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ABSTRACT

Three techniques are described that improve a previously developed
system for automatically synchronizing lyrics with musical audio
signals. Although this system achieves state-of-the-art accuracy by
extracting vocal vowels from polyphonic sound mixtures and using
forced alignment between those vowels and a phoneme network of
the lyrics, there was still room for improvement. The first technique
detects nonexistence regions in which fricative consonant sounds
do not exist, which were not utilized in the previous system, and
prohibits the alignment of the fricative phonemes to those regions.
The second technique inserts a filler model between phrases of the
phoneme network. This model improves the accuracy of the forced
alignment by ignoring inter-phrase vowel utterances not included in
the lyrics. The third technique introduces novel feature vectors for
vocal activity detection that enable a distance calculation between
two sets of the harmonic structure without estimating their spec-
tral envelopes. Experimental results showed that all three techniques
contribute to improved synchronization.

Index Terms— Music, Lyrics, Fricative sounds, Filler model,
Spectral representation

1. INTRODUCTION

Automatic synchronization of lyrics with music compact-disc
recordings has many applications, such as an automatic subtitle
generation system for music videos and a music playback interface
that enables a user to directly access specific words or phrases of
interest. However, it has been difficult to achieve such synchroniza-
tion because singing voices are usually accompanied by many other
instruments. Wang et al. developed a system called LyricAlly [1]
for synchronizing lyrics with music recordings without extracting
singing voices from polyphonic sound mixtures. It basically uses
the duration of each phoneme as a cue for synchronization, but it
is not always effective because the duration of uttered phonemes
differs with their location in the lyrics. Wong et al. [2] developed an
automatic synchronization system for Cantonese popular music. It
uses the tonal characteristics of Cantonese language and compares
the tone of each word in the lyrics with the fundamental frequency
(F0) of the singing voice. Since most languages do not have this
tonal feature, this system cannot be generalized to other languages.
Loscos et al. [3] and Wang et al. [4] used a speech recognizer for
aligning and recognizing singing voice, respectively, but they pre-
sumed pure monophonic singing without accompaniment. Gruhne
et al. [5] worked on phoneme recognition from polyphonic mu-
sic. Assuming that boundaries between phonemes were given, they
compared several classification techniques. Their experiments were
preliminary, and there were difficulties in actually recognizing the
lyrics.

We previously developed a system for automatically synchro-
nizing lyrics with the corresponding singing voice (vocal) extracted
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from polyphonic sound mixtures [6]. To locate the start and end
times of each phrase in the lyrics, our system first segregates the most
predominant sounds including vocal vowels from polyphonic sound
mixtures on the basis of their harmonic structure (accompaniment
sound reduction) and discriminates vocal sections from non-vocal
sections (vocal activity detection). It then adapts speech-recognizer
phone models to the segregated vocal (phone model adaptation) and
uses the forced (Viterbi) alignment to align each vowel of the lyrics
with the segregated vocal ignoring the consonants. Our experimen-
tal results showed that our system was effective, but that its accuracy
could be improved by resolving three issues: 1) Consonants (espe-
cially unvoiced ones) were not accurately aligned, 2) Utterances not
in the actual lyrics, such as shouting and humming, were judged to
be vocal sections, and 3) the vocal activity detection was not always
accurate enough when the F0s of the segregated vocal were high.

In this paper, we propose three techniques for resolving these
issues and thereby improve the accuracy of our system. The first
technique, fricative detection, detects nonexistence regions in which
fricative consonant sounds do not exist and prohibits the alignment
of the fricative phonemes to those regions. The novelty of this
technique is the detection of nonexistence regions rather than exis-
tence regions. Even if the existence regions (i.e., unvoiced fricative
sounds themselves) cannot be accurately detected, it is relatively
easy to detect the nonexistence ones (i.e., regions without fricative
sounds). The second technique, introduction of a filler model, forces
the system to ignore any vowels between phrases as these inter-
phrase vowel utterances are not actually in the lyrics. Our system
sometimes erroneously aligned the lyrics to such utterances [6].
Such errors are reduced by inserting the filler model that matches
any vowel sequence at each phrase boundary in the lyrics. Finally,
the third technique, novel feature vectors for vocal activity detection,
uses both the F0 of the vocal’s harmonic structure and the power of
each harmonic component as feature vectors for the vocal activity
detection. Conventional spectral features such as a cepstrum and a
linear prediction coefficient (LPC) were used to represent the spec-
tral envelope, which was not always accurately estimated especially
for high-pitched sounds. Using our novel features makes it possible
to directly calculate the distance between two sets of the harmonic
structure without estimating the spectral envelope, so the features
are robust to high-pitched sounds.

