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Integrating Additional Chord Information Into
HMM-Based Lyrics-to-Audio Alignment

Matthias Mauch, Hiromasa Fujihara, and Masataka Goto

Abstract—Aligning lyrics to audio has a wide range of ap-
plications such as the automatic generation of karaoke scores,
song-browsing by lyrics, and the generation of audio thumbnails.
Existing methods are restricted to using only lyrics and match
them to phoneme features extracted from the audio (usually
mel-frequency cepstral coefficients). Our novel idea is to integrate
the textual chord information provided in the paired chords-lyrics
format known from song books and Internet sites into the infer-
ence procedure. We propose two novel methods that implement
this idea: First, assuming that all chords of a song are known, we
extend a hidden Markov model (HMM) framework by including
chord changes in the Markov chain and an additional audio
feature (chroma) in the emission vector; second, for the more
realistic case in which some chord information is missing, we
present a method that recovers the missing chord information
by exploiting repetition in the song. We conducted experiments
with five changing parameters and show that with accuracies
of 87.5% and 76.7%, respectively, both methods perform better
than the baseline with statistical significance. We introduce the
new accompaniment interface Song Prompter, which uses the
automatically aligned lyrics to guide musicians through a song. It
demonstrates that the automatic alignment is accurate enough to
be used in a musical performance.

Index Terms—Audio user interfaces, hidden Markov models
(HMMs), music, music information retrieval, speech processing.

I. INTRODUCTION

L YRICS are the words to a song. In other forms of poetry
or prose, too, order and rhythm are important to convey

the meaning of the words, but only lyrics have the additional
property of being synchronized with the music. If we consider a
particular audio recording of a song, this alignment is the map-
ping that associates every word in the lyrics with the physical
time at which it occurs in the recording. We call the task of
producing the mapping lyrics-to-audio alignment. Human lis-
teners—whether musically trained or not—can easily follow the
given lyrics of a song, i.e., they mentally produce a lyrics-to-
audio alignment; however, making this alignment explicit by
annotating the physical time of every word is difficult and very
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time-consuming, which motivates the question whether it can
be done automatically.

In the case of a solo (monophonic) vocal recording, lyrics-to-
audio alignment is a special case of text-to-speech alignment
(e.g., [27]), which is essentially solved. We consider here the
more difficult case of polyphonic music: Regular popular music
recordings in which the singing voice carrying the lyrics is but
one of several instruments. The two problems in lyrics-to-audio
alignment in polyphonic music that set it apart from the mono-
phonic case are: To detect regions of vocal activity, and—in the
parts where a singing voice is present—to recognize which part
of the sound mixture corresponds to the singing voice.

Automatic lyrics-to-audio alignment has so far been solved
only partially, as we explain in our review of existing methods
below. Solutions to the problem have a wide range of commer-
cial applications such as the computer-aided generation of an-
notations for karaoke or similar systems (e.g., Song Prompter,
Section V), song-browsing by lyrics, and the generation of audio
thumbnails [1], also known as audio summarization.

The first system addressing the polyphonic lyrics-to-audio
alignment problem was a multimodal approach [26] (further
developed in [11], [12], which deals with finding regions of
vocal activity by preliminary chorus-detection and beat-tracking
steps. However, the preliminary steps pose relatively strong as-
sumptions on the form and meter (time signature) of the songs,
thus limiting the scope of the method. A more general segmen-
tation paradigm is the core of a paper that is concerned with
segment-level lyrics-to-audio alignment [14]: First, an uncon-
strained structural segmentation is performed and the chorus
section is determined by a clustering heuristic. Then, a vocal
activity detection (VAD) step is used to decide which of the
structural segments are vocal, and a dynamic programming al-
gorithm is used to align the song parts as annotated in the lyrics
to the song segments automatically extracted from audio. Note
that this approach uses audio features only to determine the seg-
mentation and the segment-wise vocal activity.

More audio-centric approaches aimed at word-level align-
ment employ a hidden Markov model (HMM) and forced align-
ment [2], [7], [22]: Chen et al. [2] use a VAD component to
restrict alignment to vocal areas. Mesaros and Virtanen’s HMM
[22] use audio features based on the singing voice automati-
cally segregated from the audio, but little attention is devoted
to VAD: verse or chorus sections are manually selected. Both
vocal activity detection and singing voice segregation are ad-
dressed in [7], where a left-to-right HMM architecture is used
to align lyrics to audio, based on observed Mel frequency cep-
stral coefficients (MFCCs). We have chosen this more complete
approach as a baseline method for our research (see Section III).
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Fig. 1. Integrating chord information in the lyrics-to-audio alignment process
(schematic illustration). The chords printed black represent chord changes, gray
chords are continued from a prior chord change. Word-chord combinations are
aligned with two audio features: an MFCC-based phoneme feature and chroma.

Fig. 2. Excerpt adapted from “Once In A Lifetime” (RWC-MDB-P-2001 No.
82 [10]) in the chords and lyrics format similar to that found in many transcrip-
tions in song books or on the Internet.

