
Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP-2002), pp.1489-1492, September 2002.

SPEECH COMPLETION: ON-DEMAND COMPLETION ASSISTANCE
USING FILLED PAUSES FOR SPEECH INPUT INTERFACES

Masataka Goto, Katunobu Itou, and Satoru Hayamizu

National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JAPAN.

m.goto@aist.go.jp

ABSTRACT
This paper describes a novel speech interface function, called
speech completion, that helps a user enter a word or phrase by com-
pleting(filling in the rest of) a phrase fragment uttered by the user.
Although the concept of completion is widely used in text-based
interfaces, there have been no reports of completion being effec-
tively applied to speech. By using a filled pause, we enable a user
to effortlessly invoke the speech-completion function which helps
the user recall uncertain phrases and saves labor when the input
phrase is long. When a user hesitates by lengthening a vowel (a
filled pause is uttered) during a phrase, our system immediately
displays completion candidates whose beginnings acoustically re-
semble the uttered fragment so that the user can select the correct
one. In our experiments with a system that included a filled-pause
detector and a speech recognizer capable of listing candidates, the
effectiveness of speech completion was confirmed.

1. INTRODUCTION

One reason why human-human speech communication is comfort-
able is that we can expect a listener to help us when we utter vague
or incomplete information. In Japanese, when a speaker cannot
remember an entire phrase and hesitates while uttering it, a lis-
tener sometimes helps the speaker recall it: the listener suggests
options by completingthe partially uttered fragment (i.e., by fill-
ing in the rest of it). For example, when a speaker cannot remem-
ber the last part of a Japanese phrase “maikeru jakuson” (in En-
glish, “Michael Jackson”)1 and stumbles, saying “maikeru–” (in
English, “Michael, uh...” or “Michael–”) with a filled pause “ru– ”
(“uh...” or “l–”),2 a listener can help the speaker by asking whether
the speaker intends to say “maikeru jakuson”(“Michael Jackson”).
The purpose of this study is to improve the usability of speech input
interfaces by providing this completionassistance.

The concept of completing a fragment is widely used in text-
based interfaces. For example, several text editors (e.g., Emacs)
and UNIX shells (e.g., tcsh and bash) provide functions complet-
ing the names of files and commands. These functions fill in the rest
of a partially typed fragment when a completion-trigger key (typi-
cally the Tab key) is pressed. Completion functions for pen-based
interfaces, such as POBox [1], have also been proposed. However,
even though completion is so convenient that it often becomes in-
dispensable to users, effective completion functions for speech in-
put interfaces have not been developed because there has been no
way to trigger them during natural speech input.

1When a foreign name like “Michael Jackson” is written or pronounced
in Japanese, it is regularized to conform to the Japanese style: “maikeru
jakuson.”

2In Japanese, vowel-lengthening hesitations like “maikeru–” (sounding
like “Michael–” in English) are very common, while inserting-filler hesita-
tions like “Michael, uh...” are usually used in English.

In this paper we describe a completion function for speech in-
put, called speech completion, that fills in the rest of a partially
uttered fragment of a word or phrase. The most important point is
that we use an intentional filled pause (the lengthening of a vowel
during hesitation) to trigger this speech-completion function. To
prevent this kind of completion assistance becoming annoying, it
should be invoked only when a user wants to obtain completion
candidates. Because the filled pause is a natural hesitation that in-
dicates a user is having trouble thinking of or recalling a subsequent
word or phrase, its use makes this speech-completion function ef-
fective and practical. The speech-completion function can also
be considered a new way to exploit nonverbal speech information
(i.e., a filled pause); the filled pause has not been positively used
in speech recognition although it plays valuable roles in human-
human communication.

In the following sections, we explain the basic concept of
speech completion and then describe the design and implementa-
tion of a speech recognition interface with the speech-completion
function. Finally, we show that experimental results from forty-
five subjects indicated the effectiveness of speech completion.

2. SPEECH COMPLETION

Speech completion, the general term for interface functions that
enable a user to invoke completion assistance during speech input,
has three benefits:
1. A user can more easily recall uncertain phrases.
2. Less labor is needed to input a long word or phrase.
3. The user is not forced to utter the entire content carefully and

precisely, as is required by most current speech-recognition
systems.
Although various completion levels — such as word, phrase,

clause, and sentence — can be considered, in this paper we con-
centrate on word-level and phrase-level completion. (This can be
naturally extended to the sentence level.) In other words, we deal
with a word registered in the system vocabulary of a speech rec-
ognizer. Phrases such as the names of musicians and songs can be
registered as single words.

