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ABSTRACT We propose a learning-based method of estimating the compatibility between vocal and
accompaniment audio tracks, i.e., how well they go with each other when played simultaneously. This
task is challenging because it is difficult to formulate hand-crafted rules or construct a large labeled
dataset to perform supervised learning. Our method uses self-supervised and joint-embedding techniques
for estimating vocal-accompaniment compatibility. We train vocal and accompaniment encoders to learn
a joint-embedding space of vocal and accompaniment tracks, where the embedded feature vectors of a
compatible pair of vocal and accompaniment tracks lie close to each other and those of an incompatible pair
lie far from each other. To address the lack of large labeled datasets consisting of compatible and incompatible
pairs of vocal and accompaniment tracks, we propose generating such a dataset from songs using singing
voice separation techniques, with which songs are separated into pairs of vocal and accompaniment tracks,
and then original pairs are assumed to be compatible, and other random pairs are not. We achieved this
training by constructing a large dataset containing 910,803 songs and evaluated the effectiveness of our
method using ranking-based evaluation methods.

INDEX TERMS Vocal-accompaniment compatibility, metric learning, music signal processing, music
information retrieval.

I. INTRODUCTION
Compatibility is a concept describing how well two (or
more) different items exist together without conflict. In this
study, we are interested in the compatibility between vocal
and accompaniment audio tracks (i.e., vocal-accompaniment
compatibility), that is, how well the tracks go with each other
when playing them simultaneously.

Achieving the estimation of vocal-accompaniment com-
patibility has the potential to enhance various music
information retrieval (MIR) applications. One example is an
automatic mashup. A mashup is a blend of two songs created
by superimposing the vocal track of one song over the accom-
paniment track of another, and the challenge is to find an
appropriate pair of tracks [1]. If a vocal track and an accom-
paniment track are compatible, these tracks are likely to be
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suitable as a mashup. It will also be possible to develop an
interactive composition tool that suggests candidates of dif-
ferent yet compatible accompaniment (vocal) tracks retrieved
from a dataset once a user inputs a vocal (accompaniment)
track. If compatibility estimation can be done in real time,
it may improve the quality of an automatic mashup.

The concept of vocal-accompaniment compatibility
involves many complex factors. For example, a vocal track
and an accompaniment track may be considered compatible
when they are chromatically in harmony, follow the same
rhythmic patterns, or share similar timbral characteristics
[2]–[6]. However, there are many exceptions, and no single
aspect can fully define compatibility, which makes it dif-
ficult to formulate hand-crafted rules to achieve a general
vocal-accompaniment compatibility estimation.

We propose a learning-based method of estimating the
vocal-accompaniment compatibility instead of relying on
specific rules. The main goal of this study is to estimate a
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compatibility value for a given pair of vocal and accompani-
ment tracks. One possible way to achieve this goal is to con-
struct a large dataset for (fully) supervised learning. However,
it is impractical to gather a sufficient number of vocal- and
accompaniment-only tracks, which are unavailable for most
songs on the market, and to manually annotate many possible
combinations with compatibility labels.

To address the lack of such large datasets consisting of
compatible and incompatible pairs of vocal and accompani-
ment tracks, ourmethod uses a self-supervised techniquewith
which such a dataset is generated from (polyphonic) songs
using singing voice separation techniques [7]–[9] under the
assumption that a vocal track and an accompaniment track
that are played simultaneously in songs are compatible. That
is, after songs are automatically separated into pairs of vocal
and accompaniment tracks, the original pairs of these tracks
in the same song are assumed to be compatible. On the other
hand, other random pairs of the vocal track separated from
a song and the accompaniment track separated from another
song are assumed to be relatively incompatible.

With this self-supervised approach, our method applies a
variant of deepmetric learning. Unlike typical metric learning
methods, which train a single encoder, our method simulta-
neously trains two encoders (i.e., vocal and accompaniment)
to achieve joint embedding of vocal and accompaniment
tracks into a shared vector space. We use deep neural net-
works (DNNs) as the vocal and accompaniment encoders.
Our loss function enables the embedded feature vectors of
a compatible pair of vocal and accompaniment tracks to lie
close to each other in the shared vector space, and those of
a random pair to lie far from each other. Once the training
is done, we can estimate the compatibility of a given pair of
vocal and accompaniment tracks on the basis of the distance
between embedded feature vectors of these tracks (Figure 1).

