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ABSTRACT

This paper presents contour-preserving melody conversion
which enables a melody to be brought from one accompa-
niment to another while preserving the melodic contour.
The conversion automatically adjusts pitches that are in-
consistent with the accompaniment and enables convenient
interactive composition. The conversion can be achieved
by an optimization using two different probabilistic mod-
els: a contour model to preserve the melodic contour, and
a consistency model to maintain consistency between the
melody and the accompaniment. The contour model con-
sists of time-varying transition probabilities, and the con-
sistency model is governed by bi-directional recurrent neu-
ral networks. For evaluation, we have calculated two mea-
sures: the root mean squared difference of intervals to
check how the conversion preserves the original melodic
contour, and the negative log-probability on test data to
see the consistency between the melody and the accom-
paniment. The evaluation results indicate that a composer
can control how strictly to preserve the melodic contour by
balancing between the contour model and the consistency
model.

1. INTRODUCTION

The recent development of fully automatic music gener-
ation enables an interactive computer-aided composition
where a composer and an automatic composition collab-
orate in composing music. Automatic music generation
outputs various musical pieces and inspires the composer
through the iterative uses of automatic music generation. It
can also generate music from specific fragments of music
such as melodies or chords that are sketched manually by
a composer, and completes or adjusts the remaining parts
of the music. Our proposed method contour-preserving
melody conversion is a novel way to compose music in-
teractively with a computer.

Contour-preserving melody conversion regards a melody
by a composer as a source melody and adjusts the pitches
to fit different accompaniments. It enables a composer
to freely explore melodies aside from constraints of the
accompaniment. The overview of our method is shown
in Figure 1. To prevent diminishing the character of the
source melody through the conversion, it preserves the
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Figure 1. Overview of contour-preserving melody conversion to generate
a novel melody by adjusting pitches in the source melody to fit a different
accompaniment.

melodic contour and the rhythm of the source melody. A
melodic contour is a sequence of single pitches that resem-
bles the original intervallic patterns of a melody, and the
contour can appear with changes in intervallic detail [1].
The experiments show that listeners usually find it easy to
respond positively to all comparison melodies that share a
melodic contour and respond negatively to melodies with
different melodic contours [2, 3].

A technical issue for the contour-preserving melody con-
version is to achieve consistency between a melody and
the accompaniment while preserving the original melodic
contour. The accompaniment contains chords, modes, and
tonality, and it governs the available pitches in the melody.
The conversion needs to generate a melody which satisfies
both the constraints given by a melodic contour and the
consistency between the melody and the accompaniment.

The contribution of this paper is to show that contour-
preserving melody conversion can be achieved by solv-
ing an optimization problem. The objective function to
maximize consists of two probabilistic models: a contour
model and a consistency model. The contour model com-
prises a sequence of transition probabilities that represents
the constraints of intervals within a melody. The consis-
tency model is a recurrent neural network (RNN) with long
short-term memory (LSTM) recurrent units [4] that can in-
fer conditional probabilities of pitches when an accompa-
niment is given. The adjusted pitches for a new melody
are generated by searching for the optimal pitches with dy-
namic programming.
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2. RELATED WORK

2.1 Generating melody from melodic contour

A system that generates a solo melody from a hand-drawn
curve while satisfying constraints given by a chord se-
quence in blues style has been proposed [5]. Compared to
this work that allows users to input an abstracted form of
melodic contour to control the results, our work provides
a method to extract it from the existing example, which
enables us to inherit an attractive melodic contour in an
existing melody.

2.2 Generating melodic variations

Our work was inspired by the previous work on generating
variations of a melody [6]. A variation of a melody is prob-
abilistically sampled to have a differentiated rhythm and
melody notes but an impression similar to that of the orig-
inal melody. Our work shares the philosophy of making
use of melodic structure in existing melodies rather than
generating it from scratch. Using chord sequences to con-
straint generation of melodic variations has also been pro-
posed [7]. Our work copes with both generating variations
and handling constraints by the accompaniment in a uni-
fied framework.