Since a user may want to complete speech in either direction
(forward or backward), we propose two completion methods:
1. Forward speech completion

A user who does not remember the last part of a word or phrase
can invoke this completion by uttering the first part while in-
tentionally lengthening its last syllable (making a filled pause).
The user then gets completion candidates obtained by filling in
the last part.
When, for example, the Japanese phrase “maikeru jakuson”
(in English, “Michael Jackson”) is registered as one word in the
system vocabulary, a user uttering the fragment “maikeru–”
(“Michael–” or “Michael, uh...”) gets completion candidates

1489



Input utterance

"the wildcard keyword +
a filled pause + the last part""the first part + a filled pause"

1. maikeru jakuson
2. maikeru boruton
3. maikeru

makudonarudo

"maikeru-" "nantoka- jakuson"

1. maikeru jakuson
2. janetto jakuson
3. jo- jakuson

"No.1" "jakuson" "maikeru jakuson" "No.1" "maikeru" "maikeru jakuson"

maikeru jakuson
(Michael Jackson)

Display completion
candidates

Display completion
candidates

Read out the
number

Read out the
last part

Read out the
entire word

Read out the
number

Read out the
first part

Read out the
entire word

"next candidates"
"previous candidates"

if there are
other candidates

Forward Speech Completion Backward Speech Completion

Determine the resultDetermine the result maikeru jakuson
(Michael Jackson)

Speech recognizer
capable of listing

completion candidates

Audio signal input Filled-pause detector

Utterance detector
(Endpoint detector)

VQ encoder Graphics manager

LPC mel-cepstrum
analyzer Interface manager

VQ code

Filled-pause
period

Fig. 1. Flowchart of the speech input interface with forward and backward speech completion.

such as “ maikeru jakuson” (“Michael Jackson”), “ maikeru
boruton” (“Michael Bolton”), and “ maikeru makudonarudo”
(“Michael McDonald”).

2. Backward speech completion (Wildcard speech completion)
A user who does not remember the first part of a word or phrase
can invoke this completion by uttering the last part after inten-
tionally lengthening the last syllable of a predefined special
keyword — called wildcard keyword. Completion candidates
are generated by replacing the wildcard keyword (filling in the
first part) as if a wildcard search was done.
When, for example, the Japanese wildcard “ nantoka” (in En-
glish, “something”) is defined as the wildcard keyword, a user
uttering “ nantoka– jakuson” (“something– Jackson”)3 gets
completion candidates such as “ maikeru jakuson” (“Michael
Jackson”), “ janetto jakuson” (“Janet Jackson”), and “ jo- jaku-
son” (“Joe Jackson”).

Note that these two completion methods are triggered by the filled
pause that is a typical hesitation phenomenon and is apt to reflect
the mental and thinking states of a speaker, such as those in which
the speaker is trying to think of a subsequent word [2]. Since the
filled pause is a natural trigger,4 the user can invoke the speech-
completion function effortlessly.

3. SPEECH INPUT INTERFACE WITH
SPEECH COMPLETION ASSISTANCE

We designed a hands-free speech-input-interface system with for-
ward and backward speech-completion functions. It can assist a
user by completing any system vocabulary word (which can be ei-
ther a single word or a phrase) as follows (Figure 1):
1. [Forward speech completion]

When the user prolongs a vowel in the middle of a system vo-
cabulary word,5 the system displays a numbered list of com-
pletion candidates whose beginnings acoustically resemble the
uttered fragment.
[Backward speech completion]
When the user prolongs the last vowel of the wildcard keyword
and then utters the last part of a system vocabulary word, the
system displays a numbered list of candidates whose endings
acoustically resemble the uttered last part.

3This expression is very natural in Japanese.
4This is especially true for Japanese, a moraic language in which every

mora ends with a vowel that can be lengthened. In fact, speakers typically
use filled pauses to gain time to recall a word or to wait for a listener to help
with word choice.

5The user can insert a filled pause at an arbitrary position while uttering
a word or phrase.

2. The user can see other candidates by uttering the turning-the-
page phrases, “next candidates” and “previous candidates,”
displayed whenever there are too many candidates to fit onto
the computer screen. If all the candidates are inappropriate or
the user wants to enter another word, the user can simply ignore
the displayed candidates and proceed with the next utterance.

3. When the user selects one of the candidates by saying (reading
out) either its number, the rest of the word, or the entire word,
that word is highlighted and used as the speech input result.

4. SYSTEM DESCRIPTION

Figure 2 shows the architecture of our speech-completion system.
The boxes in the figure represent different processes, and the four
main processes are those of the filled-pause detector (Section 4.1),
the speech recognizer (Section 4.2), the interface manager, and the
graphics manager. Those processes can be distributed over a LAN
(Ethernet) and connected by using a network protocol called RVCP
(Remote Voice Control Protocol), which is an extension of RMCP
[3] that supports timestamp-based synchronization.

