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ABSTRACT

In this paper, we address joint beat and downbeat track-
ing by using Convolutional-Recurrent Neural Networks
(CRNNs). The model consists of four convolutional layers
and four bi-directional recurrent layers. In order to deal
with music in various styles, we propose to increase the
convolution filter sizes in the convolutional layers, which
helps obtain more context information. We compare four
different filter sizes (covering 3 to 9 frames) to analyse the
context effect on ten individual datasets. The mean cross
validation results of eight datasets show that using con-
text ranges of 5 and 7 frames perform better on downbeat
tracking than other context ranges. The comparison re-
sults on two testing-only datasets (an in-house pop dataset
and the SMC dataset) show the proposed CRNN model out-
performs a previous state-of-the-art method with a context
range of 7 frames.

1. INTRODUCTION

Beat tracking and downbeat tracking are two fundamental
tasks for defining the metrical structure of a music piece
[1]. They detect a hierarchical beat structure in two rhyth-
mic levels: beat-level and bar-level [2]. Beat tracking
is ‘to determine the periodic sequence of beat positions’
from a music piece [3], while downbeat tracking is to de-
tect the first beat of each bar. Beats are basic time units
for analysing many other musical contents, and downbeats
are often related to changes of chords or rhythm patterns.
Therefore, beat and downbeat tracking is useful for vari-
ous tasks, such as music transcription [4], chord estimation
[5, 6], structure analysis [7, 8], and so on.

In the current decade, Recurrent Neural Networks
(RNNs) have been used for beat tracking with the abil-
ity of modelling data in sequences, in which bi-directional
Long Short-Term Memory (LSTM) is usually used [9,
10, 11]. For downbeat tracking, a similar RNN model
with Gated Recurrent Units (GRUs, a simplified version of
the LSTMs) has been used to detect downbeats on beat-
synchronised percussive and harmonic features in [12].
Convolutional Neural Networks (CNNs) have also been
used for downbeat tracking, with a Hidden Markov Model
(HMM) detecting the downbeat positions from various
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(a) A pop music clip. (b) A classical music clip.

Figure 1: Spectral representations (as referred to Sec-
tion 2.1) of two music clips from the RWC pop and RWC
classic datasets.

features learned from CNNs [13]. A combination of
CNNs and RNNs, Convolutional-Recurrent Neural Net-
works (CRNNs), have been compared with RNNs for
downbeat tracking in [14]. The results show that CRNNs
generally work better than RNNs, and provide more ro-
bust results on unseen data. Böck et al. propose a joint
beat and downbeat tracking model, which applies RNNs
to model beat and downbeat probabilities, and uses a Dy-
namic Bayesian Network (DBN) for detecting beat and
downbeat times from the probabilities [1]. There are also
models for jointly estimating beats (and downbeats) as well
as drums with CRNNs in a multi-task training [15, 16].
With previous work considered, we address joint beat and
downbeat tracking by using CRNNs in this paper. Firstly,
the CNN layers are used to detect the local events, such
as onsets, drums, harmonic changes, and so on. Then,
RNN layers work on the CNN output to estimate beats and
downbeats globally by modelling the whole sequence.

Despite the advantages of CRNNs, one difficulty of beat
and downbeat tracking is to deal with music in different
styles. It is easier to address dance music (the Ballroom
dataset [17, 18]) or pop music (the RWC pop dataset [19]),
with percussive onsets and drums, as shown in Fig 1a.
However, it is more difficult when dealing with music with
soft and blurring onsets, such as music in the RWC classic
dataset [19], as shown in Fig 1b. In order to tracking beats
and downbeats of music in various styles, [10] proposes
a multi-model approach, which trains an individual model
on each dataset, and chooses the final result by comparing
the results of the individual models to that of a reference
model (trained on all datasets). Because of multiple mod-
els, this method is more computationally expensive and not
extendable.
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Figure 2: High-level architecture of the CRNN model.