FIGURE 1. Concept of how our method estimates the compatibility
between vocal and accompaniment tracks. The tracks are jointly
embedded in the same vector space (i.e., the vocal-accompaniment
shared vector space) using two different encoders (i.e., vocal and
accompaniment). These encoders lay the embedded feature vectors of a
compatible pair of vocal and accompaniment tracks close to each other
and those of an incompatible pair far from each other. Thus, we can
estimate the compatibility between vocal and accompaniment tracks by
calculating the distance of the embedded feature vectors of these tracks
in this shared vector space.

We tested our method by constructing a large dataset called
the trial listening dataset containing 910,803 songs available

online for trial listening. We then quantitatively evaluated the
effectiveness of our method using ranking-based evaluation
methods, showing that our method outperformed rule-based
baseline methods.

II. RELATED WORK
A. COMPATIBILITY ESTIMATION
Compatibility has been extensively discussed in various com-
munities. For example, fashion is a domain that involves com-
patibility among articles of clothing. With image processing
and machine learning techniques, researchers have devel-
oped fashion compatibility estimation and recommendation
methods [10]–[14]. These methods depend on the availability
of large datasets that describe co-occurrence relationships
between fashion items (e.g., some of those retrieved from
the Amazon web store). Compatibility has also been of inter-
est in computer graphics domains such as 3D indoor scene
assembly [15] and color palettes [16]. Our proposed method
is inspired by such previous studies [12], [15] but applied to
a different domain.

Compatibility estimation has also been discussed in the
MIR community and used for MIR applications such as
automatic mashup and mixing (e.g., remix and vocal mix).
A standard approach to estimating compatibility for the
mashup and mixing is to apply hand-crafted rules based on
key insights for those applications to tracks. That is, the more
strictly the tracks follow the rules, the more compatible they
are assumed to be. Lee et al. [2] considered the similar-
ity in chromagrams [17] and the harmonic change balance.
Bernardes et al. [3] proposed a harmony-specific method that
combines dissonance-based and perceptual relatedness-based
approaches. Davies et al. [4] considered the similar-
ity in chromatic harmony, rhythm, and spectral balance.
Gebhardt et al. [5] used a psychoacoustic model of roughness
and pitch commonality to estimate the similarities between
music. Maçãs et al. [6] used the similarity in harmonic, rhyth-
mic, spectral, and timbral characteristics. These well-crafted
rules for mashup and mixing, however, address only certain
aspects of the compatibility between vocal and accompani-
ment tracks.

We take a different approach that estimates the com-
patibility between vocal and accompaniment tracks by
directly learning the compatibility using self-supervised and
joint-embedding techniques, instead of taking the rule-based
approach.

B. SELF-SUPERVISED AND JOINT-EMBEDDING
TECHNIQUES
Self-supervised learning is a form of unsupervised learning
in which a piece of data is used as self-supervision and is
advantageous in that it does not require large datasets with
annotations [18]. To take advantage of this, methods using
temporal synchronization between audio and video tracks as
the self-supervision have been proposed [19]–[22]. Inspired
by these methods, we use a pair of vocal and accompaniment

VOLUME 9, 2021 101995



T. Nakatsuka et al.: Vocal-Accompaniment Compatibility Estimation

tracks, which are played simultaneously and temporally syn-
chronized in a song, as self-supervision.

Joint-embedding techniques are widely used in met-
ric learning for cross-modal tasks. Because data of dif-
ferent modalities can be treated as identical data in a
joint-embedding space and trained under a common metric,
deep metric learning and joint-embedding techniques per-
form well together. In MIR-related tasks, deep metric learn-
ing succeeds in learning joint representations over several
modalities such as a vocal and mix [23], vocal imitation and
sound recording [24], [25], animal sounds [26], sheet music
and audio spectrograms [27], music and image [28]–[31], and
music and video [21], [22]. The target pair for the metric
learning described in this paper consists of a vocal track and
an accompaniment track.