2.3 Generating sequences with constraints

Our research was also inspired by attempts to create a long-
term structure by a Markov chain. A method based on ex-
act sampling with belief propagation to handle dependen-
cies between remote words or melody notes in a sequence
has been proposed [8]. Imposing constraints when sam-
pling from a Markov chain to create long-term repetitive
structures and phrases has also been proposed [9]. Our
method imposes constraints on a probabilistic sequence
model to generate a melodic contour. However, rather than
trying to generate a structure by learning from data, our ap-
proach relies on an existing melody and reuses its melodic
contour to generate a new melody.

2.4 Modeling melody-accompaniment consistency

Our method models the consistency between a melody and
an accompaniment. Melody harmonization is the major re-
search theme from this viewpoint. Expert systems [10],
neural networks [11, 12], Markov chains [13], hidden
Markov models [14], and log-linear interpolation of proba-
bilistic models [15] have been used. Our method generates
a melody rather than chords, and it could be regarded as a
different application of modeling the consistency.

2.5 Generating sequence with neural networks

Our work could also be regarded as a melody generation
using neural networks. In recent years, neural networks,
especially Transformers and RNNs have been used for
generating polyphonic music [16, 17, 18, 19], chord se-
quences [12], guitar tabs [20], and chorales [21, 19, 22].
DeepBach generates voices of chorales in the style of Jo-
han Sebastian Bach with bi-directional LSTM and Gibbs
sampling [23]. SequenceTutor is a system to adapt RNNs
to generate more preferable melody sequences by apply-
ing reinforcement learning [24]. MidiNet and MuseGan

train convolutional neural networks (CNNs) as generative
adversarial networks (GANs) [25, 26]. Counterpoint by
convolution achieves counterpoint with CNNs [27]. Our
method generates a melody by using not only the proba-
bility given by the neural networks but also using proba-
bilities from the melodic contour, which provides us with
essential constraints to generate melodic variations.

3. CONTOUR-PRESERVING MELODY
CONVERSION

3.1 Composition with contour-preserving melody
conversion

Let us assume that a composer wants to use a melody
(the source melody) with a different accompaniment. The
melody initially with an original accompaniment is now
combined with a different accompaniment, and there could
be pitches in a melody that are inconsistent with the
newly attached accompaniment. The preferable method
for computer-aided composition is to automatically adjust
pitches in a melody to be consistent with the new accom-
paniment. However, the pitches could be changed dras-
tically, and this could change the characteristics of the
source melody.

Our method keeps the original characteristics of the
melody by preserving the melodic contour while adjust-
ing pitches to be consistent with the accompaniment. The
method firstly creates a contour model from intervals of
the source model. The model comprises a set of transi-
tion probabilities to achieve a pitch transition which resem-
bles the intervallic patterns of the source melody. Then
the method constructs a consistency model by training a
bi-directional LSTM from paired melody and accompani-
ment data. Finally, the method executes melody conver-
sion to adjust pitches to meet constrains given by the con-
tour model and the consistency model.

3.2 Contour model

A sequence of intervals can be represented as transition
probabilities between consecutive melody notes. Let us
represent the pitches in a melody as x1, x2, . . . , xN , where
xn is the MIDI note number of the nth note and N is the
total number of notes. A transition probability q(xn|xn−1)
that achieves interval k in semitones between xn−1 and
xn = xn−1 + k is

q(xn|xn−1) =

{
1 (xn = xn−1 + k)
0 (otherwise).

(1)

Since a melodic contour can appear with changes in inter-
vallic detail, the transition probabilities need to allow the
case when the intervals are slightly different from the orig-
inal. To achieve this, we design the transition probability
for interval k as:

q(xn|xn−1) =
1

W
exp

(
−1

2
(xn − (xn−1 + k))2

)
, (2)

W = ε+
∑

xn

exp

(
−1

2
(xn − (xn−1 + k))2

)
, (3)

where ε is a very small constant for numerical stability.
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Figure 2. Network architecture of consistency model which out-
puts probability for P (xN ) from accompaniment vector inputs
aN−K+1,aN−K+2, . . . ,aN (step size K).

3.3 Consistency model

We create a consistency model so that we can measure to
what extent the pitches are consistent with the accompani-
ment. We take a machine learning approach for creating
this model. We chose (1-layer) bi-directional RNNs with
LSTM recurrent units [4] for the neural network structure.
RNNs are used because they can capture the dependencies
between the consecutive melody notes.

