
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING , VOL. 14, NO. 5, SEPTEMBER 2006 1783

A Chorus Section Detection Method for
Musical Audio Signals and Its Application

to a Music Listening Station
Masataka Goto

Abstract—This paper describes a method for obtaining a list of
repeated chorus (“hook”) sections in compact-disc recordings of
popular music. The detection of chorus sections is essential for
the computational modeling of music understanding and is useful
in various applications, such as automatic chorus-preview/search
functions in music listening stations, music browsers, or music
retrieval systems. Most previous methods detected as a chorus a
repeated section of a given length and had difficulty identifying
both ends of a chorus section and dealing with modulations (key
changes). By analyzing relationships between various repeated
sections, our method, called RefraiD, can detect all the chorus
sections in a song and estimate both ends of each section. It can
also detect modulated chorus sections by introducing a percep-
tually motivated acoustic feature and a similarity that enable
detection of a repeated chorus section even after modulation.
Experimental results with a popular music database showed that
this method correctly detected the chorus sections in 80 of 100
songs. This paper also describes an application of our method,
a new music-playback interface for trial listening called Smart-
MusicKIOSK, which enables a listener to directly jump to and
listen to the chorus section while viewing a graphical overview
of the entire song structure. The results of implementing this
application have demonstrated its usefulness.

Index Terms—Chorus detection, chroma vector, music-playback
interface, music structure, music understanding.

I. INTRODUCTION

CHORUS (“hook” or refrain) sections of popular music are
the most representative, uplifting, and prominent thematic

sections in the music structure of a song, and human listeners
can easily understand where the chorus sections are because
these sections are the most repeated and memorable portions
of a song. Automatic detection of chorus sections is essential
for building a music-scene-description system [1], [2] that can
understand musical audio signals in a human-like fashion, and
is useful in various practical applications. In music browsers or
music retrieval systems, it enables a listener to quickly preview a
chorus section as an “audio thumbnail” to find a desired song. It
can also increase the efficiency and precision of music retrieval
systems by enabling them to match a query with only the chorus
sections.
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This paper describes a method, called Refrain Detecting
Method (RefraiD), that exhaustively detects all repeated chorus
sections appearing in a song with a focus on popular music.
It can obtain a list of the beginning and end points of every
chorus section in real-world audio signals and can detect mod-
ulated chorus sections. Furthermore, because it detects chorus
sections by analyzing various repeated sections in a song, it can
generate an intermediate-result list of repeated sections that
usually reflect the song structure; for example, the repetition of
a structure like verse A, verse B, and chorus is often found in
the list.

This paper also describes a music listening station called
SmartMusicKIOSK that was implemented as an application
system of the RefraiD method. In music stores, customers typ-
ically search out the chorus or “hook” of a song by repeatedly
pressing the fast-forward button, rather than passively listening
to the music. This activity is not well supported by current
technology. Our research has led to a function for jumping to
the chorus section and other key parts (repeated sections) of a
song, plus a function for visualizing the song structure. These
functions eliminate the hassle of searching for the chorus and
make it easier for a listener to find desired parts of a song,
thereby facilitating an active listening experience.

The following sections introduce related research, describe
the problems dealt with, explain the RefraiD method in detail,
and show experimental results indicating that the method
is robust enough to correctly detect the chorus sections in
80 of 100 songs of a popular-music database. Finally, the
SmartMusicKIOSK system and its usefulness are described.

II. RELATED WORK

Most previous chorus detection methods [3]–[5] only extract
a single segment from several chorus sections by detecting a re-
peated section of a designated length as the most representative
part of a song. Logan and Chu [3] developed a method using
clustering techniques and hidden Markov models (HMMs) to
categorize short segments (1 s) in terms of their acoustic fea-
tures, where the most frequent category is then regarded as a
chorus. Bartsch and Wakefield [4] developed a method that cal-
culates the similarity between acoustic features of beat-length
segments obtained by beat tracking and finds the given-length
segment with the highest similarity averaged over its segment.
Cooper and Foote [5] developed a method that calculates a sim-
ilarity matrix of acoustic features of short frames (100 ms) and
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finds the given-length segment with the highest similarity be-
tween it and the whole song. Note that these methods assume
that the output segment length is given and do not identify both
ends of a chorus section.

Music segmentation or structure discovery methods [6]–[13]
where the output segment length is not assumed have also been
studied. Dannenberg and Hu [6], [7] developed a structure dis-
covery method of clustering pairs of similar segments obtained
by several techniques such as efficient dynamic programming
or iterative greedy algorithms. This method finds, groups,
and removes similar pairs from the beginning to group all the
pairs. Peeters et al. [8] and Peeters and Rodet [9] developed
a supervised learning method of modeling dynamic features
and studied two structure discovery approaches: the sequence
approach of obtaining repetitions of patterns and the state
approach of obtaining a succession of states. The dynamic
features are selected from the spectrum of a filter-bank output
by maximizing the mutual information between the selected
features and hand-labeled music structures. Aucouturier and
Sandler [14] developed two methods of finding repeated pat-
terns in a succession of states (texture labels) obtained by
HMMs. They used two image processing techniques, the kernel
convolution and Hough transform, to detect line segments in
the similarity matrix between the states. Foote and Cooper [10],
[11] developed a method of segmenting music by correlating
a kernel along the diagonal of the similarity matrix, and clus-
tering the obtained segments on the basis of the self-similarity
of their statistics. Chai and Vercoe [12] developed a method of
detecting segment repetitions by using dynamic programming,
clustering the obtained segments, and labeling the segments
based on heuristic rules such as the rule of first labeling the
most frequent segments, removing them, and repeating the
labeling process. Wellhausen and Crysandt [13] studied the
similarity matrix of spectral-envelope features defined in the
MPEG-7 descriptors and a technique of detecting noncentral
diagonal line segments.