Maddage et al. [15] turn the alignment task into an audio-to-
audio synchronization task by using an audio representation of
the lyrics instead of a feature model. This approach yields good
word-alignment results (73.7%) under the assumption that the
time stamps of all phrase beginnings are known in advance.

The existing lyrics-to-audio alignment systems have used
only two information sources: the audio file and the lyrics. The
main contribution of the present work is to integrate additional
textual chord information into the lyrics-to-audio alignment
framework as illustrated in Fig. 1. This information can be

obtained from song books and the Internet websites such as
“Ultimate Guitar”1 in a format similar to the one given in Fig. 2.

Our goal is to show the following: additional chord informa-
tion improves lyrics-to-audio alignment, and in particular the
long-term alignment; chord alignment is not enough to provide
satisfactory lyrics-to-audio alignment and is useful only in ad-
dition to phoneme alignment; partially missing chord annota-
tions can be compensated for. We propose these two novel tech-
niques:

1) an extension of a lyrics-to-audio alignment HMM which
incorporates chords and chroma features, for the ideal case
of complete chord information;

2) a two-step post-processing method that can recover
missing chord information by locating phrase-level
boundaries based on the partially given chords.

The rest of the paper is structured as follows. Section II de-
scribes the baseline HMM for lyrics-to-audio alignment without
the use of chord information. Section III describes our novel ex-
tension of the HMM using chords and chroma, and also provides
the results in the case of complete chord information. Section IV
deals with the method that compensates for incomplete chord
annotations by locating phrase-level boundaries, and discusses
its results. In Section V, we present Song Prompter, an appli-
cation based on our lyrics-to-audio alignment. Future work is
discussed in Section VI, and Section VII concludes the paper.

II. BASELINE METHOD

The baseline method [7] is based on an HMM in which each
phoneme is represented by three hidden states, and the observed
nodes correspond to the low-level feature, which we will call
phoneme feature. Given a phoneme state, the 25 elements of the
phoneme feature vector consist of 12 MFCCs, 12 MFCCs
and 1 element containing the power difference (the subscript m
stands for MFCC). For a phoneme state , these
elements are modeled as a 25-dimensional Gaussian mixture
density with 16 mixture components. The mixture
models, and the transition probabilities between the three states
of a phoneme are trained on Japanese singing (see Table I)
using audio re-synthesized from estimated partial energies
based on manually annotated fundamental frequencies of the
main melody. For the use with English lyrics, phonemes are
retrieved using the Carnegie Mellon University Pronouncing
Dictionary2 and then mapped to their Japanese counterpart. A
left-to-right layout is used for the HMM, i.e., all words appear
in exactly the order provided. The possibility of pauses be-
tween words is modeled by introducing optional “short pause”
states, whose phoneme feature emissions are trained from the
non-voiced parts of the songs.

Since the main lyrics are usually present only in the predom-
inant voice, the audio is pre-processed to eliminate all other
sounds. To achieve this the main melody voice is segregated in
two steps: first, the predominant fundamental frequency is de-
tected using PreFEst [9] (for a third-party evaluation, see [24]),
along with the weights of its harmonics. Then, the harmonic

1http://www.ultimate-guitar.com and “Chordie” (http://www.chordie.com).
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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TABLE I
SIGNAL PROCESSING PARAMETERS OF THE TWO AUDIO FEATURES

structure is used to re-synthesize the segregated melody line.
The MFCCs necessary for the inference are extracted from the
re-synthesized voice at intervals of 10 ms (details in Table I).

A second pre-processing step is the vocal activity detection
(VAD) [6], which uses a simple probabilistic model with only
two states (vocal or non-vocal) to find sung sections. The audio
features used for this method are LPC-derived cepstral coeffi-
cients and F0 (fundamental frequency difference).

The HMM is decoded using the Viterbi algorithm, during
which the regions classified as non-vocal are constrained to emit
only short pause states. This HMM is also a flexible framework
which enables the integration of different features, as we explain
below.

III. EXTENDING THE MODEL USING CHORDS AND CHROMA

This section presents our technique to align audio recordings
with textual chord and lyrics transcriptions. We first provide mo-
tivation and technical details concerning the use of these tran-
scriptions (Section III-A). In Section III-B we describe how the
baseline HMM-based lyrics alignment system (Section II) is
adapted for the additional chord information and the input of
12-dimensional chroma features. The results of the technique
used in this section are given in Section III-C.

A. Textual Lyrics and Chords Annotations

Though there is no formal definition of the format used in the
transcriptions appearing in song books and on the Internet, they
will generally look similar to the one shown in Fig. 2. It contains
the lyrics of the song with chord labels written in the line above
the corresponding lyrics line. Chords are usually written exactly
over the words they start on, and labels written over whitespace
denote chords that start before the next word. In our example
(Fig. 2) the lyrics of the verses are all accompanied by the same
chord sequence, but the chord labels are only given for the first
instance. This shortcut can be applied to any song segment type
that has more than one instance, and transcribers usually use the
shorter format to save space and effort. Song segment names
can be indicated above the first line of the corresponding lyrics

block. Song segments are separated by blank lines, and instru-
mental parts are given as a single line containing only the chord
progression.