III. METHOD AND IMPLEMENTATION DETAILS
This section describes an overview of our learning-based
method for vocal-accompaniment compatibility estimation.
Because this method requires a large labeled dataset, we con-
struct such a dataset in a self-supervised manner. Note that
any songwhich includes vocal and accompaniment tracks can
be used in our method. We used the trial listening dataset,
which consists of 910,803 songs available on a music ser-
vice described in Subsection IV-A, for our experiments. We
generate training data from this dataset as follows. Every
song in the dataset is separated into a pair of vocal and
accompaniment tracks using a singing voice separation tech-
nique [9]. Because vocalists are not always singing, vocal
tracks obtained from singing voice separation have non-vocal
sections where no vocal activity is detected (e.g., introduc-
tion, interlude, or instrumental solo). These sections disrupt
stable training because most songs include non-vocal sec-
tions; thus, a non-vocal section and all possible sections of
accompaniment tracks will be compatible, which is an unde-
sired result. Therefore, non-vocal sections should be removed
from training data. The problem is that vocal tracks often
include artifacts in non-vocal sections after singing voice
separation. These artifacts are difficult to remove by simply
setting an amplitude threshold. Therefore, we apply a vocal
activity detection method [32] to each vocal track to detect
non-vocal sections and eliminate these sections from training
data. After the removal of non-vocal sections, we convert
both vocal and accompaniment tracks into constant-Q trans-
form (CQT) representations [33] to feed them into encoders
as images. The use of a CQT spectrogram as an input is
widespread [34]–[37] to make effective use of DNNs with
convolutional layers. Because songs have various tempos
and non-aligned timings, previous studies have used beat
synchronization [2]–[6] to align tempos. We thus apply a
beat-tracking technique [38] to songs. Using the beat-tracking
results, we apply bilinear filtering to both vocal and accom-
paniment CQTs such that each CQT has the same number
of time samples per bar because each CQT of songs has
a different number of time samples per bar. We then cut
both vocal and accompaniment CQTs into multiple bars, i.e.,

beat-synchronous bar-wise CQTs (BBCQTs), and use them
as training data (see Subsection III-A for details).

Our proposed method is based on deep metric learning as
follows. Inspired by previous studies [12], [15], [22], we con-
sider two DNN-based encoders (vocal and accompaniment).
These encoders consist of Visual Geometry Group (VGG)-
like networks [39] and jointly embed BBCQT representa-
tions of vocal and accompaniment tracks (i.e., vocal and
accompaniment BBCQTs) into a shared vector space called
vocal-accompaniment shared vector space. We design a loss
function inspired by themulti-classN -pair loss [40], enabling
the encoders to learn effective joint embeddings for esti-
mating the compatibility between vocal and accompaniment
tracks. That is, our loss function enables the two encoders to
locate the embedded feature vectors of original pairs of vocal
and accompaniment tracks nearby in the shared vector space
and locate those of other random pairs far away, where the
original pairs are assumed to be statistically more compatible
than the random pairs (see Subsection III-B for details).

Once the training finishes, the distance within this space
indicates the degree of compatibility, by which we can esti-
mate the compatibility of a novel pair of vocal and accompa-
niment tracks (see Subsection III-C for details).

A. PRE-PROCESSING STEPS
We apply the following processing steps to songs. Figure 2
illustrates these steps.

FIGURE 2. Pre-processing steps. All songs are separated into pairs of
vocal and accompaniment tracks. The tracks are then converted into
beat-synchronous bar-wise constant-Q transforms (BBCQTs).

1) SINGING VOICE SEPARATION
We perform singing voice separation to use a large collection
of songs with vocal and accompaniment tracks that are not
directly available. Specifically, our implementation uses the
‘‘2stems’’ model in Spleeter [9], which can separate poly-
phonic sound mixtures of a song into a pair of vocal and
accompaniment tracks.

2) VOCAL ACTIVITY DETECTION
We use the vocal activity detection method proposed by
Kum and Nam [32], the detection of which is conducted
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in 0.01-second increments. We discard bars in which
non-vocal sections occupy more than half the length of a bar.

3) CONSTANT-Q TRANSFORM
We transform each waveform of both vocal and accompa-
niment tracks into CQT representations to handle them as
images. We use librosa [41] to calculate the CQTs, where we
set the number of frequency bins to 84 (i.e., 7 octaves) and
hop length to 256.

4) BEAT TRACKING
We track beats and downbeats to divide both vocal and
accompaniment tracks into bars. To do this, we use the
method proposed by Böck et al. [38] for jointly detect-
ing beats and downbeats. This method is available as an
open-source library called madmom [42], the calculation of
which is conducted in 0.01-second increments. Only bars
consisting of four beats are used as training data.