The filled-pause detector controls the two modes of the speech
recognizer, the normal mode and the completion mode. In the com-
pletion mode triggered by a filled pause, the recognizer generates a
numbered list of completion candidates that is sent to the interface
manager managing the state transition of the interface (Figure 1).
The graphics manager manages a front-end GUI and displays on
the screen the recognition results and a pop-up window containing
the candidate list.

4.1. Filled-pause detector

Because speech completion is impractical without a real-time
method for detecting filled pauses that is independent of vocabulary
and language, we use a robust filled-pause detection method [4]. It
is a bottom-up method that can detect an intentionally lengthened

Fig. 2. System architecture.

1490



r

root
leaf

node

m
n u

u

o-

b
j

s
r
s

Michael Bolton

Michael Jackson

Mike Oldfield

k o
b Mikerobenics

entry node table

add temporary entry nodes
top Nseed hypotheses when
a filled pause is detected

other hypotheses when
a filled pause is detected

nodes traced for speech completionspeech completion seeds

add every syllable
in the middle of all the words

just after the wildcard keyword

add an extra transition from the last node of
the unuttered first part of each candidate

to its leaf

root

node

m
t

e

i-

r

g

u

o-
u

r
leaf

TMC Graffiti

TMC All Starsr
a

u

entry node table

Michael Jackson
j

a

a

vowel in any word without using top-down information (a language
model). It determines the beginning and end of each filled pause by
finding two acoustical features of filled pauses — small fundamen-
tal frequency transitions and small spectral envelope deformations.
These features are found by using a sophisticated instantaneous-
frequency-based analysis [4].

Note that, as shown in Figure 2, the processing of the real-time
filled-pause detector that directly analyzes the input audio signal is
executed in parallel with that of the following HMM-based speech
recognizer.

4.2. Speech recognizer capable of listing completion candi-
dates

To provide a list of completion candidates whenever a filled pause
was detected, we extended an HMM-based speech recognizer,
niNja [5]. In addition to a vocabulary of words to be input and be
completed (e.g., the names of musicians and songs), this also uses a
vocabulary for operating the interface (e.g., the wildcard keyword,
the candidate numbers, and the turning-the-page phrases). All
these words are stored in a tree structure as shown in Figure 3. The
wedge marks in this figure represent multiple hypotheses main-
tained by a frame-synchronous Viterbi beam search decoder.

When the beginning of a filled pause is detected (about 200 ms
after a vowel is lengthened), the recognizer enters the completion
mode: it determines which completion method is to be invoked
(forward or backward) on the basis of whether the wildcard key-
word is the best hypothesis at that moment.

In forward speech completion, candidates are obtained by trac-
ing from the top Nseed hypotheses (at the beginning of the pause) to
the leaves (Figure 3): the candidates are obtained by deriving from
the vocabulary tree those words that share the prefix corresponding
to each incomplete word hypothesis of the uttered fragment. The
top Nchoice candidates (leaves) are sorted and numbered in order
of likelihood and then sent to the interface manager. We call the
nodes corresponding to the top Nseed hypotheses the speech com-
pletion seeds. For example, if the top black circle in Figure 3 is
a seed, the completion candidates obtained are “Michael Bolton”
and “Michael Jackson.”

To enable the user to select the correct candidate by reading
out the last part of it, the speech-completion system must be able to
recognize last-part fragments that are not registered as vocabulary
words. We therefore introduced an entry node table and the roots
(nodes) from which the decoder starts searching are listed in that
table. In the normal mode, only the root of the vocabulary tree
is listed. During the utterance just after the listing of completion
candidates, speech completion seeds are temporarily added to the
table as shown in Figure 3. Although a candidate can be selected by
uttering just the last part, the recognition result sent to the interface
manager is the entire word.

In backward speech completion, on the other hand, it is nec-
essary to obtain completion candidates by recognizing a last-part
fragment uttered after the wildcard keyword (after the end of the
filled pause). We address this problem by temporarily adding to
the table, just after the wildcard keyword, every syllable in the
middle of all the vocabulary words (Figure 4). Then, after the last-
part fragment is uttered, the hypotheses that have reached leaves
are numbered in order of likelihood and the top Nchoice hypotheses
(leaves) are sent as completion candidates. After that, so that the
user can select the correct candidate by reading out its first part,
the recognizer temporarily adds an extra transition from the last
node of the unuttered first part of each candidate to its leaf. For
example, when the user utters “ nantoka– jakuson” (“something–
Jackson”) for “ maikeru jakuson,” (“Michael Jackson”) an extra
transition from the last node of “ maikeru” to its leaf is temporarily
added.

Fig. 3. Forward speech completion: obtaining completion candi-
dates on the vocabulary tree at the beginning of a filled pause and
adding speech completion seeds to the entry node table.