An accompaniment behind the melody contains notes
coming from chords and other voices. We denote the prob-
ability of having the particular pitch behind the nth melody
note as accompaniment vector an. The dimension of this
vector is the same as the number of available pitches in
MIDI, which is 128. The ith element is defined to be the
probability of having a pitch of MIDI note number i. Ex-
amples of the accompaniment vectors are shown on the
right in Figure 3. Each value in an accompaniment vec-
tor is the ratio of the duration of an accompaniment note
to the duration of a melody note. Suppose we observe a
melody note whose onset time is 0 and the offset time is
100 in MIDI ticks. If we observe an accompaniment con-
sists of single note in pitch 48 where the onset time is 50
and offset time is 200, an accompaniment vector will con-
tain zeros except for the 48-th element, which will be 0.5.
Since the accompaniment note overlaps the melody note at
onset time 50 to offset time 100, the duration of overlap-
ping is 50 whereas the duration of the melody is 100 and
the value for the 48-th element is 0.5 (= (100− 50)/100).

When an accompaniment has multiple parts or tracks, an
accompaniment vector is first created for each accompani-
ment part. Then the vectors for all parts are combined to
create a single vector for every melody note by taking the
maximum value among the multiple parts.

The bi-directional RNNs take K accompaniment vec-
tors aN−K+1,aN−K+2, . . . ,aN as inputs, and they output
probability p(xN ) as a 128 dimensional vector. To achieve
this non-linear transformation from the input to the out-
put, we set the dimension of the hidden units to 32, and
set the activation function for input and for the recurrent
input to the rectified linear unit and sigmoid, respectively.
To ensure the output is a probability distribution, we set a
softmax at the output layer. The network structure of the
consistency model is illustrated in Fig. 2.

We trained the RNNs by minimizing the categori-
cal cross-entropy loss between the output and the 128-

dimensional one-hot vectors created from the pitches of the
melody notes. Examples of the one-hot vectors are shown
on the left in Figure 3. The probability of dropout was set
to 0.3 to avoid overfitting, and the step size of the input
was set to K = 10. We used the Adam optimizer [29] to
minimize the loss while training with 300 epochs (learning
rate lr = 0.001, β1 = 0.9, β2 = 0.999, ε = 108).

3.4 Melody conversion

Pitch-contour-preserving melody conversion generates a
novel pitch sequence by searching for the optimal pitches
x1, . . . , xN that maximize the following objective function
J , which combines the contour model and the consistency
model:

J = ln p(x1) +

N∑

n=2

ln ((1− λ)p(xn) + λq(xn|xn−1)) ,

(4)
where λ(0 ≤ λ ≤ 1) is a parameter to balance between
the contour model q(xn|xn−1) and the consistency model
p(xn).

The optimal pitches can be obtained by an efficient
(O(N)) algorithm based on dynamic programming. We
show that the maximum value of the objective function J
can be written as a recursive formula and therefore we can
use dynamic programming. Let us denote the maximum
value of J when xn = j by δn(j). We can derive

δn(j) = max J(x1, . . . , xn−1, xn = j) (5)
= max

i
[max J(x1, . . . , xn−1 = i) + ri,jn ](6)

= max
i

[δn−1(i) + ri,jn ], (7)

where

ri,jn = ln ((1− λ)p(xn = j) + λq(xn = j|xn−1 = i))
(8)

and δn(j) is recursively described by using δn−1(i). The
resulting algorithm is shown in Alg. 1.

Algorithm 1 Melody conversion
Input: log probabilities ln p(xn) and ri,jn

Initialization :
1: for j = 1 to 128 do
2: δ1(j) = ln p(x1 = j)
3: ψ1(j) = 0
4: end for

Forward calculation :
5: for n = 2 to N do
6: for j = 1 to 128 do
7: δn(j) = maxi[δn−1(i) + ri,jn ]
8: ψn(j) = argmaxi[δn−1(i) + ri,jn ]
9: end for

10: end for
Backward tracking :

11: xN = argmaxj δN (j)
12: for n = N − 1 to 1 do
13: xn = ψn+1(xn+1)
14: end for
Output: converted pitches x1, . . . , xN
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Figure 3. Examples of one-hot vectors of pitches in a melody (on the left) and the corresponding accompaniment vectors (on the right) in an excerpt of
RWC-MDB-P-2001 No.97 from the RWC music database [28].