None of these methods, however, address the problem of de-
tecting all the chorus sections in a song. Furthermore, while
chorus sections are sometimes modulated (the key is changed)
during their repetition in a song, previously reported methods
did not deal with modulated repetition.

III. CHORUS SECTION DETECTION PROBLEM

To enable the handling of a large number of songs in popular
music, this research aims for a general and robust chorus section
detection method using no prior information on acoustic fea-
tures unique to choruses. To this end, we focus on the fact that
chorus sections are usually the most repeated sections of a song
and adopt the following basic strategy: find sections that repeat
and output those that appear most often. It must be pointed out,
however, that it is difficult for a computer to judge repetition
because it is rare for repeated sections to be exactly the same.
The following summarizes the main problems that must be ad-
dressed in this regard.

[Problem 1] Acoustic Features and Similarity: Whether a
section is a repetition of another must be judged on the basis
of the similarity between the acoustic features obtained from

each section. In this process, the similarity must be high be-
tween acoustic features even if the accompaniment or melody
line changes somewhat in the repeated section (e.g., the absence
of accompaniment on bass and/or drums after repetition). This
condition is difficult to satisfy if acoustic features are taken to be
simple power spectrums or mel-frequency cepstral coefficients
(MFCC) as used in audio/speech signal processing.

[Problem 2] Repetition Judgment Criterion: The criterion
establishing how high similarity must be to indicate repetition
depends on the song. For a song containing many repeated ac-
companiment phrases, for example, only a section with very
high similarity should be considered the chorus section repe-
tition. For a song containing a chorus section with accompani-
ments changed after repetition, on the other hand, a section with
somewhat lower similarity can be considered the chorus section
repetition. This criterion can be easily set for a small number
of specific songs by manual means. For a large open song set,
however, the criterion should be automatically modified based
on the song being processed.

[Problem 3] Estimating Both Ends of Repeated Sections:
Both ends (the beginning and end points) of repeated sections
must be estimated by examining the mutual relationships
among the various repeated sections. For example, given a song
having the structure (A B C B C C), the long repetition cor-
responding to (B C) would be obtained by a simple repetition
search. Both ends of the C section in (B C) could be inferred,
however, from the information obtained regarding the final
repetition of C in this structure.

[Problem 4] Detecting Modulated Repetition: Because the
acoustic features of a section generally undergo a significant
change after modulation (key change), similarity with the sec-
tion before modulation is low, making it difficult to judge repe-
tition. The detection of modulated repetition is important since
modulation sometimes occurs in chorus repetitions, especially
in the latter half of a song.1

IV. CHORUS SECTION DETECTION METHOD: REFRAID

Fig. 1 shows the process flow of the RefraiD method. First, a
12-dimensional feature vector called a chroma vector, which is
robust with respect to changes of accompaniments, is extracted
from each frame of an input audio signal and then the similarity
between these vectors is calculated (solution to Problem 1).
Each element of the chroma vector corresponds to one of the 12
pitch classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, and B) and
is the sum of magnitude at frequencies of its pitch class over six
octaves. Pairs of repeated sections are then listed (found) using
an adaptive repetition-judgment criterion that is configured by
an automatic threshold selection method based on a discrimi-
nant criterion [17] (solution to Problem 2). To organize common
repeated sections into groups and to identify both ends of each
section, the pairs of repeated sections are integrated (grouped)
by analyzing their relationships over the whole song (solution

1Although a reviewer of this paper pointed out that songs with modulation are
generally rare in Western popular music, they are not rare in Japanese popular
music, which has been influenced by Western music. We conducted a survey on
Japan’s popular music hit chart (top 20 singles ranked weekly from fiscal 2000
to fiscal 2003) and found that modulation occurred in chorus repetitions in 152
songs (10.3%) out of 1481.
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Fig. 1. Overview of chorus section detection method RefraiD.

Fig. 2. Example of chorus sections and repeated sections detected by the
RefraiD method. The horizontal axis is the time axis (in seconds) covering
the entire song. The upper window shows the power. The top row in the lower
window shows the list of the detected chorus sections, which were correct for
this song (RWC-MDB-P-2001 no. 18 of the RWC Music Database [15], [16])
and the last of which was modulated. The bottom five rows show the list of
various repeated sections (only the five longest repeated sections are shown).

to Problem 3). Because each element of a chroma vector cor-
responds to a different pitch class, a before-modulation chroma
vector is close to the after-modulation chorus vector whose el-
ements are shifted (exchanged) by the pitch difference of the
key change. By considering 12 kinds of shift (pitch differences),
12 sets of the similarity between nonshifted and shifted chroma
vectors are then calculated, pairs of repeated sections from those
sets are listed, and all of them are integrated (solution to Problem
4). Finally, the chorus measure, which is the possibility of being
chorus sections for each group, is evaluated, and the group of
chorus sections with the highest chorus measure as well as other
groups of repeated sections are output (Fig. 2).

The main symbols used in this section are listed in Table I.

A. Extract Acoustic Feature

Fig. 3 shows an overview of calculating the chroma vector,
which is a perceptually-motivated feature vector using the con-
cept of chroma in the Shepard’s helix representation of musical
pitch perception [18]. According to Shepard [18], the perception
of pitch with respect to a musical context can be graphically rep-
resented by using a continually cyclic helix that has two dimen-
sions, chroma and height, as shown at the right of Fig. 3. Chroma
refers to the position of a musical pitch within an octave that cor-
responds to a cycle of the helix: it refers to the position on the cir-
cumference of the helix seen from directly above. On the other

TABLE I
LIST OF SYMBOLS

Fig. 3. Overview of calculating a 12-dimensional chroma vector. The
magnitude at six different octaves is summed into just one octave which
is divided into 12 log-spaced divisions corresponding to pitch classes.
The Shepard’s helix representation of musical pitch perception [18] is shown
at the right.

hand, height refers to the vertical position of the helix seen from
the side (the position of an octave). Here, there are two major
types of cue for pitch perception: “temporal cues” based on the
periodicity of auditory nerve firing and “place cues” based on
the position on the basilar membrane [19]. A study by Fujisaki
and Kashino [20] indicates that the temporal cue is important
for chroma identification, and that the place cue is important for
height judgment.