To show that the chord information does indeed aid lyrics
alignment, we begin with the case in which complete chord in-
formation is given. More precisely, we make the following as-
sumptions:

complete lyrics
Repeated lyrics are explicitly given;
segment names
The names of song segments (e.g., verse, chorus, ) are
given above every lyrics block;
complete chords
Chords for every song segment instance are given.

This last assumption is a departure from the format shown in
Fig. 2, and in Section IV we will show that it can be relaxed.

B. HMM Network With Lyrics and Chords

After parsing the chords and lyrics file of a song, every word
can be associated with a chord, the lyrics line it is in, and the
song segment this line is part of. While only the word-chord
association is needed for the HMM, the line and segment infor-
mation retained can later be used to obtain the locations of lines
and song segments.

The phoneme feature used in the baseline method bears little
relationship with chord quality [25], and hence we have to use
an additional audio feature: Chroma. Chroma is a low-level fea-
ture that relates to musical harmony and has been used in many
chord and key detection tasks [8], [23] and for chord alignment
[21], [25]. Chroma is also frequently used for score-to-audio
alignment [3]. A chroma vector usually has twelve dimensions,
containing activation values of the 12 pitch classes C, C#, ,
B. Our chroma extraction method [18] uses the original audio
before melody segregation. It first calculates a pitch spectrum
with three bins per semitone, which is then adjusted for minor
deviations from the standard 440-Hz tuning. Then, the back-
ground spectrum (local mean) is subtracted and the remaining
spectrum is further normalized by the running standard devia-
tion, which is a form of spectral whitening. Finally, assuming
tones with an exponential harmonics envelope, the non-nega-
tive least squares algorithm [13] is used to find the activation of
every note, which is then mapped to the corresponding chroma
bin. We use a 24-bin chroma representation in which the first
12 bins correspond to the bass region and the last 12 correspond
to the melody region, which has been shown to increase chord
identification [19]. Since chords change much more slowly than
phonemes, the chroma method extracts features at a frame rate
of 10 Hz (Table I), and to match the 100 Hz rate of the MFCCs
we duplicate the chroma vectors accordingly.

The hidden states of the HMM are designed as in the baseline
method, with the difference that every state now has two prop-
erties: the phoneme and the chord [Fig. 3(b)]. To model the state
emissions we combine two different Gaussian feature models:
the phoneme model as explained in Section III, and
the chord model , which for state models the bass
and treble chroma using a 24-dimensional Gaussian density.
The means of chord pitch classes are set to 1, all others to 0
and all variance parameters in the diagonal covariance matrices
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Fig. 3. HMM network with lyrics and chords. This example illustrates how the
textual annotation (a) is turned into a left-to-right Markov chain (b), in which
each chord/word HMM is decomposed into chord/phoneme HMMs, which in
turn are decomposed into three states each. (c) illustrates that each such state
has two emissions, one for the phoneme feature (MFCC) and one for chroma.
Short pauses (sp) are optional, i.e., they can be skipped during Viterbi inference
(dashed circles).

Fig. 4. Flexible chord onset (FCO). In this example, the word “forever” has
three syllables and a chord change. FCO allows the chord to change at any syl-
lable in the word, by taking one of the three alternative paths. The bottom of
the figure shows how words are modeled as phonemes and short pauses. Short
pauses are optional, i.e., they can be skipped during Viterbi inference (dashed
circles).

are set to 0.2 [16]. The 121 unique chords are composed of 10
chord types (major, major with added 9th, major sixth, major
seventh, dominant seventh, minor, minor seventh, diminished,
augmented, suspended fourth) transposed to all 12 semitones,
and one “no chord” type. They cover the large majority of chords
found in popular music, and all other chords can be mapped to
this set [16].

In order to unify the emissions streams into the final emission
model we use log-linear model combination as is cus-
tomary in automatic speech recognition (e.g., [28]):

(1)

The parameters and determine the relative weight of the
two audio features, but also the audio features’ weight in re-
lation to the transition model. We test different combinations in
Section III-C.

The textual representations of chord changes notated above
the lyrics cannot be fully accurate, especially when the musical

TABLE II
SONGS USED FOR EVALUATION

expression of the singer makes syllable boundaries ambiguous.
Furthermore, even otherwise diligent transcribers often notate
the chord at the beginning of the word, when the actual chord
change occurs on a later syllable. We allow for this kind of vari-
ability in the annotation by designing a phoneme network as
shown in Fig. 4, where chord changes in multi-syllable words
are allowed to happen at any syllable boundary. We call this
technique flexible chord onset (FCO).

For inference we use an implementation of the Viterbi al-
gorithm developed for the baseline method. The output of the
Viterbi decoder assigns to every phoneme the estimated time
interval within the song.