2. OVERVIEW OF PREVIOUS SYSTEM

Our system for automatically synchronizing music and lyrics [6] is
based on the use of the forced alignment (Viterbi alignment), which
is often used in automatic speech recognition (ASR). Since the stud-
ies of ASR mainly deal with clean speech signals, its application to
a singing voice in polyphonic sound mixtures requires the use of the
following three steps: (1) segregate candidate vocal (singing voice)
sections from the polyphonic mixtures (accompaniment sound re-
duction), (2) identify vocal sections (vocal activity detection), and
(3) adapt phone models of speech recognizers to the segregated vo-
cal signals.
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Nothing untaken.  Nothing lost.

N AA TH IH NG  AH N T EY K AH N   N AA TH IH NG  L AO S T

Phoneme network

Sequence of the phonemes

Original lyrics

N TH spAA NGIH AH N T KEY NAH

sp N TH spAA NGIH L AO S T

Fig. 1. Example of lyrics processing. Note that we used Japanese
songs in our experiments described in Sec. 4, though this figure
shows an English example.

2.1. Accompaniment sound reduction

First, the system reduces accompaniment sounds from given audio
signals by resynthesizing the vocal signals from the harmonic struc-
ture of the melody line (the most predominant F0 in each frame [7])
by performing the following three steps: (1) use PreFEst method
[7] to estimate the predominant F0 of the melody line (vocal candi-
date) in input audio signal, (2) extract the harmonic structure corre-
sponding to the estimated F0, and (3) use sinusoidal synthesis of the
harmonics to resynthesize audio signal (waveform) corresponding to
the melody line.

2.2. Vocal activity detection

The non-vocal sections are then removed since the resynthesized
signal corresponding to the melody line often contains instrumental
(i.e., non-vocal) sounds in interlude sections. We introduced a hid-
den Markov model (HMM) that transitioned back and forth between
two states, vocal state sV and non-vocal state sN . Given feature
vectors of the segregated melody line, we calculate the most likely
sequence of vocal and non-vocal states. The output probability of
each state is approximated with likelihoods of a vocal and a non-
vocal Gaussian mixture model (GMM). As feature vectors of these
GMMs, we use LPMCCs andΔF0s in our previous work [6]. LPM-
CCs are spectral features that represent spectral envelopes based on
the LPC and cepstral analysis. In this paper, however, we propose
alternative better feature vectors, which will be described in 3.3.

2.3. Phone model adaptation and forced alignment

Next, the lyrics are aligned with the segregated signals. The
lyrics corresponding to the input audio signals are converted into a
phoneme network for use in the forced alignment (Figure 1) 1. Each
phrase boundary was converted into short pauses (SPs). Note that,
although SPs generally represent short silent pauses between words
or phrases in automatic speech recognition, we use them for non-
vocal sections. Before the forced alignment is executed, each phone
model (HMM) is adapted to singing voices in the input audio signals
by using the MLLR and MAP adaptation techniques. Finally, the
forced alignment is executed using the phoneme network created
from the given lyrics, feature vectors (MFCCs, Δ MFCCs, and Δ
power) extracted from the segregated vocal signals, and the adapted
phone models.

3. NEW TECHNIQUES FOR IMPROVING AUTOMATIC
SYNCHRONIZATION BETWEEN MUSIC AND LYRICS

In the following sections, we propose three new techniques to over-
come the following three weaknesses our previous system had:
(1) Inaccurate alignment of consonants

Because the accompaniment sound reduction, which is based
1The phoneme network in this figure includes consonant phonemes used

in the proposed system, while the phoneme network in our previous system
[6] did not include them.

on the harmonic structure, cannot segregate unvoiced con-
sonants, only the HMMs for vowels were used as a cue for
aligning the lyrics and music. Since the HMMs for vowels
also covered various consonant sounds, it was difficult to de-
tect the start time of a consonant. This problem can be over-
come by incorporating consonants based on fricative detec-
tion.

