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Abstract
A drum sound equalizer, called INTER:D, is described that
enables a listener to control the volume and timbre of bass
and snare drum sounds in commercial compact-disc record-
ings. Although the characteristics of the drum sounds are often
closely related to the impression made by a musical piece, con-
ventional graphic equalizers cannot adjust their characteristics
because they have volume sliders only for the frequency bands.
INTER:D provides drum-specific volume sliders that directly
control the frequency components of drum sounds, enabling a
listener to intuitively cut or boost the volume of each drum.
In addition, INTER:D enables a listener to replace the origi-
nal timbre of each drum with another timbre selected from a
dropdown list. These interactive functions are achieved using
an automatic music content analysis system based on low-level
audio signal processing. This system can estimate the power
spectrogram of each drum sound and detect the onset times in
a musical piece. Subjective experiments showed that INTER:D
can add a new dimension to the way users experience music.

1 Introduction
The development of interactive music-playback interfaces has
recently been facilitated by the application of low-level audio
processing techniques to music content analysis. For example,
an automatic chorus detection method for compact disc (CD)
recordings led to a new music listening station, called Smart-
MusicKIOSK [7]. Customers using conventional listening sta-
tions in music stores often want to jump directly to the chorus
of a popular song, and SmartMusicKIOSK provides a “jump to
chorus” button that enables the listener to jump to the next de-
tected chorus section while skipping the sections of no interest.
This is an active listening environment in which a listener can
control the listening experience by interactively changing the
playback position. Pachet and Delerue [13] proposed an active
listening environment in which listeners can interactively spa-
tialize sound sources. Unlike with SmartMusicKIOSK, how-
ever, this is achieved by using MIDI sound modules without
audio-based automatic content analysis.

In this paper, we describe a new active listening environ-
ment based on automatic music content analysis of musical
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Figure 1: Screen snapshot of music player with INTER:D.

instruments. Listeners often focus on the melody line (e.g.,
a sung melody in popular music) in musical pieces. Even if
the listener wants to emphasize the melody line in polyphonic
mixtures by cutting the volume of accompaniment instruments
(e.g., drums), he cannot do so with conventional graphic equal-
izers. Even if the listener is not comfortable with the timbre
of the drums in a CD recording, she cannot replace it with
a preferred one. To provide this capability, we developed a
drum sound equalizer, called INTER:D (Instrument Equalizer
for Drums). In this paper, we use the term “equalizing” to mean
controlling the volume and timbre of instruments.

To equalize the bass and snare drum sounds, we cannot use
the conventional graphic equalizers that are often incorporated
into software or hardware music players. These equalizers cut
or boost the power in various frequency bands by applying
bandpass filters to the audio signal. However, they cannot con-
trol the volume of only the bass or snare drum. Moreover, it
is impossible to change the timbre of a drum without chang-
ing the timbre of other instruments. For instance, if the listener
tries to cut the volume of the bass drum, the graphic equalizer
will attenuate only all the low-frequency sounds: it attenuates
the spectral components derived not only from the bass drum
but also from other musical instruments (e.g., snare drum and
bass guitar).

On the other hand, INTER:D can control the volume and
timbre of only the bass or snare drum. Figure 1 shows the in-
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teractive console of a music player equipped with INTER:D.
This player includes the conventional playback interface (play-
back slider and stop/pause/play buttons) in the upper part of the
window. The added equalizing interface (volume sliders and
dropdown lists) is in the lower part of the window. Listeners
can boost the volume of each drum sound by moving the ap-
propriate slider from left (muted) to right (maximum volume)
and vice versa. They can change the original timbre of each
drum to their favorite timbre by selecting another one from the
dropdown list. In this way, listeners can interactively control
their listening experience while receiving auditory feedback in
real time.

INTER:D is based on automatic content analysis for detec-
tion of the onsets of drum sounds and estimation of their spec-
trograms. For this analysis, we use our template-based drum
transcription system called AdaMast [21], which uses the spec-
trograms of drum sounds as templates. AdaMast is composed
of template-adaptation and template-matching methods. First,
an initial spectrogram called a seed template is prepared for
each drum sound and adapted to the actual drum-sound spec-
trograms in the target piece. Next, every onset time at which the
adapted template is included in the spectrogram of the target
piece is detected by using a carefully designed distance mea-
sure that is robust for spectral overlapping in sound mixtures.

The rest of this paper is organized as follows. Section 2
describes the equalizing functions of INTER:D. Section 3 ex-
plains why is needed AdaMast, and Section 4 explains its im-
plementation. Section 5 describes the subjective experiments.
Section 6 discusses our developed technique, and Section 7
summarizes the key points.