The chroma vector represents magnitude distribution on the
chroma that is discretized into 12 pitch classes within an octave:
the basic idea is to coil the magnitude spectrum around the helix
and squash it flat to project the frequency axis to the chroma.
The 12-dimensional chroma vector is extracted from the
magnitude spectrum, at the log-scale frequency at
time , calculated by using the short-time Fourier transform
(STFT). Each element of corresponds to a pitch class
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in the equal temperament and is represented as

BPF (1)

The BPF is a bandpass filter that passes the signal at the
log-scale frequency (in cents) of pitch class (chroma) in
octave position (height)

(2)

where frequency in hertz is converted to frequency
in cents so that there are 100 cents to a tempered semitone and
1200 to an octave

(3)

The BPF is defined using a Hanning window as follows:

BPF (4)

This filter is applied to octaves from Oct to Oct .
In the current implementation, the input signal is digitized at

16 bit/16 kHz, and then the STFT with a 4096-sample Hanning
window is calculated using the fast Fourier transform (FFT).
Since the FFT frame is shifted by 1280 samples, the discrete
time step (1 frame shift) is 80 ms. The Oct and Oct , the octave
range for the summation of (1), are, respectively, three and eight.
This covers six octaves (130 Hz–8 kHz).

There are several advantages to using the chroma vector.2 Be-
cause it captures the overall harmony (pitch-class distribution),
it can be similar even if accompaniments or melody lines are
changed in some degree after repetition. In fact, we have con-
firmed that the chroma vector is effective for identifying chord
names [22], [23].3 The chroma vector also enables modulated
repetition to be detected as described in Section IV-E.

B. Calculate Similarity

The similarity between the chroma vectors and
is defined as

(5)

where is the lag. Since the denominator
is the length of the diagonal line of a 12-dimensional hyper-
cube with edge length 1, satisfies . In our
experience with chroma vectors, the combination of the above
similarity using the Euclidean distance and the vector normal-
ization using a maximum element is superior to the similarity
using the cosine angle (scalar product) and other vector normal-
ization techniques.

2The chroma vector is similar to the chroma spectrum [21] that is used in
reference [4], although its formulation is different.

3Other studies [24]–[26] have also shown the effectiveness of using the con-
cept of chroma for identifying chord names.

Fig. 4. Sketch of line segments, the similarity r(t; l), and the possibility
R (t; l) of containing line segments. The similarity r(t; l) is defined in
the right-angled isosceles triangle (time-lag triangle) in the lower right-hand
corner. The actual r(t; l) is noisy and ambiguous and usually contains many
line segments irrelevant to chorus sections.

C. List Repeated Sections

Pairs of repeated sections are obtained from the similarity
. Considering that is drawn within a right-angled

isosceles triangle in the two-dimensional time-lag space
(time-lag triangle) as shown in Fig. 4, the method finds line
segments that are parallel to the horizontal time axis and that
indicate consecutive regions with high . When the sec-
tion between times and is denoted , each line
segment between the points and is repre-
sented as ( , ), which means that the sec-
tion is similar to (i.e., is a repetition of) the section

. In other words, each horizontal line seg-
ment in the time-lag triangle indicates a repeated-section pair.

We, therefore, need to detect all horizontal line segments in
the time-lag triangle . To find a horizontal line segment
( , ), the possibility of containing line seg-
ments at the lag , ,4 is evaluated at the current time
(e.g., at the end of a song) as follows (Fig. 4):

(6)

Before this calculation, is normalized by subtracting
a local mean value while removing noise and emphasizing
horizontal lines. In more detail, given each point in
the time-lag triangle, six-directional local mean values of

points along the right, left, upper, lower, upper-right,
and lower-left directions starting from the point are
calculated, and the maximum and minimum are obtained

points s . If the local mean along the
right or left direction (i.e., or

) takes the maximum, is
considered part of a horizontal line and emphasized by sub-
tracting the minimum from . Otherwise, is

4This can be considered the Hough transform where only horizontal lines
are detected: the parameter (voting) space R (t; l) is, therefore, simply one
dimensional along l.



GOTO: CHORUS SECTION DETECTION METHOD FOR MUSICAL AUDIO SIGNALS 1787

Fig. 5. Examples of the similarity r(�; L1) at high-peak lags L1. The bottom
horizontal bars indicate the regions above an automatically adjusted threshold,
which means they correspond to line segments.

considered noise and suppressed by subtracting the maximum
from ; noise tends to appear as lines along the upper,
lower, upper right, and lower left directions.

The method then picks up each peak in along the lag
by finding a point where the smoothed differential of

(7)

changes sign from positive to negative [27]
points s . Before this calculation, it removes the global

drift caused by cumulative noise in from :
it subtracts, from , a smoothed low-pass
filtered by using a moving average whose weight function is
the second-order cardinal B-spline having points on each
slope points s ; this subtraction is equivalent
to obtaining a high-pass-filtered .