5) BEAT SYNCHRONIZATION
We divide each CQT into BBCQTs using the results of beat
tracking. To feed the divided CQTs to the encoders, we also
need to ensure their dimensions are always the same across
bars and songs. To achieve this, we use bilinear filtering
to resize every CQT such that the number of time samples
becomes 32 per bar (i.e., beat synchronization). Note that we
apply the filter only to CQTs along the time axis, so that each
frequency bin of a CQT maintains its independence. We then
divide each CQT into bar-wise CQTs (i.e., BBCQTs).

B. TRAINING
1) ENCODER ARCHITECTURE
We use a VGG-like network [39] (see Table 1) to encode
BBCQTs into feature vectors. We design the same architec-
ture for both the vocal and accompaniment encoders (note
that they do not share their weights). Each encoder embeds
either vocal or accompaniment BBCQTs into the same 32-
dimensional feature space called the vocal-accompaniment
shared vector space.

As shown in Table 1, each of the first five blocks of our
encoder consists of a max-pooling layer and two convolution
layers. Each convolution layer is followed by batch nor-
malization [43] and a rectified linear unit (ReLU) [44]. An
average pooling (avgpool) layer is applied to the tensor output
from the first five blocks. Through a fully connected (fc)
layer, we finally obtain a time-dependent embedded feature
vector (32 dimensions), where each dimension corresponds
to a time sample.

2) TRAINING STRATEGY
Inspired by the multi-class N -pair loss [40], we designed a
loss function called compatibility loss. While training, we use
N original pairs of vocal and accompaniment BBCQTs to
construct mini-batches of both BBCQTs. When we construct
mini-batches, we first choose N random songs from the

TABLE 1. Our encoder architecture, which is a VGG-like network [39]. It
encodes a BBCQT (of either a vocal or an accompaniment) into a
time-dependent embedded feature vector (32 dimensions).

training data and then choose a random bar from each song.
Therefore, we can obtain N compatible pairs and N (N − 1)
random pairs from N original pairs by making all possible
combinations of them (i.e.,N 2 pairs in total). Eachmini-batch
of vocal and accompaniment BBCQTs is encoded into N
vocal-embedded feature vectors, {vn ∈ R32

}
N
n=1, and N

accompaniment-embedded feature vectors, {an ∈ R32
}
N
n=1,

using our encoders. Having the same indices within each
mini-batch indicates that they are originally from the same
data sample (e.g., v1 and a1 are generated from the same bar
in the same song).

Using vocal- and accompaniment-embedded feature vec-
tors, {vn}Nn=1 and {an}Nn=1, we calculate a compatibility
matrix,M ∈ RN×N , which is defined as

mi,j = f (vi, aj), (1)

where mi,j is the entry in the i-th row and j-th column of
the compatibility matrixM, and f is a scalar-valued function
that reflects the compatibility between the two vectors. As
embedded feature vectors lie in the shared vector space,
we can simply define f as a similarity function between
the embedded feature vectors of vocal and accompaniment
BBCQTs. We compare the cosine similarity fcos and dot
product fdot on the basis of the definition of f in Section IV
as follows:

fcos(vi, aj) =
vi · aj
‖vi‖‖aj‖

, (2)

fdot(vi, aj) = vi · aj. (3)
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We then calculate compatibility loss L from the compati-
bility matrixM as follows:

L = −
1
N

N∑
j=1

log
exp(mj,j)∑N
i=1 exp(mi,j)

−
1
N

N∑
i=1

log
exp(mi,i)∑N
j=1 exp(mi,j)

. (4)

The first term is considered the average of the cross-
entropy (CE) values for each column (i.e., accompaniment-
wise CE). Similarly, the second term is considered the
average of the CE values for each row (i.e., vocal-wise CE).
Both terms enable the diagonal entries of the compatibility
matrix (i.e., those calculated from original pairs of vocal and
accompaniment BBCQTs) to be larger. We train our encoders
by minimizing this loss function value. Figure 3 illustrates
this process.

FIGURE 3. Details of our training process. We first construct the
compatibility matrix from N pairs of vocal and accompaniment BBCQTs.
We then calculate the compatibility loss on the basis of the cross-entropy
(CE) values for each row and column of the compatibility matrix.