(2) Utterances not in lyrics
Some singers often sing words, such as “Yeah” and “La La
La”, not in the actual lyrics during interlude sections and
rests between phrases. Such inter-phrase vowel utterances
reduced the accuracy of the system because the system in-
evitably aligned other parts of the lyrics to those utterances.
This shortcoming can be eliminated by introducing the filler
model.

(3) Inaccurate vocal activity detection
When the vocal activity detection did not work well, the
system sometimes did not align lyrics to the vocal regions
correctly. We found this happened more frequently with
female singers because of the difficulty in estimating the
spectrum envelope for high-pitched sounds. This weakness
can be overcome by introducing novel feature vectors based
on the power of each harmonic component.

3.1. Use of consonants based on fricative detection

The simplest approach to incorporating the consonants is to make
the phoneme network for the forced alignment include consonant
phonemes as shown in Figure 1. However, since the accompani-
ment sound reduction based on the harmonic structure cannot seg-
regate unvoiced consonants that do not have the harmonic structure,
unvoiced consonants are not aligned correctly in general. We there-
fore develop a signal processing technique of detecting candidates of
fricative sounds (a kind of unvoiced consonants) directly in the input
audio signals. Here, we focus on only the fricative sounds because
their durations are generally longer than the other unvoiced conso-
nants and because they expose salient frequency components in the
spectrum. Note that we do not try to use the detected location of
each fricative sound in aligning it but instead use regions in which
fricative sounds do no exist.

3.1.1. Nonexistence region detection

It is difficult to accurately detect the existence of each fricative sound
because the acoustic characteristics of cymbals and snare drums, for
example, sometimes resemble those of fricative sounds. We there-
fore take the opposite approach and try to detect regions in which
there are no fricative sounds, i.e., nonexistence regions. Then, in the
forced alignment, fricative consonants are prohibited from appear-
ing in the nonexistence regions. Since it is relatively easy to detect
the nonexistence regions of fricative sounds, detection errors negli-
gibly degrade the accuracy of the forced alignment. In contrast, in
the conventional existence detection approach, detection errors can
significantly degrade the accuracy.

3.1.2. Fricative sound detection

Figure 2 shows an example spectrogram depicting non-periodic
source components such as snare drum, fricative, and high-hat
cymbal sounds in popular music. The characteristics of those non-
periodic source components are depicted as vertical lines or clouds
along the frequency axis in the spectrogram, while other periodic
source components tend to have horizontal lines. In the frequency
spectrum at certain time, those vertical and horizontal lines corre-
spond to flat and peak (pointed) components, respectively.

To detect flat components from non-periodic sources, we need
to ignore peak components in the spectrum. We therefore use the
bottom envelope estimation method proposed by Kameoka et.al [8].
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Fig. 2. Example spectrogram depicting snare drum, fricative, and
high-hat cymbal sounds.
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Fig. 3. A bottom envelope g(f,a) in a spectrum S(f).

The bottom envelope is defined as the envelope curve that passes
through spectral valleys as shown in Figure 3. The function class of
the bottom envelope is defined as

g(f,a) =
IX

i=1

aiN (f ; 400× i, 2002), (1)

where f denotes the frequency in Hz, N (x;m,σ2) is the Gaussian
distribution, and a = (a1, · · · , aI) represents the weights of each
Gaussian. The problem here is to estimate a, which determines the
envelope curve. We therefore estimate the â that minimizes the ob-
jective function,

J =

Z „
g(f ;a)

S(f)
− log g(f ;a)

S(f)

«
df, (2)

where S(f) represents the spectrum at each frame. This objective
function is an asymmetric distance measure that penalizes negative
errors much more than positive ones. From this objective function,
we can derive the following iterative equations to obtain â:

âi =

R
mi(f)dfR N (f ;400×i,200)

S(f)
df

, (3)

mi(f) =
a′iN (f ; 400× i, 200)P
∀i a

′
iN (f ; 400× i, 200)

, (4)

where a′i is the estimated value at the previous iteration. In this way,
the bottom envelope of the spectrum S(f) is obtained as g(f, â).