Fig. 4. Backward speech completion: obtaining completion can-
didates by adding entry nodes just after the wildcard keyword.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figures 5 and 6 show examples of the graphics output of the imple-
mented speech-completion system.6 The current implementation
uses the following parameter values: Nchoice = 20 and Nseed = 15.

We tested this system with 45 Japanese subjects (24 male, 21
female). For the experiments, we used a system vocabulary com-
prising 521 entries (names of 179 Japanese musicians and 342 of
their songs), which were collected from Japanese hit charts dur-
ing fiscal 2000. To evaluate whether the subjects preferred to use
speech completion, we measured the usage frequencies of speech
completion under two conditions: (a) when a subject input a set
of name entries from a list after gaining a good command of the
speech-completion function, and (b) when a subject had to recall
and input vaguely remembered entries. For condition (a), we had
each subject input a set of five entries written on a paper sheet un-
der the condition that the subject could freely use speech comple-
tion according to personal preference. Before the testing under this
condition, the subjects input the same set with and without speech
completion so that they would have a good command of speech

6We have also developed and demonstrated an application of this sys-
tem, a speech-capable music jukebox system, which can play back a song
whose title is determined through speech recognition with the speech-
completion function.

1491



Forward Speech Completion

Backward Speech Completion

(1) Uttering “ maikeru–.” (3) Uttering “ No. 2.”

[Entering the phrase “ maikeru jakuson” (“Michael Jackson”)
when its last part (“ jakuson” ) is uncertain.]

(2) A pop-up window containing
completion candidates appears.

(4) The second candidate is
highlighted and bounces.

(5) The selected candidate “ maikeru jakuson”
is determined as the recognition result.

Fig. 5. Screen snapshots of forward speech completion.

(1) Uttering “ nantoka–.” (3) Uttering “ jakuson.” (5) Uttering “ No. 1.”
(wildcard keyword)

[Entering the phrase “ maikeru jakuson” (“Michael Jackson”)
when its first part (“ maikeru” ) is uncertain.]

(2) A pop-up window with colorful flying
decorations appears.

(4) A window containing completion
candidates appears.

(6) The first candidate “ maikeru jakuson”
is determined as the recognition result.

Fig. 6. Screen snapshots of backward speech completion.

completion. For condition (b), we took away the paper sheet list-
ing the entries and had the subject recall and input as many entries
as possible without being able to refer to the sheet. After testing
under both conditions, the subject was asked to complete a subjec-
tive questionnaire.

We found that the average usage frequency of speech comple-
tion was 74.2% and 80.4%, respectively, for conditions (a) and (b).
The relative usage frequencies for the two input methods (forward
and backward) were 61.7% (forward) and 38.3% (backward) for
condition (a) and 66.1% (forward) and 33.9% (backward) for con-
dition (b). These results showed that the subjects preferred to use
the speech-completion function even when they could choose not
to use it. The questionnaire results indicated that the assistance
provided by the listing of completion candidates was helpful and
easy to use, that the speech completion made it easy to recall and
input uncertain phrases, and that 80% of the subjects wanted to use
the speech completion in the future.

6. CONCLUSION

We have described the new speech interface function “ speech com-
pletion,” which fills in the missing part of a partially uttered frag-
ment to help a user enter an uncertain phrase. To provide this com-
pletion assistance only when needed, we use a filled pause to in-
voke it. The filled pause is a good “ speech Tab” trigger — an
oral version of the completion-trigger key in text-based interfaces

— because it can be detected independently of speech recognition
and is naturally used in human-human speech communication. We
have confirmed the effectiveness of this form of speech comple-
tion for the task of inputting the Japanese names of musicians and
songs. It can also be immediately applied to various other speech
applications. We believe it will become as indispensable in speech
interfaces as text completion is in good text-based interfaces.

7. REFERENCES

[1] Toshiyuki Masui, “An efficient text input method for pen-
based computers,” in Proc. of CHI’98, 1998, pp. 328–335.

[2] Elizabeth Shriberg, “To ‘errrr’ is human: ecology and acous-
tics of speech disfluencies,” Journal of the International Pho-
netic Association, vol. 31, no. 1, pp. 153–169, 2001.

[3] Masataka Goto, Ryo Neyama, and Yoichi Muraoka, “RMCP:
Remote music control protocol — design and applications —,”
in Proc. of Intl. Computer Music Conf., 1997, pp. 446–449.

[4] Masataka Goto, Katunobu Itou, and Satoru Hayamizu, “A
real-time filled pause detection system for spontaneous speech
recognition,” in Proc. of Eurospeech ’99, 1999, pp. 227–230.

[5] Katunobu Itou, Satoru Hayamizu, and Hozumi Tanaka, “Con-
tinuous speech recognition by context-dependent phonetic
HMM and an efficient algorithm for finding N-best sentence
hypotheses,” in Proc. of ICASSP 92, 1992, pp. I–21–24.

1492