The method then selects only high peaks above a threshold
to search the line segments. Because this threshold is closely
related to the repetition-judgment criterion which should be
adjusted for each song, we use an automatic threshold se-
lection method based on a discriminant criterion [17]. When
dichotomizing the peak heights into two classes by a threshold,
the optimal threshold is obtained by maximizing the discrimi-
nant criterion measure defined by the following between-class
variance:

(8)

where and are the probabilities of class occurrence
(number of peaks in each class/total number of peaks), and
and are the means of the peak heights in each class.

For each picked-up high peak with lag , the line segments
are finally searched in the direction of the horizontal time
axis on the one-dimensional function
(Fig. 5). After smoothing using a moving average filter
whose weight function is the second-order cardinal B-spline

Fig. 6. Sketch of a group � = ([Ts ; Te ];� ) of line segments
that have almost the same section [Ts ; Te ], a set � of those lags

 (j = 1; 2; . . . ; 5), and the possibility R (l) of containing line
segments within [Ts ; Te ].

having points on each slope points s , the
method obtains line segments on which the smoothed
is above a threshold and whose length is long enough (more
than 6.4 s). This threshold is also adjusted using the above
automatic threshold selection method based on the discriminant
criterion. Here, instead of dichotomizing peak heights, the
method selects the top five peak heights of , obtains
the five lags corresponding to those selected
high peaks, and dichotomizes all the values of the smoothed

at those lags .

D. Integrate Repeated Sections

Since each line segment indicates just a pair of repeated sec-
tions, it is necessary to organize into a group the line segments
that have common sections. Suppose a section is repeated
times , the number of line segments to be grouped to-
gether should theoretically be if all of them are found
in the time-lag triangle. First, line segments that have almost
the same section are organized into a group; more
specifically, two line segments are grouped when both the differ-
ence between their beginning points and the difference between
their end points are smaller than a dynamic threshold equal to

percent of the segment length with a ceiling of points
( and points s ). The group is
represented as , where

( is the number of line segments in the group)
is a set of the lags of those segments—corresponding to the
high peaks in —in this group (Fig. 6). A set of these
groups is denoted by ( is the
number of all groups).

Aiming to exhaustively detect all the repeated (chorus) sec-
tions, the method then redetects some missing (hidden) line seg-
ments not found in the bottom-up detection process (described
in Section IV-C) through top-down processing using informa-
tion on other detected line segments. In Fig. 4, for example, we
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can expect that two line segments corresponding to the repe-
tition of the first and third C and the repetition of the second
and fourth C, which overlap with the long line segment corre-
sponding to the repetition of ABCC, are found even if they were
hard to find in the bottom-up process.

For this purpose, line segments are searched again by using
just within of each group . Starting from

(9)

instead of , the method performs almost the same peak-
picking process described in Section IV-C and forms a new set

of high peaks above a threshold in (Fig. 6).
In more detail, it picks up each peak by finding a point where
the smoothed differential of

(10)

changes sign from positive to negative
points s . Before this calculation, it also re-

moves the global drift in the same way by smoothing with
the second-order cardinal B-spline having points on
each slope. This threshold is again adjusted using the above
automatic threshold selection method based on the discriminant
criterion. Here, the method optimizes the threshold by
dichotomizing all local peak heights of taken
from all groups of .

The method then removes inappropriate peaks in each as
follows.

1) Remove unnecessary peaks that are equally spaced.
When similar accompaniments are repeated throughout

most of a song, peaks irrelevant to chorus sections tend
to appear at even intervals in . A group
where the number of equally spaced peaks exceeds is
judged to be irrelevant to chorus sections and is removed
from . For this judgment, we consider only
peaks that are higher than a threshold determined by the
standard deviation of the lower half of peaks. In addition,
when the number of equally spaced low peaks is more
than , those peaks are judged to be irrelevant to
chorus sections and are removed from .
For this judgment, we consider only peaks that are higher
than the above threshold and lower than the average of the
above threshold and the highest peak.

2) Remove a peak whose line segment has a highly deviated
similarity.

When only part of similarity at a peak
within is high, its peak is not appropriate for
use. A peak is removed from when the standard
deviation of after smoothing
with the above second-order cardinal B-spline (having

points on each slope) is larger than a threshold.
Since peaks detected in Section IV-C can be considered
reliable, this threshold is determined as multiplied
by the maximum of the above standard deviation at all
those peaks .

3) Remove a peak that is too close to other peaks and causes
sections to overlap.

To avoid sections overlapping, it is necessary to make
the interval between adjacent peaks along the lag greater
than the length of its section. One of every pair of peaks
having an interval less than the section length is removed
so that higher peaks can remain overall.

Finally, by using the lag corresponding to each peak of
, the method searches for a group whose section is

(i.e., is shared by the current group ) and in-
tegrates it with if it is found. They are integrated by adding
all the peaks of the found group to after adjusting the lag
values (peak positions); the found group is then removed. In ad-
dition, if there is a group that has a peak indicating the section

, it too is integrated.

E. Integrate Repeated Sections With Modulation

The processes described above do not deal with modulation
(key change), but they can easily be extended to it. A modula-
tion can be represented by the pitch difference of its key change,

, which denotes the number of tempered semi-
tones. For example, means the modulation of nine semi-
tones upward or the modulation of three semitones downward.

One of the advantages of the 12-dimensional chroma vector
is that a transposition amount of the modulation can nat-

urally correspond to the amount by which its 12 elements are
shifted (rotated). When is the chroma vector of a certain
performance and is the chroma vector of the performance
that is modulated by semitones upward from the original per-
formance, they tend to satisfy

(11)

where is a 12-by-12 shift matrix5 defined by

...
. . .

. . .
. . .