We implemented the encoders using PyTorch [45] and
optimized them using Adam [46]. We set the learning rate to
1×10−3 initially and decreased it to 1×10−4 and 1×10−5 at
the 80th and 160th epochs, respectively. The training process
was completed in 250 epochs. We used N = 2048 for our
experiments.

C. VOCAL-ACCOMPANIMENT COMPATIBILITY
ESTIMATION
Once the training of the encoders has been conducted,
we can estimate the compatibility of a novel pair of vocal
and accompaniment tracks as follows. First, we perform the
pre-processing steps in the same manner as the training (Sub-
section III-A). We then encode the obtained BBCQTs into
embedded feature vectors using the trained encoders. Finally,
we calculate a compatibility value from the f in Eq. (1).
Note that we estimate compatibility values in a bar-wise

manner. If we need a compatibility value between tracks
that are longer than a single bar (e.g., automatic mashup),
we merely average the compatibility values across all bars.

IV. EVALUATION
We conducted comparative experiments to evaluate the effec-
tiveness of our method. We took a ranking-based evalu-
ation approach [25], [47]–[49] to quantitatively evaluate
the performance of compatibility estimation. Ranking-based
evaluation is used to assess how accurately a target can
be found from multiple candidates. We set up two tasks
to evaluate vocal-accompaniment compatibility estimation:
query-by-vocal, which uses a vocal track as a query for
retrieving an original accompaniment track, and query-by-
accompaniment, which uses an accompaniment track as a
query for retrieving an original vocal track.

A. DATASET
We constructed the trial listening dataset from songs available
on a music service for trial listening. This dataset consists
of 910,803 songs of 64,535 artists. Each song file represents
a short music excerpt (30 sec, 44.1 kHz). Table 2 lists the
music genres of this dataset.

TABLE 2. List of primary music genres and the number of songs in the
trial listening dataset.

We divided this dataset into training, validation, and test
sets in a ratio of 8:1:1. The songs in each set are con-
structed in equal percentages with respect to the music gen-
res, as shown in Table 2, such that each set has the same
weight in music styles. After applying the pre-processing
steps described in Subsection III-A, we obtained 8,105,813
(training: 6,488,005, validation: 808,887, test: 808,921) bars
of each of vocal and accompaniment tracks.

B. RANKING-BASED EVALUATION METRICS
We used the mean reciprocal rank (MRR) [50] and top-k
for comparative experiments. We define a rank as the rank
position of the compatibility value derived from a query
vocal (accompaniment) track and its original accompani-
ment (vocal) track. MRR is used to compute an average of
the reciprocal ranks as follows.

MRR =
1
|Q|

|Q|∑
l=1

1
rankl

, (5)

where Q is a set of queries, and rankl is the rank of the l-th
query. A larger MRR indicates that the compatibility is more
successfully estimated. Top-k counts the number of times
when the original pair of vocal and accompaniment tracks is
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TABLE 3. Results of ranking-based evaluations on the test set of the trial listening dataset. For comparative experiments, k was set to 1, 10, and 100. A
larger value indicates that the compatibility was more successfully estimated. Our method with dot product (Dot) performed the best in both
query-by-vocal and query-by-accompaniment settings. Random means the expected value when we use purely random estimation and is shown just for
reference.

FIGURE 4. Empirical cumulative distribution functions (CDFs) of the ranks
in the query-by-vocal setting.

among the top k ranks as follows.

top-k =
1
|Q|

|Q|∑
l=1

αl, (6)

αl =

{
1 if rankl ≤ k,
0 if rankl > k.

(7)

We added the normalization factor 1/|Q| to Eq. (6) for
comparison. A larger top-k indicates that the compatibility
is more successfully estimated. We used all bars in the test
set as queries for comparative experiments (|Q| = 808, 921).

C. CONDITIONS
We compared four conditions: a baseline method based on
a chromagram with (1) cosine similarity (Cos-Chromagram)
and (2) dot product (Dot-Chromagram), and our method with
(3) cosine similarity (Cos) and (4) dot product (Dot).

The use of a chromagram as a feature vector can be consid-
ered a typical rule-based approach, and previous studies took
this approach in combination with either cosine similarity or
dot product [2], [4], [25], [51], [52]. This is why we included
conditions (1) and (2) as the baseline methods. For these
conditions, the dataset was processed similar to but slightly
different from the pre-processing steps in Subsection III-A:
we calculated chromagrams using librosa [41] instead
of CQTs.