C. Results I

In order to evaluate the performance of our methods we chose
the 20 anglophone songs listed in Table II (18 international pop
songs and 2 songs3 from the RWC Music Database [10]). We
hand-labeled the physical onset time of every word in these
songs. Previous work in lyrics-to-audio alignment has usually
been evaluated only on phrase level, for which hand-labeling is
less laborious, but the often uneven distribution of words over a
lyric line makes the use of word-level timestamps a more mean-
ingful ground truth representation.

Evaluation Metrics: Let be the number of songs in
our test dataset, and the number of words in the th song.
We evaluate the alignment according to the mean percentage

(2)

of start time estimates that fall within seconds of the start
time of the corresponding ground truth word, averaged over

3RWC-MDB-P-2001 Nos. 82 and 84.
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TABLE III
RESULTS I: ACCURACY AND MEAN ABSOLUTE DEVIATION FOR ALL 87 EXPERIMENTS. A FILLED CIRCLE DENOTES AN ACTIVATED FEATURE, THE “�” SIGN

PRECEDES THE SAMPLE STANDARD DEVIATION VALUE (UNBIASED ESTIMATE)

Fig. 5. Calculation of the performance metrics. In this example, the accuracy
� �� � � �����	
 from Equation (2) is 80% because four of the five words
have an absolute displacement of � � � � �����	. The mean absolute dis-
placement �, see Equation (4), is 0.32 seconds, which is simply the arithmetic
mean of the five absolute displacements.

songs. We use the , with , as a measure of the
alignment performance and will simply call it accuracy. The
unbiased estimate of the standard deviation of accuracy over
songs is

(3)

which provides a measure of the variation of accuracy between
songs. The mean absolute deviation

th

(4)

between the time instant at beginning of the th target word
and its estimate (also averaged over all songs) allows an ad-
ditional approach to the results. The metrics and are il-
lustrated in Fig. 5. All statements of significance will be made
based on song-wise statistics.

Experimental Setup: We conducted experiments varying five
different parameters: the phoneme feature weight 0.0, 0.5,
1.0, 1.5, the chroma feature weight 0.0, 0.5, 1.0, 1.5, the
use of PreFEst melody extraction (on or off), the use of Vocal
Activity Detection (VAD; on or off), and the use of flexible
chord onset (FCO; on or off). Some of the 128 combinations
effectively result in redundancies (e.g., PreFEst has no effect if
the phoneme feature weight ) and are hence omitted,
leading to the set of 87 experiments whose results are displayed
in Table III.

Significant Improvement Through Additional Chord Informa-
tion: The overall best result in our tests was a accuracy of 87.5%
(set bold in Table III-C), achieved with the use of additional
chord information. The relatively low standard deviation of 6.5
percentage points indicates that the good results are stable over
songs. More generally, Table III suggests that chord informa-
tion improves accuracy substantially. To test whether this is true,
we performed a Friedman test on the song-wise accuracy be-
tween the best-performing baseline method (accuracy: 46.4%,
bold print in Table III; , , PreFEst on, VAD on,
FCO off) and the worst-performing method that uses chord in-
formation in addition to the phoneme feature (accuracy: 67.1%;

, , PreFEst off, VAD on, FCO on). The test
confirms that the two methods perform significantly differently
considering the accuracy . Comparing the baseline
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Fig. 6. Accuracies � [see (2)] for different values of � , from 0.1 seconds to
2.0 seconds. Three graphs with solid lines show the accuracies of the best-per-
forming methods from the first experiment (Section III-C) for each audio feature
combination, graphs with filled dots show accuracies for the three methods com-
pared in the second experiment (Section IV-C). The gray vertical line marks the
1.0-s accuracy which we use to compare the results.

method to the method where only the chroma weight is changed
to (accuracy: 80.1%) reveals a larger difference, which
is also significant according to a Friedman test .
Hence, we can be confident that the chord information improves
performance. This is consistent with Fig. 6 which shows the ac-
curacies for values of between 0.1 and 2.0 seconds for se-
lected parameter setups.

Phoneme Feature Necessary for High Accuracy: As Table III
furthermore suggests, the very good alignment scores of over
87% accuracy cannot be achieved with chord alignment alone,
i.e., the phoneme feature is still necessary. This is indeed re-
flected in the significant increase in accuracy from 57.6% (best-
performing method without phoneme feature; , ) to
67.1% (see above) in the worst-performing method which uses
chroma and phoneme features (Friedman ).

The crossing lines in Fig. 6 show that the phoneme feature
is indeed likely to be responsible for the fine alignment, while
chroma provides the coarser large-scale alignment: for small
accuracy thresholds using only the phoneme
feature (triangle markers in Fig. 6) yields a higher accuracy. The
method using only chroma (diamond markers) “overtakes” and
becomes clearly better for values . The combination
of both features (dot marker, solid line) leads to an even more
striking difference. They work best together.