... (12)

To detect the modulated repetition by using this feature of
chroma vectors and considering 12 destination keys, we calcu-
late 12 kinds of extended similarity for each as follows:

(13)

Starting from each , the processes of listing and inte-
grating the repeated sections are performed as described in
Sections IV-C and D, except that the threshold automatically
adjusted at is used for the processes at (which sup-
presses harmful false detection of nonrepeated sections). After
these processes, 12 sets of line-segment groups are obtained
for 12 kinds of . To organize nonmodulated and modulated
repeated sections into the same groups, the method integrates
several groups across all the sets if they share the same section.

5Note that this shift (rotation) operation is not applicable to other acoustic
features such as simple power spectrums and MFCC features.
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Hereafter, we use to denote the groups
of line segments obtained from all the . By unfolding each line
segment of to the pair of repeated sections indicated by it,
we can obtain

(14)

where represents an unfolded repeated sec-
tion that corresponds to the lag and is calculated by

. The is the possibility
of being repeated sections (the possibility that the sections

and are really repeated), and is defined
as the mean of the similarity on the corresponding line
segment. For corresponding not to a line segment
but to the section itself, we define and

as and . The
modulated sections are labeled with their for reference.

F. Select Chorus Sections

After evaluation of the chorus measure , which is the pos-
sibility of being chorus sections for each group , the
group that maximizes the chorus measure is selected as
the chorus sections

(15)

The chorus measure is a sum of weighted by the length
of the section and is defined by

(16)

where is a constant (1.4 s). Before is calculated, the
possibility of each repeated section is adjusted according to
three assumptions (heuristics), which fit a large class of popular
music.

[Assumption 1]: The length of the chorus section has an ap-
propriate, allowed range (7.7 to 40 s in the current implementa-
tion). If the length is out of this range, is set to 0.

[Assumption 2]: When a repeated section is long enough to
be likely to correspond to long-term repetition such as verse A,
verse B, and chorus, the chorus section is likely to be near its
end. If there is a repeated section whose end is close
to the end of another long repeated section (longer then 50 s),
its is doubled; i.e., is doubled if the difference of the end
points of those sections is smaller than points.

[Assumption 3]: Because a chorus section tends to have two
half-length repeated subsections within its section, a section
having such subsections is likely to be the chorus section. If
there is a repeated section that has such subsec-
tions in another group, half of the mean of the possibility of the
two subsections is added to its .

The RefraiD method then outputs a list of chorus sections
found as explained above as well as a list of repeated sections
obtained as its intermediate result. As postprocessing for the
chorus sections of determined by (15), only
a small gap between adjacent chorus sections is padded (elim-
inated) by equally prolonging the end of those sections; more
specifically, only when the gap is smaller than points or half
of the section length, it is padded points s .

TABLE II
PARAMETER VALUES

V. EXPERIMENTAL RESULTS

The RefraiD method has been implemented in a real-time
system that takes a musical audio signal as input and outputs a
list of the detected chorus sections and repeated sections. Along
with the real-time audio input, the system can display visual-
ized lists of chorus sections and repeated sections, which are
obtained using just the past input and are considered the most
probable at every instance. The final detected results for a song
are obtained at the end of the song. The parameter values in the
current implementation are listed in Table II.

We evaluated the accuracy of chorus section detection done
through the RefraiD method. The method was tested on 100
songs6 of the popular-music database “RWC Music Database:
Popular Music” (RWC-MDB-P-2001 Nos. 1–100) [15], [16],
which is an original database available to researchers around the
world. These 100 songs were originally composed, arranged,
performed, and recorded in a way that reflected the complexity
and diversity of real-world music. In addition, to provide a refer-
ence for judging whether detection results were right or wrong,
correct chorus sections in targeted songs had to be labeled man-
ually. To enable this, we developed a song structure labeling ed-
itor that can divide up a song and correctly label chorus sections.

We compared the output of the proposed method with the
correct chorus sections that were hand-labeled by using this la-
beling editor. The degree of matching between the detected and
correct chorus sections was evaluated using the F-measure [28],
which is the harmonic mean of the recall rate and the pre-
cision rate

(17)

total length of correctly detected chorus sections
total length of correct chorus sections

(18)
total length of correctly detected chorus sections

total length of detected chorus sections
(19)

The output for a song was judged to be correct if its F-measure
was more than 0.75. For the case of modulation (key change), a
chorus section was judged correctly detected only if the relative
width of the key shift matched the actual width.

699, 64, and 54 songs out of 100 fit assumptions 1–3, respectively.
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TABLE III
RESULTS OF EVALUATING REFRAID: NUMBER OF SONGS WHOSE CHORUS

SECTIONS WERE DETECTED CORRECTLY UNDER FOUR SETS OF CONDITIONS

The results are listed in Table III. The method dealt correctly
with 80 songs7 out of 100 (with the averaged F-measure of
those 80 songs being 0.938). The main reasons for the method
making mistakes were choruses that did not repeat more often
than other sections and the repetition of similar accompaniments
throughout most of a song. Among these 100 songs, ten songs
(RWC-MDB-P-2001 Nos. 3, 18, 22, 39, 49, 71, 72, 88, 89, and
90) included modulated chorus sections (these songs are re-
ferred to as “modulated songs” in the following), and nine of
these songs (except for no. 72) were dealt with correctly (the
F-measure was more than 0.75). While the modulation itself
was correctly detected in all of the ten modulated songs, modu-
lated sections were not correctly selected as the chorus sections
in two of the songs (Nos. 72 and 89).8 There were 22 songs
(RWC-MDB-P-2001 Nos. 3, 5, 9, 14, 17, 19, 24, 25, 33, 36,
37, 38, 44, 46, 50, 57, 58, 64, 71, 91, 96, and 100) that had
choruses exhibiting significant changes in accompaniment or
melody on repetition, and 21 of these (except for no. 91) were
dealt with correctly (the F-measure was more than 0.75); the re-
peated chorus section itself was correctly detected in 16 of these
(except for Nos. 5, 17, 25, 44, 57, and 91). These results show
that the method is robust enough to deal with real-world audio
signals.