4. MELODY CONVERSION EXPERIMENT

4.1 Balancing between contour and consistency

In order to show contour-preserving melody conversion is
an useful and a feasible method, we conducted an exper-
iment to find whether our method can generate melody
pitches that preserve the melodic contour and also maintain
the consistency between the melody and the accompani-
ment. The possible failures are the two extreme cases. One
is the case that generated pitches preserves the melodic
contour but does not fit the accompaniment. The other
extreme case is when the melodic contour is drastically
changed by maintaining the consistency given by the con-
sistency model. We investigated the results generated with
different choices of parameter λ, which balances between
the contour model and the consistency model in the objec-
tive function (eq. (4)).

4.2 Metrics to evaluate contour and consistency

Two quantitative measures were used for evaluation. To
see how a generated melody follows the melodic contour
of the source melody, we calculated the root mean squared
difference (RMS) between the intervals of the generated
pitches and the pitches of the source melody. The smaller
the RMS is, the better the generated pitches preserve the
melodic contour.

The other evaluation measure was to see how well a gen-
erated pitch fits the accompaniment. We used negative log-
probability (NLP) calculated by using only the consistency
model (last term in eq.(4)) divided by the length of the gen-
erated pitches. NLP measures how likely it is to observe
a generated pitch given the trained model with the train-
ing data. NLP could be increased by forcing the pitches
to preserve the melodic contour. The smaller the NLP is,
the more likely the generated pitches maintain consistency
with the accompaniment as it is in the training data.

4.3 Melodies used in experiment

We used MIDI files of popular music (RWC-MDB-P-2001
No. 1-30) from the RWC Music Database [28]. Vocal
tracks containing melodies were manually detected. The
remaining tracks except for drums were collected to pre-
pare accompaniment vectors.

We trained parameters of RNNs by using all melody
notes in RWC-MDB-P-2001 No. 1-20 (training data). To

Figure 4. Pitches generating when converting pitches of RWC-MDB-P-
2001 No. 27 to fit the accompaniment of RWC-MDB-P-2001 No. 26 with
six different λ. The melodic contour follows that of the source melody
(baseline) when λ is close to 1.0.

test the contour-preserved melody conversion, we used 8
bars from the beginning of verse A of RWC-MDB-P-2001
No. 21-30 (test data). For all combinations of 10 songs
(90 = 10× (10− 1) possibilities excluding the conversion
using the original accompaniment), one song was used for
the melodic contour, and the other was used for the accom-
paniment.

The evaluation metrics RMS and NLP were calculated for
every combination of songs, and statistics of the metrics
(mean and standard deviation) were calculated. We tried 6
different settings for λ = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.

4.4 Melody conversion results

The results obtained when converting pitches of RWC-
MDB-P-2001 No. 27 to fit the accompaniment of RWC-
MDB-P-2001 No. 26 are shown in Figure 4. We observed
that the melodic contour gradually followed the original
melodic contour of the source melody more and more
closely as λ was gradually increased from 0.0 to 1.0.

Mean and standard deviation of evaluation metrics (RMS
and NLP) calculated when varying λ are shown in Fig-
ure 5. By setting λ around 0.4, the method generated
pitches preserving the original contour within 3 semitones
of difference (RMS: 2.46±1.18, NLP: 2.00±0.733). The
extreme case of ignoring the melodic contour appeared
when we set λ to 0.0 resulting in around 5 semitones dif-
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Figure 5. Mean and standard deviation of evaluation metrics (RMS and
NLP) by varying λ to balance between preserving the melodic contour
and maintaining the consistency between the melody and the accompani-
ment.