We would like to note that setting the parameter re-
duces our method to plain chord alignment, where the phonemes
influence in the HMM is limited to the duration distribution they
imply. It may hence be argued that an ad-hoc heuristic that dis-
tributes phonemes or syllables within a chord span may lead to
a satisfactory result. It is beyond the scope of this paper to im-
plement such a heuristic, but it is unlikely that it could achieve
competitively accurate results: we could not expect it to be sig-
nificantly better than any of our methods that do use phoneme

features, and these already have significant differences between
each other (e.g., 0.5, 1.5: Friedman 0.01).

Influence of Parameters When Both Audio Features are
Present: Since we have established the significance of both
chroma and phoneme features for high accuracy, we now in-
vestigate the influence of the remaining three parameters when
both phoneme and chroma features are present ( and

). In order to show differences over these remaining
methods we used a five-way analysis of variance (ANOVA) on
the song-wise accuracy values (over the five parameters , ,
PreFEst, FCO, VAD). The rest of this paragraph discusses the
results of this analysis. The use of PreFEst melody extraction
leads to a significant increase in accuracy , which
was expected, since the detrimental influence of the accompa-
niment is reduced. This effect outweighs the effect of reduced
salience of consonants in the re-synthesized melody. The effect
of the flexible chord onsets is not significant . We
must conclude that the additional flexibility has compromised
the benefits of this more faithful modeling of the joint features.
The use of VAD leads to a significant decrease in accuracy
( ). This last outcome is surprising, since in the baseline
a method using VAD achieves the highest accuracy (46.4%,
set bold in Table III-C). The reason is that VAD allows the
occurrence of a word only in regions identified as “vocal’: VAD
achieves an improvement when no coarse alignment via chords
is available, even though some sections may be falsely classified
as non-vocal. However, when additional chord information is
used, it also provides this coarse alignment and VAD becomes
obsolete; regions erroneously detected as non-vocal4 will then
decrease results.

In summary, the integration of chord information and chroma
has largely improved performance, and is most effective when
combined with the baseline phoneme feature. Among the other
parameters tested, VAD is useful when used in the baseline
method, and performing pre-processing melody extraction
using PreFEst as a pre-processing step to the phoneme feature
extraction significantly enhances accuracy.

IV. RECOVERING PARTIALLY MISSING CHORDS

As we have seen in Fig. 2, among all verses (or choruses,
etc.) it is usually only the first one that is annotated with chords.
Our method presented above cannot be applied directly anymore
because in the remaining segments it is no longer clear which
chord to associate with which word. We will now consider this
more difficult case by replacing the “complete chords” assump-
tion given in Section III by a weaker assumption that is more in
line with real world annotations.

Incomplete chords
Chords are given for the first occurrence of a song segment;
subsequent occurrences of the same segment type have no
chord information. They do still have the same number of
lyric lines.

Transcriptions such as the one shown in Fig. 2 now comply
with our new set of assumptions.

4The mean VAD recall averaged over songs is 0.817 (standard deviation:
0.093), which means that it misses around 18.3% of vocal regions. The mean
precision is 0.877 (standard deviation: 0.154).
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We take the model with the highest accuracy from Section III
( , , PreFEst, no FCO, no VAD), which depends
on chords and chroma, and apply it to the case of incomplete
chords. We simply use the “no chord” model for words with
missing chords, which ensures that no preference is given to any
chord. As could be expected, the scarcity of information leads
to a substantial performance decrease, from 87.5% (as discussed
in the previous section) to 63.2%. Clearly, the partial chord in-
formation is not sufficient to maintain a good long-term align-
ment over the whole song. However, the first occurrence of a
song segment type such as a verse is always given with lyrics
and chord information, and we have shown in Section III-C that
alignment performance is generally good when both features are
used, so it would be likely to find good alignment at least in
the song segments for which chord information is not omitted.
This is indeed the case: if we restrict the evaluation to the song
segments annotated with chords, we obtain a higher level of ac-
curacy: 70.6%. (The accuracy is lower than in cases with full
chord information because the alignment of chord progressions
becomes ambiguous. This is especially likely when chord pro-
gressions are repeated: the alignment may “snap” to the wrong
repetition. This happens, for example, in Muse’s Guiding Light,
song 10, where the bridge is aligned to the ending of the second
verse because the chord progression is very similar.) This ac-
ceptable accuracy has motivated us to implement the following
two steps.

1) Phrase-level segmentation: the results of the alignment
are used to build a new chord-based HMM which models
the chord progressions of phrases with known chords.

2) Constrained alignment: The phrase-level segmentation
result is fed back to the original alignment HMM: Infer-
ence is performed constrained by phrase location.

Sections IV and IV-B will explain these steps in more detail and
Section IV-C presents the results.