FIGURE 5. Empirical cumulative distribution functions (CDFs) of the ranks
in the query-by-accompaniment setting.

D. RESULTS
Table 3 shows the results. Our methods (i.e., Cos and
Dot) performed much better than the baselines (i.e., Cos-
Chromagram, Dot-Chromagram) in both the query-by-vocal
and query-by-accompaniment settings. From these results,
our method successfully estimated that original (thus
assumed to be compatible) pairs are generally more com-
patible than random pairs, which validates our method. In
terms of the used metrics, our method using Dot achieved
better results than using Cos in both the query-by-vocal and
query-by-accompaniment settings. Figures 4 and 5 visualize
empirical cumulative distribution functions (CDFs) of the
ranks among top k (1 ≤ k ≤ 808, 921) in the query-
by-vocal and query-by-accompaniment settings, respectively,
for better understanding. The empirical CDFs clearly show
the advantage of our method.

From these observations, we consider that the proposed
method, especially using dot product, can successfully esti-
mate compatibility between vocal and accompaniment tracks.

V. DISCUSSION AND FUTURE WORK
A. INPUT REPRESENTATION
We used the CQTs (vocal and accompaniment BBC-
QTs) as the inputs of our encoders. Other possible
inputs include short-time Fourier transform (STFT) [53],
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FIGURE 6. Precision-recall of vocal activity detection. Our method (w/
VAD [32]) is superior to the method merely applying thresholds to RMS
(w/ RMS threshold).

mel-scaled [54] STFT (Mel-STFT), continuous wavelet
transform (CWT) [55], mel-frequency cepstrum coefficient
(MFCC) [56], and chromagram representations. Several
studies using DNNs with convolutional layers have dis-
cussed which input representation is effective. Huzaifah [35]
revealed that the use of an STFT spectrogram, a Mel-STFT
spectrogram, or a CQT spectrogram was superior to that
of a CWT spectrogram or MFCCs in environmental sound
classification tasks. Dubey et al. [37] showed that the use of a
CQT spectrogram outperformed that of a STFT spectrogram
in music source separation tasks. From these discussions,
we believe that the use of a CQT spectrogram as an input
is also beneficial in the vocal-accompaniment compatibility
estimation task. Both a CQT spectrogram and a chromagram
are based on the twelve equal temperament, which divides
an octave into twelve parts by log-scale. A CQT spectro-
gram includes more detailed features about pitch compared
with a chromagram. This difference will lead to a trade-off
between computational cost and performance. A chromagram
will be a good candidate when computational resources are
limited.

B. THE USAGE OF BEAT TRACKING
We adopted beat-tracking results for audio tracks and aligned
the number of time samples per bar using bilinear filter-
ing. Another possible approach is to use fixed- (or variable-)
length audio tracks directly. In several MIR tasks (e.g.,
genre classification [57], [58], and singing voice separation
[7]–[9]), fixed- (or variable-) length audio tracks are used
as input to the DNNs. Note that the proposed method does
not prevent the use of fixed- (or variable-) length audio
tracks: it can handle those audio tracks by using bilinear
filtering to match a specific number of time samples while
requiring re-training our encoders with those audio tracks.
Moreover, the motivation for using beat tracking is that beat
synchronization is an important factor in MIR applications
(e.g., mashup and mixing) [2]–[6].

C. EFFECTIVENESS OF VOCAL ACTIVITY DETECTION
To validate the effectiveness of our method, which uses
vocal activity detection [32] in the pre-processing steps,
we conducted an additional experiment. We used the
MUSDB18 dataset [59], which provides 150 polyphonic
sound mixtures and their isolated tracks including vocal
tracks. We calculated the precision and recall of the esti-
mated vocal activity by considering the vocal activity of
the vocal tracks in the MUSDB18 dataset as ground truth.
We compared vocal activity detection [32] with root mean
square (RMS) thresholds when applying the pre-processing
steps to polyphonic soundmixtures of theMUSDB18 dataset.
We set the RMS thresholds in a range from 0.001 to 0.05 at
an interval of 0.001. Figure 6 shows the precision-recall under
each condition. The results clearly indicate the effectiveness
of our pre-processing.