When the function to detect the modulated repetition (re-
ferred to as the “modulation detector” in the following) was
disabled, only 74 songs were dealt with correctly. On the other
hand, when assumptions 2 and 3 were not used, the performance
fell as shown by the entries in the two rightmost columns of
Table III. Enabling the modulation detector without assump-
tions 2 and 3 increased the number of correctly detected songs
from 68 to 73 (the five additional songs were Nos. 3, 4, 22, 88,
and 90), and enabling it with assumptions 2 and 3 increased the
number from 74 to 80 (additional songs were the above five
songs plus no. 39). Using assumptions 2 and 3 increased the
number of correctly detected songs from 68 to 74 with the mod-
ulation detector and from 73 to 80 songs without it: in the former
case, seven additional songs were correctly detected (Nos. 10,
25, 33, 38, 44, 46, and 82), but one song (no. 39) which was pre-
viously detected correctly was not detected; in the latter case, the
same additional songs were correctly detected. Under the four
sets of conditions, four songs (Nos. 18, 49, 71, and 89) of the
ten modulated songs were always dealt with correctly and one
song (no. 72) was never dealt with correctly, while the averaged
F-measure of Nos. 18, 49, and 71 was improved from 0.827 to

7The F-measure was not more than 0.75 for RWC-MDB-P-2001 Nos. 2, 12,
16, 29, 30, 31, 41, 53, 56, 59, 61, 66, 67, 69, 72, 79, 83, 91, 92, and 95.

8Even if the modulated chorus section itself was not selected in
RWC-MDB-P-2001 no. 89, the song was detected correctly because its
F-measure (0.877) was more than 0.75.

0.974 by using the modulation detector. In all cases, the modu-
lated sections themselves were not correctly detected when the
modulation detector was disabled because the similarity based
on chroma vectors is sensitive to the modulation. These results
show the effectiveness of the modulation detector and assump-
tions 2 and 3.

VI. APPLICATION: MUSIC LISTENING STATION

WITH CHORUS-SEARCH FUNCTION

When “trial listening” to prerecorded music on compact discs
(CDs) at a music store, a listener often takes an active role in the
playback of musical pieces or songs by picking out only those
sections of interest. This new type of music interaction differs
from passive music appreciation in which people usually listen
to entire musical selections. To give some background, music
stores in recent years have installed music listening stations to
allow customers to listen to CDs on a trial basis to facilitate a
purchasing decision. In general, the main objective of listening
to music is to appreciate it, and it is common for a listener to
play a musical selection from start to finish. In trial listening,
however, the objective is to quickly determine whether a selec-
tion is the music one has been looking for and whether one likes
it, so listening to entire selections in the above manner is rare.
In the case of popular music, for example, customers often want
to listen to the chorus to pass judgment on that song. This de-
sire produces a special way of listening in which the trial lis-
tener first listens briefly to a song’s “intro” and then jumps ahead
in search of the chorus by repeatedly pushing the fast-forward
button, eventually finding the chorus and listening to it.

The functions provided by conventional listening stations for
music CDs, however, do not support this unique way of trial
listening very well. These listening stations are equipped with
playback-operation buttons typical of an ordinary CD player,
and among these, only the fast-forward and rewind buttons can
be used to find the chorus section of a song. On the other hand,
the digital listening stations that have recently been installed
in music stores enable playback of musical selections from a
hard disk or over a network. Here, however, only one part (e.g.,
the beginning) of each musical selection (an interval of about
30–45 s) is mechanically excerpted and stored, which means
that a trial listener may not necessarily hear the chorus section.

Against the above background, we propose SmartMusic-
KIOSK, a music listening station equipped with a chorus search
function. With SmartMusicKIOSK, a trial listener can jump
to the beginning of a song’s chorus (perform an instantaneous
fast-forward to the chorus) by simply pushing the button for
this function. This eliminates the hassle of manually searching
for the chorus. SmartMusicKIOSK also provides a function
for jumping to the beginning of the next structural (repeated)
section of the song.

Much research has been performed in the field of music infor-
mation processing, especially in relation to music information
retrieval and music understanding, but there has been practically
none in the area of trial listening. Interaction between people and
music can be mainly divided into two types: the creating/ac-
tive side (composing, performing, etc.) and the receiving/pas-
sive side (appreciating music, hearing background music, etc.).
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Trial listening, on the other hand, differs from the latter type, that
is, musical appreciation, since it involves listening to musical
selections while taking an active part in their playback. This is
why we felt that this activity would be a new and interesting
subject for research.

A. Past Forms of Interaction in Music Playback

The ability to play an interactive role in music playback by
changing the current playback position is a relatively recent de-
velopment in the history of music. In the past, before it became
possible to record the audio signals of music, a listener could
only listen to a musical piece at the place where it was per-
formed live. Then, when the recording of music to records and
tape became a reality, it did become possible to change playback
from one musical selection to another, but the bother and time
involved in doing so made this a form of nonreal-time interac-
tion. The ability of a listener to play back music interactively
really only began with the coming of technology for recording
music onto magnetooptical media like CDs. These media made
it possible to move the playback position almost instantly with
just a push of a button making it easy to jump from one song to
another while listening to music.

However, while it became easy to move between selections
(CD tracks), there was not sufficient support for interactively
changing the playback position within a selection as demanded
by trial listening. Typical playback operation buttons found on
conventional CD players (including music listening stations) are
play, pause, stop, fast-forward, rewind, jump to next track, and
jump to previous track (a single button may be used to perform
more than one function). Among these, only the fast-forward
and rewind buttons can change the playback position within a
musical selection. Here, however, listeners are provided with
only the following three types of feedback as aids to finding the
position desired:

1) sound of fast playback that can be heard while holding
down the fast-forward/rewind button;

2) sound after releasing the button;
3) display of elapsed time from the start of the selection in

question.