A. Phrase-Level Segmentation

In this first post-processing step we build a new HMM based
entirely on chords and chroma, with three hierarchical levels
as depicted in Fig. 7: Chord, song segment, and song. Based
on the accuracy of 70.6% mentioned above, we assume that in
segments with complete chord information the word time es-
timates are most often close to their true position. Since the
words are associated with chords, they provide us with an es-
timate of the chord lengths for every segment type. Please note
that even in cases where the alignment fails (i.e., it “snaps”
to a different position in the song) the order of the chord pro-
gression is preserved. For each segment with complete chords
we use these chord lengths to specify a new segment-specific
HMM as a left-to-right chord sequence. Chords that cross a lyric
line boundary, as the one from the first to the second lyric line
in Fig. 2, are duplicated such that a line always starts with a
chord. This is necessary because otherwise the model based only
on chroma observations would be forced to find an erroneous
phrase beginning.

The model of each chord is determined by its length in sec-
onds: it is modeled by states, i.e., two states per second.
Only self-transitions or transitions to the next state are allowed
[see Fig. 7(a)]. The self-transition probability is . Hence,

Fig. 7. HMM for phrase-level segmentation. Though the network is a strict
left-to-right HMM, it can be thought of in terms of three hierarchical layers rep-
resenting chords, song segments, and song structure. (a) Chord model: example
of one chord of length � � ��� seconds. (b) Song segment model. (c) Song
structure model.

the expected duration of one state is 0.5 seconds at a frame rate
of 10 Hz,5 and the expected duration of the chord is , i.e.,
the length estimated in the previous step, up to rounding. Of
course, we could have modeled each chord with one state with a
higher self transition probability, but that would have led to a ge-
ometrically distributed chord duration model and hence to a bias
towards short durations. The chord duration in our implemen-
tation model follows a negative binomial distribution—similar
to the one used in [17]—in which the probability of very short
chord durations is reduced.

The chord models are then concatenated to form a left-to-
right model of the chord progression in one segment, as illus-
trated in Fig. 7(b). The segment HMMs are combined to the final
left-to-right song HMM. Since we assume we know the names
of all segments, and hence their succession, we can simply con-
catenate the individual segment HMMs in the correct order, as
can be seen in the example in Fig. 7(c). Segment models may ap-
pear several times. Viterbi alignment returns estimates for chord
change positions and—importantly—for phrase (lyric line) be-
ginnings.

B. Constrained Alignment

This second post-processing step 2) combines the results ob-
tained from the chord HMM in the previous step 1) with the
initial HMM for lyric alignment. First, the HMM for lyrics and
chord alignment is constructed in the usual way. In fact, we
re-use the network and audio features from the initial alignment
with incomplete chords. However, during inference we use the
newly gained knowledge of line beginnings: we constrain the
Viterbi search at frames of estimated line beginnings to the cor-
responding word in the lyrics, i.e., we “glue” the first words of
a lyrics line to the estimated line beginning. This is equivalent
to breaking up the song into phrases and aligning these sepa-
rately. In some cases a line in the song starts with a chord but no
simultaneous singing. The constrained inference does not pro-
hibit this situation, since the word model always starts with an
optional short pause (sp) state [Fig. 3(b)].

C. Results II

The model with the highest accuracy from Section III (
, , PreFEst, no FCO, no VAD) is used for two further

experiments with the same 20 songs (see Table II). First, the

5Since this HMM does not involve MFCCs we use the native chroma frame
rate.
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TABLE IV
ACCURACY FOR THE METHODS PRESENTED IN SECTION IV,

AS EXPLAINED IN SECTION IV-C

Fig. 8. Song-wise comparison. Upper graph: the lines connecting two points
illustrate the improvement through the recovery method as explained in
Section IV—blank circles represent accuracy with incomplete chord data
(chords of repeated segments removed), and filled circles represent accuracy
using our chord information recovery method. Black bars represent the ac-
curacy obtained using all chord information (see Section III). Lower graph:
phrase accuracy (word accuracy of first word in every line).

application of the original chord and lyrics alignment method
without constrained alignment, and secondly the full method in-
cluding the recovery steps 1) and 2). The accuracy results are
given in Table IV, together with the result obtained under com-
plete chord information. We observe that with respect to the
method using complete chords, partially removing chord infor-
mation clearly decreases accuracy [defined in (2)] from 87.5%
to 63.2% (24.3 percentage points). Our proposed method, i.e.,
steps 1) and 2), can recover much of the lost information by ap-
plying phrase constraints, resulting in a accuracy of 76.7%, a
significant increase (Friedman ) of 13.5 percentage
points.

Fig. 8 illustrates where the chord information recovery
method presented in this section works best: the blank and
filled circles connected by solid lines show the improvement
from the method without post-processing (blank) to the method
with chord information recovery (filled). The songs are sorted
by amount of improvement, and we observe that the recovery
method improves results for 15 of 20 songs. The differences
are more substantial, if the accuracy of the method without
recovery is low. For comparison, the bottom of the figure
shows the phrase accuracy (calculated as accuracy over the first
words in every lyric line). The mean phrase accuracy is 76.1%
(standard deviation: 23.6%).