In order to propose a more compact model, we increase
the filter sizes in the convolutional layers of the CRNN
models to cover a larger context range, and compare four
different context ranges (covering 3, 5, 7 and 9 frames,
respectively) on ten datasets to analyse the effect of the
context range for different music styles. There was work
using different context ranges for drum transcription [15],
but to the best of our knowledge, there is no such work
for beat and downbeat tracking. From the beat tracking
results, we find that for music in the RWC classic and
SMC datasets [20] with blurring onsets, a context range
of 9 frames works best. Using different context ranges
has a bigger influence on downbeat tracking than on beat
tracking. In general (according to the mean results of eight
datasets), context ranges of 5 and 7 frames work better on
downbeat tracking than other context ranges.

The proposed models are adapted from the model used
in [1], with a similar signal pre-processing and the same
post-processing as in [1]. The main difference is that we
apply the CRNN and [1] applied the RNN. Besides, we
also compare different choices of CNN filters in this pa-
per. In comparison to the method [1] on the testing-only
datasets, the proposed models obtain better results on the
Songle dataset [21] (an in-house pop music dataset) with a
context range of 7 frames, and better results on the SMC
dataset with all context ranges. Although the idea of our
models is rather simple, we believe that it is worth sharing
results of intensive experiments achieving the state-of-the-
art performance with our research community to advance
beat and downbeat tracking research.

2. CRNN MODEL

We tackle joint beat and downbeat tracking by using
CRNNs in this section, with the high-level architecture of
the model shown in Figure 2.

2.1 Signal Pre-Processing

We process audio signals to obtain Mel-spectrograms for
the input of the CRNN models. Firstly, we read each audio
signal into a monotrack waveform sequence with 44100
Hz sampling rate. To obtain the Mel-spectrograms, the
signal is segmented into frames of window sizes of 1024,
2048 and 4096 samples with a hop size of 441 samples
[1]. For each window size, we compute a magnitude Mel-
spectrogram of 36 Mel bins within a frequency range from
30 Hz to 17000 Hz. Then we rescale the magnitude Mel-
spectrogram M into a log scale X , as follows:

X = log(1 +M). (1)

We also compute the first order difference of the Mel-
spectrograms (DX):

DX = max(Xt −Xt−1, 0). (2)

We concatenate the three Mel-spectrograms and their dif-
ferences into 6 channels, providing an input with a shape
of [36, T , 6], where T is the number of frames in a se-
quence. We show two input examples in Figure 1 with
spectrograms in 6 channels stacked together.

2.2 CRNN Network

The CRNN models consist of 4 convolutional layers,
4 bidirectional recurrent layers with GRUs and a full-
connected dense layer, with the architecture shown in Ta-
ble 1. We build the model with tensorflow 1.13.1 [22] and
Keras 2.2.4 [23].

The CNN block consists of four convolutional layers,
with a maxpooling layer stacked after each of the first two
layers, as shown in Table 1a. For the first three layers, we
compare four CNN settings with different context ranges.
For a context range ofX frames, denoted by cnX, the width
of the convolution filters isX frames, while the heights are
set by considering the feature dimensions (36, 18 and 9) of
the first three convolutional layers. The detailed parame-
ters are shown in Table 1b.

After the CNN layers, we reshape the output into a tensor
of [T , 64] as the input of the RNN layers.

In the preliminary test, we compare RNN architectures of
layer number ∈ {3, 4, 5, 6} and GRU number ∈ {32, 64}.
Finally we use 4 bidirectional layers with 64 GRUs per
layer in each direction because this architecture generally
works for all above CNN settings.

We stack a dense layer at the end of RNN layers with an
output dimension of 3, for the ‘no-beat’, ‘beat’ and ‘down-
beat’ labels, respectively.

2.3 Training

Because of the sparse occurrence of the beats and down-
beats, we extend the beat and downbeat range for an ef-
ficient training [24]. We use an extending range of one
frame, meaning that one frame before and one frame after a
beat/downbeat are also labelled the same as beat/downbeat.