Consequently, a listener who wanted to listen to the chorus of
a song, for example, would have to look for it manually by
pressing and releasing a button any number of times.

These types of feedback are essentially the same when using
media-player software on a personal computer (PC) to listen to
songs recorded on a hard disk, although a playback slider may
be provided. The total length of the playback slider corresponds
to the length of a song, and the listener can manipulate the slider
to jump to any position in a song. Here as well, however, the
listener must use manual means to search out a specific playback
position, so nothing has really changed.

B. Intelligent Music Listening Station: SmartMusicKIOSK

For music that would normally not be understood unless some
time was taken for listening, the problem here is how to enable
changing between specific playback positions before actual lis-
tening. We propose the following two functions to solve this
problem, assuming the main target is popular music.

Fig. 7. SmartMusicKIOSK screen display. The lower window presents
the playback operation buttons and the upper window provides a visual
representation of a song’s contents (results of automatic chorus section
detection using RWC-MDB-P-2001 no. 18 of the RWC Music Database [15],
[16]).

1) “Jump to chorus” function: automatic jumping to the be-
ginning of sections relevant to a song’s structure: Func-
tions are provided enabling automatic jumping to sec-
tions that will be of interest to listeners. These functions
are “jump to chorus (NEXT CHORUS button),” “jump to
previous section in song (PREV SECTION button),” and
“jump to next section in song (NEXT SECTION button),”
and they can be invoked by pushing the buttons shown
above in parentheses. With these functions, a listener can
directly jump to and listen to chorus sections, or jump to
the previous or next repeated section of the song.

2) “Music map” function: visualization of song contents: A
function is provided to enable the contents of a song to be
visualized to help the listener decide where to jump next.
Specifically, this function provides a visual representation
of the song’s structure consisting of chorus sections and
repeated sections, as shown in Fig. 7. While examining
this display, the listener can use the automatic jump but-
tons, the usual fast-forward/rewind buttons, or a playback
slider to move to any point of interest in the song.

The following describes the lower and upper windows shown in
Fig. 7.

• Playback operation window (lower window): The three
automatic jump buttons added to the conventional play-
back-operation buttons are named NEXT CHORUS,
PREV SECTION, and NEXT SECTION. These buttons
are marked with newly designed symbols.

Pressing the NEXT CHORUS button causes the system
to search for the next chorus in the song from the present
position (returning to the first one if none remain) and to
jump to the start of that chorus. Pressing the other two but-
tons causes the system to search for the immediately fol-
lowing section or immediately preceding section with re-
spect to the present position and to jump to the start of that
section. While searching, the system ignores section-end
points.
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• Song-structure display window (upper window): The top
row of this display provides a visual representation of
chorus sections while the lower rows (five maximum in
the current implementation) provide a visual representa-
tion of repeated sections. On each row, colored sections
indicate similar (repeated) sections. In Fig. 7, for example,
the second row from the top indicates the structural rep-
etition of “verse A verse B chorus” (the longest
repetition of a visual representation often suggests such a
structural repetition); the bottom row with two short col-
ored sections indicates the similarity between the “intro”
and “ending” of this song. In addition, the thin horizontal
bar at the very bottom of this window is a playback slider
whose position corresponds to elapsed time in the song.

Clicking directly on a section (touching in the case of a
touch panel or tablet PC) plays that section, and clicking
the playback slider changes the playback position.

The above interface functions promote a type of listening in
which the listener can first listen to the intro of a song for just
a short time and then jump and listen to the chorus with just a
push of a button.9 Furthermore, visualizing the entire structure
of a song allows the listener to choose various parts of a song
for trial listening.

C. System Implementation and Results

We built a SmartMusicKIOSK system incorporating all the
functions described in Section VI-B. The system is executed
with files that include descriptions of chorus sections and
repeated sections, which can be obtained beforehand by the
RefraiD method. Although the results of automatic detection in-
clude errors and are, therefore, not 100% accurate as described
in Section V, they still provide the listener with a valuable aid
to finding a desired playback position and make a listening
station much more convenient than in the past. If, however,
there are times when an accurate description is required, results
of automatic detection may be manually corrected. The song
structure labeling editor described in Section V can also be
used for this manual correction and labeling. This is useful
especially for songs not suitable for automatic detection or
outside the category of popular music.

In the SmartMusicKIOSK system, the song file playback en-
gine, graphical user interface (GUI) module, and audio device
control module are all implemented as separate processes to im-
prove extendibility. These processes have been ported on sev-
eral operating systems, such as Linux, SGI IRIX, and Microsoft
Windows, and can be distributed over a LAN (Ethernet) and
connected by using a network protocol called Remote Audio
Control Protocol (RACP), which we have designed to enable
efficient sharing of audio signals and various types of control
information. This protocol is an extension of remote music con-
trol protocol (RMCP) [29] enabling the transmission of audio
signals.

9Both a “PREV CHORUS” and “NEXT CHORUS” button may also be pre-
pared in the playback operation window. Only one button was used here for
the following reasons. 1) Pushing the present NEXT CHORUS button repeat-
edly loops through all chorus sections enabling the desired chorus to be found
quickly. 2) A previous chorus can be returned to immediately by simply clicking
on that section in the song structure display window.

Fig. 8. Demonstration of SmartMusicKIOSK implemented on a tablet PC.