Some interesting details in Fig. 8 warrant a further qualitative
explanation. The alignment of Santana’s Black Magic Woman,

and Simon and Garfunkel’s Cecilia (songs 14 and 15) com-
pletely fails under partial chord information without recovery.
In the case of Cecilia, for example, this is because the first an-
notated chorus part (with chords) “snaps” to the second instance
of the chorus, thus corrupting the alignment in the all the sur-
rounding parts. Incidentally, since the lyrics of the two cho-
ruses are identical, one could—under a more liberal evaluation
metric—count the alignment on the second instance as correct.
A second particular evident in Fig. 8 is that for Duffy’s War-
wick Avenue (song 4), U2’s With Or Without You (song 19) and
Zweieck’s She (song 20) the recovery method performs better
than the method with full chords. In all three cases the differ-
ences are very slight, i.e., the number of examples where the two
alignments substantially differ is small. However, these exam-
ples suggest that in the method with full chord information erro-
neous phonemes locally dominated the alignment and “pulled”
words into an adjacent line in some places. This was prohibited
by the within-line alignment of the recovery method. As could
be expected, an improvement requires good phrase-level align-
ment, and the three songs mentioned are indeed the ones with
the best phrase accuracy (95.0%, 93.1%, and 100.0%, respec-
tively) as shown in the bottom graph of Fig. 8. Conversely, the
two only songs for which the recovery method leads to a sub-
stantial decrease in accuracy, Do You Want To by Franz Ferdi-
nand and Someday by Shinya Iguchi (songs 6 and 8) show a low
phrase accuracy (57.4% and 38.9%). Curiously, the song with
the highest improvement, Santana’s Black Magic Woman (song
14), also has a very low phrase accuracy (7.7%). This stems
from the fact that every line in this song starts with a pickup,
i.e., the first few sung notes precede the measure line and the
chord change. The recovery method increases the likelihood of
aligning the first word in the line to the beginning of the pre-
vious chord, and this is what happens in most cases: The line
beginnings are estimated too early. However, the coarse align-
ment is still good, and the fine alignment “catches up,” so that
an overall accuracy of 64% is achieved.

As far as we know, this is the first time that a chord progres-
sion model of song segments has been applied for song segmen-
tation, made possible by the partially given chord data. A partic-
ularly interesting feature is the capability of finding structures
down to the phrase level, as the example in Fig. 9 demonstrates.

V. AN APPLICATION: USING ALIGNED CHORDS

AND LYRICS IN Song Prompter

Through the use of additional chord information, our
lyrics-to-audio alignment is now accurate enough to be useful
in real world applications. In order to demonstrate this potential
we developed the software system Song Prompter [20]. Song
Prompter acts as a performance guide by showing horizon-
tally scrolling lyrics, chords, beats marks, and bar marks in a
graphical user interface, together with an audio accompaniment
consisting of bass and MIDI drums. A song outline displays
the song structure, including names and positions of sections
for easy overview and navigation. Song Prompter enables users
to sing and play live along the timeline of an original song,
without having to memorize lyrics and chords or turning pages.
Chord labels, and bass and audio playback can be transposed
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Fig. 9. Automatic segmentation as explained in Section IV. The top line is a representation of the audio waveform of the song Eternal Flame by the Bangles,
with means and maxima of positive values indicated in gray and black, respectively. Below are the automatically detected segments, with names from the chords
and lyrics annotation file. Underneath is the corresponding phrase-level segmentation (i.e., lyric lines). We can clearly see that the verse has six lines, the bridge
has only three, while the instrumental section has no lyrics and hence no further segmentation. In the bottom line the segments for which chord information was
available are shaded dark.

Fig. 10. Song Prompter screenshot: The gray Song Outline displays all parts
of a song on a time line, providing easy access to any song part. The central
performance guide of Song Prompter is the white Song Stream Pane, in which
chords and lyrics are shown in the audio-aligned stream; the display is stretched
to fit lyrics; the pulsating beat marks provide timing information and show the
current song position; the red song position triangle can be dragged to the desired
position. Chord symbols are transposed with the playback (here:�2 semitones).

to a different key, and the playback speed can be changed. A
demonstration of Song Prompter can be viewed.6

The alignment method presented in Section III is the core of
Song Prompter, and hence no musical score input is needed.
This fact sets it apart from existing score following systems (for
a review see [4]), karaoke systems, or musical computer games
such as Rock Star and Guitar Hero.

A. Technical Realization

The display requires the physical onset times of chords,
words, sections, beats, and bars in a song. Our method
(Section III) is used to determine the physical onset times of
chords, words, and song section in advance. The beat marks
and larger bar marks complete the white song stream pane (see
Fig. 10). Their positions are obtained using [5]. The funda-
mental frequency and the amplitude of the partials in the bass
line are estimated using PreFEst [9].

At performance time the bass line is re-synthesized on the
fly, using the frame-wise parameter estimates. Bass drum, snare
drum and hi-hat MIDI notes are triggered, based on the extracted
beat and bar times. The playback speed can be changed, and bass
and original audio can be transposed.