We train the CRNN models in 8-fold cross validation
with random splits by using the datasets in Table 2 without
mark ∗. For each split, we use 75% for training, 12.5%
for validation and the rest 12.5% for testing. We com-
pare three optimisers (the RMSprop [25], the Adam [26]
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Layer Parameters Output Shape

input (36, T , 6)
conv2d 1 (cnX) (36, T , 32)
max pooling2d 1 (2,1) (18, T , 32)
conv2d 2 (cnX) (18, T , 32)
max pooling2d 2 (2,1) (9, T , 32)
conv2d 3 (cnX) (9, T , 32)
conv2d 4 (64, 9x1) (1, T , 64)
reshape 1 (T , 64)
bidirectional 1 (64) (T , 128)
bidirectional 2 (64) (T , 128)
bidirectional 3 (64) (T , 128)
bidirectional 4 (64) (T , 128)
dense 1 (3) (T , 3)

(a) The architecture of CRNN models. T is the number of frame
in a sequence; and cnX indicates the parameters of convolutional
layers with a context range of X frames, as explained in Table 1b.

cn9 cn7 cn5 cn3

conv2d 1 (32, 7x9) (32, 7x7) (32, 5x5) (32, 3x3)
conv2d 2 (32, 5x9) (32, 5x7) (32, 5x5) (32, 3x3)
conv2d 3 (32, 5x9) (32, 5x7) (32, 5x5) (32, 3x3)

para num 396,643 373,475 348,387 312,547

(b) Parameters of convolutional layers with different context
ranges. ‘para num’ indicates the total number of trainable pa-
rameters in each model.

Table 1: The architecture of CRNN models.

and stochastic gradient descent) in the preliminary test,
and choose the RMSprop with a learning rate of 10−3 to
minimise the cross entropy error. We stop training if no
improvement is found on the validation set in 15 epochs.
Then, we fine-tune the models by using the RMSprop with
a learning rate of 10−4. The fine-tuning is also stopped
with a patient number of 15 epochs.

2.4 Post-Processing

We adapt the post-processing method in [1]. First a thresh-
old of 0.05 is applied on the beat/downbeat activations
(from the CRNN models) to delete small activations at the
beginning and end of a music piece. Then, a Dynamic
Bayesian Network is used to infer the metre, tempo and
beat phases jointly based on the observation distributions
converted from the beat/downbeat activations. Readers are
referred to [1, 27] for more details. In the experiment, we
restrict the bar lengths to 2, 3, or 4 beats.

3. EVALUATION

We evaluate beat and downbeat tracking results in F-
measures, computed by [28]. A beat/downbeat is consid-
ered correct if it falls into a tolerance window of ±70 ms
from the annotation.

3.1 Datasets

We list the datasets used in the experiment in Table 2. The
datasets cover a variety of music genres, such as pop, clas-

Dataset # files max len total len
per piece

Ballroom [17, 18] 694 30 s 5 h 47 m
GTZAN [29, 30] 1000 30 s 8 h 20 m
Hainsworth [31] 222 60 s 3 h 16 m
RWC classic [19] 50 360 s 4 h 12 m
RWC genre [32] 100 360 s 6 h 31 m
RWC jazz [19] 50 360 s 3 h 34 m
RWC pop [19] 100 360 s 6 h 38 m
RWC royalty [19] 15 180 s 32 m
Songle [21] ∗ 228 240 s 13 h 47m
SMC [20] ∗ 217 40 s 2 h 25 m

Table 2: A list of datasets. Datasets marked with ∗ are held-
out datasets for testing only.

sic, jazz and so on. There are two held-out datasets for
testing only, as marked with ∗ in Table 2. One is an in-
house dataset (the Songle dataset), with 228 songs regis-
tered on [21] and with the annotations manually checked.
The other is the SMC dataset, with only beat annotations
available, which is considered as a difficult dataset for beat
tracking.

For training, all pieces are segmented into 30 seconds,
with a 50% overlap for pieces longer than 30 seconds. For
testing either in 8-fold cross-validation or the testing-only
datasets, the whole pieces are processed to obtain beats and
downbeats.

3.2 Results

We show beat and downbeat tracking results of different
datasets in Table 3. The results are obtained by the pro-
posed CRNN models with different context ranges, and
compared to previous state-of-the-art methods on several
datasets.

3.2.1 A comparison to state-of-the-art

We compare the proposed models to a previous state-of-
the-art model [1], which applies RNNs for a joint beat
and downbeat tracking model. Among the results on the
testing-only datasets (as shown in Table 3a), the proposed
models achieve best results on the Songle dataset at a con-
text range of 7 frames, with 0.918 and 0.849 for beat and
downbeat F-measures, respectively. This downbeat track-
ing result is slightly better than that of [1]. All proposed
models work better than [1] on the SMC dataset. The best
beat F-measure of 0.531 is achieved at a context range of
9 frames, better than the result in [1] by 1.5 percentage
points. The testing-only results of the proposed models are
competitive to the cross validation result of 0.529 in [10].