NLP
proposed (λ=0.0) 0.454± 0.113
proposed (λ=0.4) 2.00± 0.733
proposed (λ=1.0) 7.13± 2.74

source melody 9.36± 3.58
human 7.01± 2.01

Table 1. Comparison of negative log-probability among proposed method
(proposed), using the pitches of the source melody (source melody), and
the human-composed melodies with the accompaniment (human).

ference (RMS: 4.54 ± 1.31). The other extreme case of
ignoring the accompaniment was obtained by setting λ to
1.0, for which the NLP was the highest among all settings
of λ (NLP: 7.13±2.72). This highest NLP value was lower
than the baseline result (NLP: 9.36 ± 3.58), which reuses
the original pitches in the source melody.

5. DISCUSSION

We have found that contour-preserving melody conversion
generates novel pitches based on an existing melodic con-
tour. The experimental results indicate that a composer
can balance between strictly preserving the melodic con-
tour and maintaining consistency of melody and the ac-
companiment by setting λ.

There are issues we would like to deal with in future
work. The first issue is the phrase boundaries within a
melody. We discarded the length of melody notes and
equally handled all intervals between consecutive notes. It
seems more valuable not to preserve the interval between
phrases that are separated far apart. The constraints of
melodic contour between phrases could be relaxed by lo-
cally increasing λ for creating transition probabilities de-
pending on the onset-to-onset duration of notes.

Rhythm is another important melodic structure we would
like to consider. In order not to copy the rhythm but to
inherit the rhythm structure, we need an abstracted form of
rhythm. This could be done by estimating a tree structure
behind the observed rhythm and using the tree to adapt to
an arbitrary number of melody notes but still preserve the
character of the rhythm.

The third issue is the listening test. While the NLP in-
dicates how likely the generated pitches maintain consis-

tency with the accompaniment, it depends on how well the
consistency model is trained. The comparison of the neg-
ative log-probability of the generated pitches is shown in
Table 1. The value for the proposed method at λ = 0.4 is
lower than that for the human-composed melodies (2.00 <
7.01). Since the NLP values for the training and validation
data were significantly lower (0.877 ± 0.398), the consis-
tency model seemed to constrain too much on the pitches.
This should be confirmed through listening test to obtain
subjective evaluation.

Although using a stronger and better-trained consistency
model is our future work, our contour-preserving melody
conversion is useful for interactive computer-aided com-
position applications. The parameter λ provides a flexi-
ble control between the fully automatic composition and
the manual composition. A composer can explore vari-
ous possibilities of melodies, from the most recommended
ones to the one strictly preserving the melodic contour of
composer’s manual composition.

6. CONCLUSION

We discussed contour-preserving melody conversion for
the interactive computer-aided composition of melodies.
We formalized the conversion as an optimization prob-
lem to maximize the log-probability of pitches with an
algorithm based on dynamic programming. The experi-
mental results indicated that composers could obtain vari-
ous melodies by balancing between strictly preserving the
melodic contour and maintaining the consistency between
the melody and the accompaniment. In the future, we
would like to generalize this approach to handle chords,
rhythms, and musical structures.

Acknowledgments
This work was supported in part by JST ACCEL Grant
Number JPMJAC1602, Japan. We thank Yi-Hsuan Yang
(Academia Sinica) for his valuable comments.

7. REFERENCES

[1] W. J. Dowling, “Melodic Contour in Hearing and Re-
membering Melodies,” in Rita Aiello (ed.) Musical
Perception. Oxford University Press, 1993, pp. 173–
190.

[2] W. J. Dowling and D. S. Fujitani, “Contour, interval,
and pitch recognition in memory for melodies,” Jour-
nal of the Acoustical Society of America, vol. 49, no. 2,
pp. 524–531.

[3] W. J. Dowling, “Scale and contour: Two components
of a theory of memory for melodies,” Psychological
Review, vol. 85, no. 4, pp. 341–354.

[4] S. Hochreiter and J. Schmidhuber, “Long Short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[5] T. Kitahara, S. Giraldo, and R. Ramı́rez, “JamSketch:
Improvisation Support System with GA-based Melody
Creation from User’s Drawing,” in Proceedings of
the 13th International Symposium on Computer Music
Multidisciplinary Research, 2017, pp. 352–363.

Proceedings of the ICMC July 25th-31st, 2021, Santiago, Chile

ICMC 2021 - The Virtuoso Computer - Pontificia Universidad Católica de Chile
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