6http://www.youtube.com/user/SongPrompter.

B. Usage Scenarios

Many usage scenarios are conceivable. For example, in a
cover band rehearsal situation, a band member can propose a
new song by his favorite artist, and the band can immediately
start playing the song based on the Song Prompter display of
lyrics, beats and chord progression. When a band performs live,
Song Prompter can literally act as an automatic prompter. In a
more informal setting, it can be used when a party of friends
want to sing together, and someone has brought along a guitar:
Song Prompter is more convenient than song books because
no pages need to be turned and everyone always knows the
correct song position. Since the text is scrolling past, it can
be displayed in a larger font than is possible in a static book
format.

VI. DISCUSSION AND FUTURE WORK

Our chord information recovery method does not improve re-
sults for all songs, but in our experiments it did improve re-
sults for the majority of songs. No high-level music computing
method can claim perfect accuracy, and systems that contain
a number of successive steps suffer from errors that are prop-
agated down to subsequent steps. We have presented such a
system in this paper and are aware of this shortcoming. An
approach that integrates both our proposed methods into one
would be more elegant—and probably more effective. The main
problem under partially missing chord data is that three song
representations have to be aligned: lyrics, chords, and audio.
Finding a model that encompasses all poses a significant chal-
lenge and we are not aware of standard statistical models that
directly lend themselves to this task. Our flexible chord onset
method shows that not all modifications to a more flexible model
will immediately lead to improvements.

Further opportunities for future work arise from the front end
of lyrics alignment methods. We have noted that melody extrac-
tion significantly improves alignment performance because the
effect of the accompanying instruments is reduced. At the same
time, however, consonants cannot be faithfully reproduced
from the melody line and its harmonics. We assume, then, that
combining phoneme features with and without pre-processing
can combine the benefits of both: good vowel recognition
through melody segregation/re-synthesis, and improved conso-
nant recognition on the original waveform. A further possibility
to extract the singing voice more clearly is by exploiting the
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stereo information in the signal, or, more generally, by source
separation.

In the present study, the chord and lyrics files were checked
and edited so they could be parsed unambiguously. For example,
we made sure that the names of song segments were unambigu-
ously recognizable as such so they would not be parsed as lyrics.
In an application aimed at non-expert users, this “clean-up”
would have to be performed automatically, i.e., the parsing of
the files would have to be much more robust. Since the textual
representation is generally aimed at human beings who already
know the song, we expect that robust parsing requires the infor-
mation contained in the audio, calling for an even broader in-
tegration-namely that of the alignment method with the parsing
procedure.

Is it our next great goal, then, to develop methods for
chord-aided alignment without any prior chord information
and to automatically generate Internet-style chord and lyrics
transcriptions? That would be a fantastic achievement, but it
might be surpassed by the achievements of a class of new,
multimodal music informatics systems which combine mul-
tiple audio features, information from the open Internet, local,
and remote databases, and user interaction data. The methods
presented here follow a similar approach. It remains to be seen
whether future multimodal approaches can harvest the available
sources of information in a meaningful way to perform music
“understanding” tasks more reliably. Here lies one of the major
challenges, but possibly the single greatest opportunity in music
informatics over the next years.

VII. CONCLUSION

This paper has shown that additional chord information in a
textual song book or Internet format can lead to substantially
improved lyrics-to-chord alignment performance. This is true in
the case in which chord information is provided for every part
of the song, but also if the chords are only transcribed once for
every song segment type (e.g., for the first of three verses), a
shortcut often found in files in the Internet. We have proposed
two methods that allow us to deal with these situations: the first
one is based on an existing hidden Markov model that uses
phoneme features for lyrics-to-audio alignment. We extend it
by integrating chroma emissions and describe each hidden state
in terms of the phoneme and the chord. We achieve an accu-
racy of 87.5% compared to 46.4% without chroma and 57.6%
without phoneme features. Both differences are highly signif-
icant. Using melody extraction (PreFEst) as a pre-processing
step for the phoneme feature extraction also significantly im-
proves accuracy. If parts of the chord information are removed,
the method performs worse (63.2%), though still better than the
baseline method without chroma features. Our second proposed
method succeeds in recovering much of the information lost:
It uses the remaining partial chord information to build a new
HMM with chord progression models for every song segment.
Viterbi decoding of this HMM identifies the phrase structure of
the song, so that lyrics alignment can be constrained to the cor-
rect phrase. This strategy significantly boosts accuracy by 13.5
percentage points to 76.7%.

We have shown that the performance of the phrase-level seg-
mentation method is good (76.1%). This is the first time that seg-
ment-specific chord progression models have been used for seg-
mentation and phrase-finding. Similar models may allow us to
further relax assumptions on the chords and lyrics input format
and hence to achieve robust performance in real-world situa-
tions.

We discuss the future directions of work, and more generally
the challenges and opportunities created by new, multimodal
approaches to music informatics that exploit the Internet, local
and remote databases, and user interaction data in addition to
audio features.
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