Among various non-periodic source components, fricative
sounds tend to have frequency components concentrated in a par-
ticular frequency band of the spectrum. We therefore detect the
fricative sounds by using the ratio of the power of that band to that
of most other bands. Since the sampling rate in our current imple-
mentation is 16kHz, we deal with only the fricative phoneme /SH/
because the other fricative phonemes have main concentrated fre-
quency components above 8kHz, which is the Nyquist frequency of
16kHz sampling. Since the phoneme /SH/ has strong concentrated
components from 6kHz to 8kHz, we define the existence degree of
phoneme /SH/ as

ESH =

R 8000

6000
g(f, â)dfR 8000

1000
g(f, â)df

. (5)
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Fig. 4. Filler model inserted at each phrase boundary in the lyrics.

Regions in which ESH is below a threshold (0.4) are identified as
nonexistence regions in which phoneme /SH/ does not exist. The
threshold 0.4 was determined experimentally. Note that we do not
use frequency components below 1kHz in the calculation of ESH to
avoid any effect from bass drums.

3.2. Filler model

We introduce the filler model to remove errors due to singer’s ut-
terances not written in the actual lyrics. As shown in Figure 4, the
filler model allows multiple appearances of any vowel between two
consecutive phrases. In our previous system, we expected the SPs
to represent short non-vocal sections. However, if the singer sung
words not in the lyrics in non-vocal sections, the SPs, which were
originally trained using non-vocal sections, were not able to rep-
resent them. The previous system then incorrectly allocated lyrics
from other parts to such non-vocal sections. The vowels from the
filler model can cover those inter-phrase utterances.

3.3. Novel feature vectors for vocal activity detection

The vocal activity detection after accompaniment sound reduction
can be interpreted as the problem of judging whether the sound
source of the given harmonic structure is vocal or non-vocal. In our
previous system, we estimated the spectral envelope of the harmonic
structure and calculated the distance against spectral envelopes in
the training database. However, spectral envelopes estimated from
high-pitched sounds by using cepstrum or LPC analysis are strongly
affected by spectral valleys between adjacent harmonic components.
Thus, there are some songs (especially those sung by female singers)
for which the vocal activity detection method did not work well.

This problem boils down to the fact that a spectral envelope esti-
mated from a harmonic structure is not reliable except for the points
(peaks) around each harmonic component. This is because a har-
monic structure could correspond to different spectral envelopes: the
mapping from a harmonic structure to its original spectral envelopes
is one-to-many association. When we consider this issue by using
the sampling theory, the harmonic components are points sampled
from its original spectral envelope at the interval of F0 along the
frequency axis. The perfect reconstruction of the spectral envelope
from the harmonic components is therefore difficult in general. Be-
cause conventional methods, such as MFCC and LPC, estimate only
one possible spectral envelope, the distance between two sets of the
harmonic structure from the same spectral envelope is sometimes not
accurate. To overcome this problem, the distance must be calculated
using only the reliable (sampled) points at the harmonic components.

We focus on the fact that we can directly compare the power of
harmonic components between two sets of the harmonic structure if
their F0s are about the same. Our approach is to use the power of har-
monic components directly as feature vectors and compare the given
harmonic structure with only those in the database that have simi-
lar F0 values. This approach is robust against high-pitched sounds,
because the spectral envelope does not need to be estimated.

To ensure that comparisons are done only with feature vectors
that have similar F0s, we also use the F0 value as a feature in addi-
tion to the power of harmonic components. By modeling the feature
vectors using GMM, each Gaussian can cover feature vectors that
have similar F0s. When we calculate the likelihood of a GMM, the
weights of the Gaussians that have large F0 values are minuscule.
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Fig. 5. Evaluation measure.

Thus, we can calculate the distance only with harmonic structures
that have similar F0 values.

The absolute value of the power of the harmonic structure is bi-
ased depending on the volume of each song. We therefore normalize
the power of all harmonic components for each song. The process
for normalizing the power is as follows. The normalized power of
the hth harmonic component at time t, p′th , is expressed as

p′th = log p
t
h −

P
t

P
h log p

t
h

T ×H
, (6)

where pt
h represents the original power, T is the total number of

frames, and H is the number of harmonic components considered.