From the results obtained with 8-fold cross validation (as
shown in Table 3b), we find that the proposed models ob-
tain better results on the Ballroom dataset with all context
ranges, with mean F-measures of 0.949 and 0.875 for beat
and downbeat tracking, respectively. Both mean results are
better than the reported results in [1] by above 1 percent-
age point. On the RWC pop dataset, the proposed models
also outperform [1] on downbeat tracking, with a mean F-
measure of 0.882, better than the result in [1] by 2.1 per-
centage points. However, the beat tracking F-measures of
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Songle SMC
Fb Fd Fb

cn9 91.3 83.8 53.1
cn7 91.8 84.9 52.7
cn5 91.4 84.8 52.6
cn3 91.3 84.3 52.5

[1] 91.8 84.3 51.6
[10] 52.9 †

(a) Results on testing-only datasets. † denotes results obtained
with 8-fold cross validation.

Ballroom GTZAN Hainsworth RWCpop
Fb Fd Fb Fd Fb Fd Fb Fd

cn9 95 87.1 88 67.6 84.4 61 93 88.3
cn7 94.9 87.4 88.5 69.2 84.3 61.1 92.9 88.6
cn5 94.7 88.2 88.3 68.3 83.9 61.8 93.5 88.8
cn3 95 87.2 88.3 67.3 83.4 58.4 93.7 87

mean 94.9 87.5 88.3 68.1 84 60.6 93.3 88.2

[1] 93.8 86.3 85.6∗ 64∗ 86.7 68.4 94.3 86.1

(b) Cross validation results on 4 datasets. ∗ denotes testing-only
results.

Mean len Mean num
Fb Fd Fb Fd

cn9 85.9 72.4 89.2 73.8
cn7 85.5 72.8 89.3 74.6
cn5 85.4 72.8 89.1 74.5
cn3 85.7 72.1 89.2 73.4

(c) Mean cross validation results of 8 datasets. ‘Mean len’ and
‘Mean num’ denote weighted average results, weighted by the to-
tal length of songs in the dataset and the number of songs in the
dataset, respectively.

Table 3: Results (in percentage) on different datasets. Fb
and Fd denote the F-measures of beat and downbeat track-
ing, respectively. cnX represents the CRNN model with the
context range of X frames.

the proposed models are worse than the F-measure in [1]
(0.943) by around 1 percentage point. On the Hainsworth
dataset, the F-measures in [1] (0.867 and 0.684) are better
than those of the proposed models, exceeding the mean F-
measures by 2.7 and 7.8 percentages on beat and downbeat
tracking, respectively. On the GTZAN dataset, the pro-
posed models achieve mean beat and downbeat F-measures
of 0.883 and 0.681, respectively; while the corresponding
F-measures in [1] (testing-only results) are 0.856 and 0.64
respectively.

3.2.2 Effect of the context range

In this subsection, we focus on the change of performance
along with the change of the context range. The results of
different context ranges are very similar to each other when
we look at the mean cross validation results (as shown in
Table 3c), and only the mean downbeat tracking results
weighted by the song number of the dataset shows rel-
atively better results by using context range of 7 and 5

frames.
For a more detailed analysis, we show cross validation

results on individual datasets in Figure 3. We find that the
context range has bigger influence on downbeat tracking
(Figure 3b) than beat tracking (Figure 3a) except for the
RWC classic dataset. The performance variance of each
dataset is related to the number of songs in the dataset.
For example, the RWC royalty (15 songs), RWC classic
(50 songs) and RWC jazz (50 songs) datasets have larger
performance variance, while the Ballrrom (694 songs) and
GTZAN (1000 songs) datasets have much smaller perfor-
mance variance. This is because the overall result of a
dataset is more likely to be influenced by results of indi-
vidual songs when the song number is small.