Fig. 8 shows a photograph of the SmartMusicKIOSK system
taken during a technical demonstration in February 2003. This
system can be executed on a stand-alone tablet PC (Microsoft
Windows XP Tablet PC Edition, Pentium III 933-MHz CPU)
as shown in the center of the photograph. It can be operated by
touching the screen with a pen or by pushing the keys of an
external keypad (center-right of the photograph) that duplicates
the playback button group shown on the screen.

Our experience with the SmartMusicKIOSK demonstration
showed that the proposed interface was effective enough to en-
able listeners to play back songs in an interactive manner by
pushing jump buttons while receiving visual assistance from the
music map display. The music map facilitated jump operations
and the listening to various parts of a song while moving back
and forth as desired on the song structure. The proposed func-
tions were intuitively easy to use requiring no training: listeners
who had received no explanation about jump button functions
or display windows were nevertheless able to surmise their pur-
pose in little time.

D. Discussion

In the following, we consider how interaction in music play-
back need not be limited to trial listening scenarios, and discuss
what kinds of situation our method can be applied to.

1) Interface for Active Listening of Music: In recent years,
the music usage scene has been expanding and usage styles
of choosing music as one wishes, checking its content, and at
times even extracting portions of music have likewise been in-
creasing. For example, in addition to trial listening of CDs at
music stores, end users select musical ring tones for cellular
phones, find background music appropriate to certain situations,
and use music on the World Wide Web. On the other hand,
interfaces for music playback have become fixed to standard
playback operation buttons even after the appearance of the
CD player and computer-based media players as described in
Section VI-A. Interfaces of this type, while suitable for passive
appreciation of music, are inadequate for interactively finding
sections of interest within a song.
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As a general interface for music playback, we can see Smart-
MusicKIOSK as adding an interface that targets structural sec-
tions of a song as operational units in contrast to the conven-
tional interface (e.g., a CD player) that targets only songs as
operational units. With this conventional interface, songs of no
interest to the listener can easily be skipped, but skipping sec-
tions of no interest within a particular song is not as easy. An
outstanding advantage of the SmartMusicKIOSK interface is
the ability to “listen to any part of a song whenever one likes”
without having to follow the timeline of the original song. Ex-
tending this idea, it would be interesting to add a “shuffle play”
function in units of musical sections by drawing an analogy
from operation in song units.

While not expected when building this interface, an inter-
esting phenomenon has appeared in situations that permit long-
term listening as opposed to trial listening. Specifically, we have
found some listeners tend to listen to music in a more ana-
lytical fashion, compared to past forms of music appreciation,
when they can interactively change the playback position while
viewing the structure of a musical piece. For example, we have
observed listeners checking the kind of structure possessed by
an entire piece, listening to each section in that structure, and
comparing sections that repeat. Another finding is that visual-
ization of a song’s structure has proven to be interesting and
useful for listeners who just want to passively appreciate music.

2) Other Applications: In addition to the SmartMusicK-
IOSK application, the RefraiD method has a potentially wide
range of application. The following presents other application
examples.

• Digital listening station: The RefraiD method could en-
able digital listening stations to excerpt and store chorus
sections instead of mechanically stored excerpts. In the
future, we hope to see digital listening stations in music
stores upgrade to functions such as those of SmartMu-
sicKIOSK.

• Music thumbnail: The ability to playback (preview) just
the beginning of a chorus section detected by the RefraiD
method would provide added convenience when browsing
through a large set of songs or when presenting search
results of music information retrieval. This function can
be regarded as a music version of the image thumbnail.

• Computer-based media players: A variety of functions
have recently been added to media players, such as ex-
changeable appearance (skins) and music-synchronized
animation in the form of geometrical drawings moving
synchronously with waveforms and frequency spectrums
during playback. No essential progress, however, has been
seen in the interface itself. We hope not only that the
SmartMusicKIOSK interface will be adopted for various
media players, but also that other approaches of reexam-
ining the entire functional makeup of music playback in-
terfaces will follow.

VII. CONCLUSION

We have described the RefraiD method which detects chorus
sections and repeated sections in real-world popular music
audio signals. It basically regards the most repeated sections

as the chorus sections. Analysis of the relationships between
various repeated sections enables all the chorus sections to be
detected with their beginning and end points. In addition, intro-
ducing the similarity between nonshifted and shifted chroma
vectors makes it possible to detect modulated chorus sections.
Experimental results with the “RWC Music Database: Popular
Music” showed that the method was robust enough to correctly
detect the chorus sections in 80 of 100 songs.

We have also described the SmartMusicKIOSK application
system, which is a music listening station based on the Re-
fraiD method. It provides content-based playback controls al-
lowing a listener to skim rapidly through music, plus a graphical
overview of the entire song structure. While entire songs of no
interest to a listener can be skipped on conventional music play-
back interfaces, SmartMusicKIOSK is the first interface that al-
lows the listener to easily skip sections of no interest even within
a song.

The RefraiD method has relevance to music summarization
studies [6], [8]–[12], [30], none of which has addressed the
problem of detecting all the chorus sections. One of the chorus
sections detected by our method can be regarded as a song sum-
mary, as could another long repeated section in the intermediate-
result list of repeated sections. Music summarization studies
aimed at shortening the length of a song are also related to
SmartMusicKIOSK because they share one of the objectives of
trial listening, that is, to listen to music in a short time. Previous
studies, however, have not considered an interactive form of lis-
tening as taken up by our research. From the viewpoint of trial
listening, the ability of a listener to easily select any section of
a song for listening in a true interactive fashion is very effective
as discussed in Section VI-D.1.

Our repetition-based approach of the RefraiD method has
proven effective for popular music. To improve the performance
of the method, however, we will need to use prior information
on acoustic features unique to choruses. We also plan to experi-
ment with other music genres and extend the method to make it
widely applicable. In addition, our future work will include re-
search on new directions of making interaction between people
and music even more active and enriching.
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