4. EVALUATION

4.1. Conditions

As an evaluation data set, we used 10 Japanese songs by 10 singers
(5 male, 5 female) taken from “RWC Music Database: Popular
Music” (RWC-MDB-P-2001) [9]. These songs were generally sung
in Japanese, but some English phrases in their lyrics were sung in
English. In this experiments, we approximated English phonemes
by using similar Japanese phonemes. As the training data for the
vocal/non-vocal GMMs for vocal activity detection, we used 19
songs, which were also taken from RWC-MDB-P-2001, by 11
singers who did not sing any song in the evaluation data set. We
conducted a five-fold cross-validation.

The evaluation was done using phrase level alignment. We de-
fined a phrase as a section delimited by a space or line feed in the
text of the original lyrics. The calculated evaluation measure was
the total length of the sections that are correctly labeled at the phrase
level to the total length of the song (Figure 5).

We tested our method under five conditions.
(i) Baseline: Previous (unimproved) system used ([6]).
(ii) Fricative detection: Fricative sound detection enabled (3.1).
(iii) Filler model: Filler model enabled (3.2).
(iv) Novel feature vector for VAD: Novel features for vocal activ-

ity detection enabled (3.3).
(v) Proposed: All three techniques enabled (3).

4.2. Results and discussion

The results are summarized in Table 1.2. With our new techniques
((ii), (iii), and (iv) in Table 1), the average accuracy increased by
2.0, 3.3, and 3.7 point, respectively. With all three techniques ((v)
in Table 1), the highest accuracy was achieved (85.3%). Of the three
techniques, the new feature vectors for vocal activity detection was
the most effective. Inspection of the system outputs with the filler
model showed that the filler model appeared not only for utterances
not in the actual lyrics, but also for non-vocal regions that could not
be removed by vocal activity detection. Since our evaluation mea-
sure was phrase-based, the effectiveness of fricative detection could

2In our previous experiments [6], we did not use songs with female singers as train-
ing data for male singers’ songs, and vice versa. Therefore, some of the accuracies of
the baseline were lower than the results in [6]

Table 1. Experimental results (%). Note that M. and F. means male
and female, respectively.

(i) (ii) (iii) (iv) VAD (v)
Song #∗ Gender Baseline Fric. Filler Feature Proposed
No. 12 M. 95.7 95.1 96.3 97.8 95.7
No. 27 M. 87.4 87.6 86.3 90.2 91.2
No. 32 M. 66.4 69.6 70.2 81.3 71.7
No. 37 M. 83.7 85.9 89.5 89.5 89.5
No. 39 M. 93.6 93.2 92.4 93.9 93.3
No. 7 F. 62.8 62.5 67.4 79.9 70.0
No. 13 F. 63.6 70.4 67.2 46.0 68.0
No. 20 F. 93.3 93.3 93.1 92.7 94.0
No. 65 F. 73.7 85.4 91.6 91.2 92.0
No. 75 F. 90.6 88.2 90.3 85.9 87.8

Average 81.1 83.1 84.4 84.8 85.3
∗A song number of RWC-MDB-P-2001[9].

not be fully evaluated. Inspection of the phoneme-level alignment
results showed that phoneme gaps in the middle of phrases were
shorter than without fricative detection. We plan to develop a mea-
sure for evaluating phoneme-level alignment.

5. CONCLUSION

We have developed three techniques for improving the automatic
synchronization of music and lyrics: fricative detection, filler model,
novel feature vectors for vocal activity detection. These three tech-
niques are versatile because they do not depend on a specific lan-
guage or music structure.

The underlying idea of the fricative detection, i.e., the detection
of nonexistence regions is novel. Experimental evaluation showed
that performance is improved by integrating this information, even
if it is difficult to detect each fricative sound accurately. Though
the filler model is a simple idea, it worked very efficiently. This
is because it does not allow a phoneme in the lyrics to be skipped
and it appears only when it is needed. The novel feature vectors
based on the F0 and the power of harmonic components are robust
to high-pitched sounds because a spectral envelope does not need to
be estimated. Though we use these vectors just for vocal activity
detection, they can also be used as feature vectors for the forced
alignment after preparing enough training data. Furthermore, we
can use them for studies related to speech signals, such as automatic
speech recognition in a noisy environment.

We plan to use other fricative phonemes in addition to the
phoneme /SH/. Future plans also include conducting an evaluation
using English songs with English phone models, and conducting a
larger scale evaluation.
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