Despite the influence of the song numbers of the datasets,
we still can find that for more difficult datasets (the
Hainsworth, RWC classic and SMC datasets), it tends to
have better beat tracking results with larger context ranges.
With regarding to downbeat tracking results in Figure 3b
and Table 3a, the Ballroom, Hainsworth, RWC genre,
RWC pop datasets have the best results with a context
range of 5 frames. The GTZAN, RWC royalty and Songle
datasets have the best results with a context range of 7
frames. The RWC classic dataset achieves the best re-
sult at a context range of 9 frames, while the RWC jazz
dataset achieves the best result at a context range of 3
frames. Despite the best downbeat performance achieved
at the context range of 5 frames, we find on the RWC pop
and Hainsworth datasets, the downbeat tracking results is
significant improved with larger context ranges (cn5, cn7
and cn9) in comparison to the results with cn3.

From above results, we find that increasing the context
range (increasing the parameter number) of the CRNN
model doesn’t guarantee to increase the beat and downbeat
tracking performance. We believe this is because when the
data already show clear beat clues, such as the RWC pop
music shown in Figure 1a, a small context range is enough
to process the information, and a large context range (more
parameters) can bring a risk of overfitting. But for more
difficult datasets (the RWC classic and SMC datasets), the
results indicate increasing the context range can help detect
beats and downbeats.

We take an example from the RWC classic dataset to il-
lustrate the effect brought by increasing the context range.
In Figure 4, we show the outputs of separated layers of
two CRNN models with context ranges of 3 frames (on the
left) and 9 frames (on the right) of a classic music clip.
For the top sub-figures, we can find that the timing of the
onsets or other spectral events is more recognisable on the
right side (with a large context range) than on the left side
(with a small context range). With a clearer CNN output
for the right model, the 2nd RNN layer has already started
to recognise the tactus. Then, the 3rd and 4th RNN lay-
ers work on detecting the beats and downbeats. In con-
trast, for the left model, the tactus only starts to become
clear in the 4th RNN layer. Hence, based on the output of
the left model, double-tempo beats are detected, while in
the right model correct beats and better downbeats are de-
tected. The example indicates that using a larger context
range in the CNN filters helps to detect the blurring onsets
in classic music (as shown Figure 1b), which improves beat
and downbeat tracking eventually.
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(a) Beat tracking F-measures.

(b) Downbeat tracking F-measures.

Figure 3: Cross validation results (in percentage) on individual datasets. cnX represents the CRNN model with the context
range of X frames. Note that the y-axis ranges of sub-figures are different in order to provide a clear illustration.

(a) Output of the reshape layer.

(b) Ouputs of 4 RNN layers.

(c) Output of the dense layer.

Figure 4: Outputs of separated layers of two CRNN models
on a music clip from the RWC classic dataset. Left and
right denote the outputs of the models with context range of
3 and 9 frames, respectively. In the bottom sub-figures, •
and N denote beat and downbeat annotations, respectively.
Blue (up) and orange (down) lines denote estimated beat
and downbeat activations, respectively.

4. CONCLUSION

In this paper we apply CRNN models for joint beat and
downbeat tracking and compare four models with different
convolution filter sizes (covering context ranges of 3, 5, 7
and 9 frames, respectively). We analyse the results of the
proposed CRNNs models on ten datasets. In the testing-
only datasets, the proposed models outperform a previous
state-of-the-art method [1] with a context range of 7 frames
on the in-house Songle dataset, and with all context ranges
on the SMC dataset. In general, applying different con-
text ranges has a bigger influence on downbeat tracking
results than on beat tracking results (in all datasets except
for the RWC classic dataset). We observe clear improve-
ments in downbeat tracking performance on the RWC pop
and Hainsworth datasets by using larger context ranges (of
5, 7 and 9 frames) instead of a context range of 3 frames.
A large context range can improve beat and downbeat per-
formance for difficult datasets (the RWC classic and SMC
datasets), but is not optimal for pop and dance music. We
could set the default context range to 7 frames for future
unseen data for a balance between music in various styles.

We find that in many cases the results obtained with dif-
ferent context ranges are similar to each other. In our anal-
ysis, we try to draw conclusion only based on the results
where performance differences are clear (larger than 1 per-
centage) to distinguish from each other, and avoid the in-
fluence of the song numbers of the datasets. In order to
reflect the context ranges more clearly, we plan to design
and test other types of network architectures in the future.
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