D. MULTI-CLASS N-PAIR LOSS VS. TRIPLET LOSS
Our current implementation uses the compatibility loss
inspired by multi-classN -pair loss [40]. That is, each original
pair of vocal and accompaniment tracks has a unique class.
Conventional triplet loss takes into account only one class
of a positive sample versus one class of a negative sample,
making the training process slow and inefficient. By contrast,
multi-class N -pair loss takes into account one class of a
positive sample versus multiple classes of negative samples
simultaneously, enabling more stable embedding.

E. EFFECTIVENESS OF COMPATIBILITY LOSS
To validate the effectiveness of our loss function (i.e.,
the sum of vocal- and accompaniment-wise CE values),
we conducted an ablation study. We used only a vocal- or
accompaniment-wise CE value as a loss function. Under all
conditions, we used dot product for both training the vocal
and accompaniment encoders and calculating compatibility
values. Table 4 lists the results, which clearly show the effec-
tiveness of the design of the loss function.

TABLE 4. Mean reciprocal rank (MRR) on the test set of the trial listening
dataset with respect to the ablation study on the loss functions. Our
compatibility loss function achieved good performance for both
query-by-vocal and query-by-accompaniment settings while the vocal-
and accompaniment-wise CE loss functions achieved good performance
only for one of these two settings.

F. COMPATIBILITY VALUE
Our method can estimate a compatibility value of a new pair
of vocal and accompaniment tracks. As shown in Figure 7,
our method (especially using dot product) succeeded in
estimating a compatibility value of any pair so that the
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FIGURE 7. A part of the compatibility matrix under each condition. We
randomly sampled 16 songs (i.e., 16 original pairs of vocal and
accompaniment BBCQTs) from the test set. Each diagonal entry of the
compatibility matrix indicates the compatibility value of an original pair.
Our method (top) could estimate that original pairs are more compatible
than other random pairs.

compatibility value of an original pair was higher than those
of most other random pairs. These results suggest that our
method successfully captures the relevance of the estimated
compatibility values as expected. The next important step is
to investigate how well the estimated compatibility values
agree with human perception by conducting a large percep-
tual study. It would also be interesting to conduct a deeper
analysis of what musical factors (and human factors) are
important in understanding the compatibility between vocal
and accompaniment tracks, and we believe that the findings
from this study can be used in this analysis.

G. EXAMPLE APPLICATION: AUTOMATIC MASHUP
As described in Section I, vocal-accompaniment compatibil-
ity estimation can be used for creating mashup songs. We
describe an automatic mashup tool using our compatibility
estimation as an example application. The tool requires a
dataset containing vocal and accompaniment tracks and a
trained model using this dataset. As an input to the tool, a user
can select an excerpt of a vocal track or that of an accompa-
niment track (e.g., verse, bridge, or chorus). Note that such
excerpts need to be bar-wise. When the tool takes an excerpt
of a vocal track as the input, it estimates the compatibility
between the excerpt and all excerpts from accompaniment
tracks in the dataset. When the tool applies an excerpt of
an accompaniment track as the input, it estimates the com-
patibility between that excerpt and all excerpts from vocal
tracks in the dataset. After selecting the excerpt that should
be paired to the input excerpt, the tool stretches the time of the
selected excerpt to fit the input excerpt without pitch shifting.
Finally, the tool mixes them and creates a new mashup song,
the duration of which is the same as that of the input.

H. POSSIBILITIES OF COMPATIBILITY ESTIMATION
We believe that compatibility estimation has the potential
to enhance many other MIR applications (e.g., composition
support) and yield new research directions. This study can
be extended to compatibility between tracks of a non-vocal
melody and an accompaniment; that between tracks of a
non-audio-signal melody and an accompaniment such as
those stored in MIDI representations; and that between any
non-melody track and another track.

VI. CONCLUSION
We proposed a method for estimating the compatibility
between vocal and accompaniment tracks. This method is
based on deep metric learning: it embeds both vocal and
accompaniment tracks into the shared vector space using
two encoders, which lay the embedded feature vectors of
a compatible pair of vocal and accompaniment tracks close
to each other and those of an incompatible pair far from
each other. To enable this, we constructed a large dataset
called the trial listening dataset containing 910,803 songs
available on amusic service and generated the training data in
a self-supervisedmanner. Our comparative experiments using
ranking-based evaluation clarified that our method is superior
to baseline methods.
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