiments. We compared LHA and iLHA with PreFEst and
HTC because these four methods are based on the same idea
for modeling harmonic structures. Using a different data set,
we then compared iLHA with NMF-based methods and other
methods. In the latter experiment, we investigated how signif-
icantly the value of the scaling factor (i.e., how many fre-
quency particles are assumed to be observed in total) affects the
accuracy of multipitch analysis.
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TABLE II
FRAME-LEVEL F-MEASURES OF F0 DETECTION

A. Comparison with Conventional Parametric Methods

1) Experimental Conditions: We evaluated LHA and iLHA
on a test that was used in [4] and consisted of eight pieces of
piano and guitar solo performances excerpted from the RWC
music database [48]. The first 23 s of each piece were used for
evaluation. Spectral analysis with a 16-ms time resolution was
conducted using a wavelet transform with Gabor wavelets. The
correct values and temporal positions of actual F0s were pre-
pared by hand as ground truth. Denoting by , , and the
respective numbers of ground-truth, estimated, and correct F0s
on frame , we calculated the following frame-level recall and
precision rates and F-measure for each piece:

(88)

and we averaged each of these measures over all pieces.
The prior and hyperprior distributions of LHA and iLHA

were set to noninformative distributions. In LHA, and
were set to 60 and 15. In iLHA, and were also set to 60
and 15. iLHA is not sensitive to these values, and no other tuning
was needed for either method. To output F0s at each frame, we
extracted bases whose expected weights were over a threshold
that was optimized as in [4].

For comparison, we referred to the PreFEst and HTC experi-
mental results reported in [4]. Although the ground-truth data in
that study was slightly different from ours, it was close enough
for roughly evaluating performance comparatively. The number
of bases, priors, and weighting factors of the PreFEst and HTC
were carefully tuned to optimize the results. Although this is not
realistic, the upper bounds of potential performance were inves-
tigated in the literature.

2) Experimental Results: The results listed in Table II
show that the performance of iLHA closely approached and
sometimes surpassed that of HTC. This is consistent with the
empirical findings of many studies on Bayesian nonparametrics
that nonparametric models were competitive with optimally
tuned parametric models. HTC outperformed PreFEst because
HTC can appropriately deal with temporal continuity of spec-
tral bases. This implies that incorporating temporal modeling
would improve the performance of iLHA.

The results of LHA were worse than those of iLHA because
LHA is not formulated in a hierarchical Bayesian manner and
requires precise priors. In fact, we confirmed that the results of
PreFEst and HTC based on MAP estimation were drastically
degraded when using noninformative priors. Automated iLHA,
in contrast, stably showed the good performance.

TABLE III
FRAME-LEVEL ACCURACY OF F0 DETECTION

We found that model flexibility can be greatly enhanced by
making time-consuming fine tuning unnecessary. Conventional
studies assumed that appropriate prior knowledge is required
to constrain flexibility (called regularization). By using a truly
flexible hierarchical model based on Bayesian nonparametrics,
however, we can let the data speak for itself. This naturally re-
sults in optimal performance.

B. Comparison With NMF-Based Methods and Other Methods

1) Experimental Conditions: We then evaluated iLHA on a
test set that was used in [16] and consisted of 50 pieces of piano
solo performances excerpted from the MAPS piano database [8].
Thefirst30sofeachpiecewereusedforevaluation.Spectralanal-
ysis with a 10-ms time resolution was conducted using a Gabor
wavelet transform. The value of was increased to 88, (the
number of notes in a standard piano) because the piano pieces
were much sophisticated than those used in first experiment. The
time resolution and the value of were equal to those used in
[16], and performance was evaluated in terms of F-measures.

For comparison, we referred to the experimental results of
seven methods reported in [16]. We compared iLHA with four
NMF-based methods: one using no constraints, one using har-
monicity constraints (a subset of [13]), one using harmonicity
and source-filter constraints [14], and one using harmonicity and
spectral smoothness constraints [16]. Note that only the last one
was manually tuned to yield the best results (the effect of hyper-
parameter tuning was investigated in [16]). We also compared
it with a method based on harmonic sums [24], a method based
on correlograms [25], and a method based on spectral peak clus-
tering [26].

2) Experimental Results: The results listed in Table III show
that iLHA was the second best among the seven methods. Al-
though the best variant of NMF gained the better F-measure
(67.0%) than iLHA did (61.2%), we can say that well-automated
iLHA is still competitive because it is reported that non-optimal
settings deteriorated the performance of NMF moderately [16].
The F-measure of iLHA (61.2%) was close to that of NMF
using only harmonicity constraints (60.5%). As discussed in
Section III-C2, pLSA and PLCA are proven to have a close con-
nection to NMF. Therefore, the similarity between iLHA based
on harmonic GMMs and NMF based on harmonicity constraints
was experimentally and theoretically supported. In addition, the
difference between NMF using only harmonicity constraints
and NMF adding spectral smoothness constraints implies that
the performance of iLHA would be improved by incorporating
spectral smoothness modeling.
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It is interesting that in almost all methods the was higher
than the . This means that there were many F0s that were hard
to detect because of the complex overlapping of multiple F0s.
To solve this problem, more accurate spectral modeling would
be required by removing the assumption of amplitude additivity
that forms a basis of iLHA and NMF.

3) Impact of Scaling Factor: We investigated the impact of
the scaling factor described in Section III-C. We tested three
different values: . The similarity of respective
F-measures—61.2%, 60.6%, and 60.1%—indicates that the re-
sults are not sensitive to the value of the scaling factor . The
automatic optimization of would be an interesting research
topic that tackles the limitation of many methods based on the
assumption of amplitude quantization.

VII. CONCLUSION

This paper presented a novel statistical method for detecting
multiple F0s in polyphonic music audio signals. In this method,
which is called iLHA and is the first to apply Bayesian non-
parametrics to multipitch analysis, we formulated nested infinite
GMMs that represent polyphonic spectral strips in a hierarchical
nonparametric Bayesian manner. More specifically, each spec-
tral strip is allowed to contain an unbounded number of spec-
tral bases, each of which can contain an unbounded number of
harmonic partials. The method was fully automated by putting
noninformative hyperprior distributions on influential hyperpa-
rameters except for the final thresholding process. The joint pos-
terior distribution of all unknown variables can be inferred ef-
ficiently according to the VB framework. In our experiments
comparing iLHA with the state-of-the-art methods manually op-
timized by trial and error, we found that iLHA is competitive
enough and there is room for improvement based on modeling
of temporal continuity and spectral smoothness. One interesting
future direction is to use MCMC methods such as Gibbs sam-
pling and more efficient variants for training the iLHA model.

Bayesian nonparametrics is a powerful framework avoiding
the model selection problem faced in various areas of music
information retrieval (MIR). For example, how many sections
are required for structuring a musical piece? How many groups
are required for clustering listeners according to their tastes or
musical pieces according to their contents? We can avoid these
problems by assuming that in theory there is an infinite number
of objects (sections or groups) behind available observed data.
Unnecessary objects are automatically removed from consider-
ation through statistical inference. Hoffman et al. recently suc-
cessfully applied this framework to the calculation of musical
similarity [49] and the detection of repeated patterns [32], and
we also plan to use this powerful framework in a wide range of
applications.

APPENDIX I

The nine terms of the variational lower bound of LHA in (34)
can be calculated as follows:

where the fifth and last terms can be obtained as follows:

APPENDIX II

The 13 terms of the variational lower bound of iLHA in (87)
can be calculated as follows:
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where and mean the first-order and second-order approx-
imations based on Taylor expansion (see [45]–[47]).
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