2 Equalizing Functions
INTER (Instrument Equalizer) is based on a novel equalizing
concept — the frequency components of each instrument, not
each frequency band, are adjusted. By applying this concept to
drum sounds, we developed a drum-sound equalizer called IN-
TER:D (INTER for Drums), which has two functions: volume
control (cutting or boosting the volume) and timbre change for
bass and snare drum sounds. A listener can easily control these
functions by using a familiar easy-to-use interface, which is
shown in Figure 1. In this section, we explain the implementa-
tion of these functions and their improvements.

2.1 Volume Control
INTER:D provides a volume cutting/boosting function for the
bass and snare drum sounds in a musical piece containing
sounds of various instruments. Let X denote the target drum
sound to be equalized. The algorithm is as follows (Figure 2):

1. Spectrogram Estimation: The power spectrogram of
drum sound X used in the musical piece is estimated.
Let PX denote that spectrogram. PX(t, f) (1 ≤ t ≤
T [frames], 1 ≤ f ≤ F [bins]) represents the local fre-
quency component in the time-frequency domain (T and
F are fixed values).

2. Onset Detection: INTER:D detects the onset times of
drum sound X in the monaural polyphonic audio signal
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Figure 2: Overview of cutting/boosting volume of drums.

of the piece.
3. Starting from each onset time, spectrogram segment Pi

(i = 1, · · · , ND) which has the same length as power
spectrogram PX is extracted from the input audio signal,
where ND is the number of detected onsets.

4. Power spectrogram PX is added to each spectrogram
segment Pi, weighted by arbitrary power change ratio
r (cut: −1 ≤ r < 0, boost: 0 < r):

P ′
i (t, f) = Pi(t, f) + r · PX(t, f), (1)

where P ′
i is an equalized spectrogram segment with a

phase the same as that of the original segment before
equalizing.

5. An equalized spectrogram of the input audio signal is
obtained by replacing Pi with its P ′

i .
6. An equalized audio signal is obtained by applying

overlap-add synthesis to the equalized power spectro-
gram of the input audio signal.

To analyze input audio signals sampled at 44.1 [kHz], we
used short-time Fourier transform (STFT) with a Hanning win-
dow (4096 points) with a shifting interval of 441 points (i.e.,
one frame is equivalent to 10 [ms]). T and F were experimen-
tally set to 10 [frames] and 2048 [bins].

As described above, the system must automatically esti-
mate the spectrograms of the drum sounds and detect their on-
set times. To annotate them, we applied our drum transcription
system called AdaMast, which is based on low-level signal pro-
cessing. The details are described in Section 3.

2.2 Timbre Change
INTER:D also provides a function for changing the timbre of
drum sound X to that of another drum sound (let Y be that
drum sound). The algorithm is as follows:

1. To obtain an equalized audio signal in which the sounds
of drum X are muted, power change ratio r is set to
−1.0, and the volume control operations described above
are performed.

2. the audio signal of drum Y (a solo tone) is added to the
equalized audio signal at each detected onset time.
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Figure 3: Adjusting power change ratio in each frame and each
frequency bin according to power in that position.

2.3 Quality Improvement
Although the basic operations described in Sections 2.1 and 2.2
are effective, there is much room for improving the sound qual-
ity. We therefore propose two methods for generating higher-
quality equalized audio signals: adjustment of the power
change ratio and restoration of the temporal continuity.

2.3.1 Adjustment of Power Change Ratio
The estimated power spectrogram PX actually includes small
local frequency components of other musical instrument
sounds (i.e., PX cannot be the same as the precise power spec-
trogram of an isolated tone) because it is estimated from a com-
plex polyphonic spectrogram. Therefore, if we use only PX for
the equalizing process, frequency components not derived from
the target drum sound are also unnecessarily adjusted.

To solve this problem, we dynamically adjust power change
ratio r to minimize unnecessary power adjustment. As shown
in Figure 3, we decrease r when adjusting the small local fre-
quency components in PX . We replace r in Equation (1) with:

R(t, f) =
PX(t, f)

PM
· r, (2)

where PM is the maximum local power in PX .

2.3.2 Restoration of Temporal Continuity
When power spectrogram PX is added to or subtracted from an
original spectrogram segment, the temporal continuity is dete-
riorated before and after the equalized spectrogram segment, as
depicted in Figure 4. This temporal discontinuity may have a
negative influence on human music perception.

To solve this problem, we perform spectral smoothing in
the neighbor frames of each discontinuous frame. For each fre-
quency band, frequency components in the range of 4 [frames]
(i.e., 2 [frames] before and after a discontinuous frame) are
smoothed using Savitzky-Golay’s smoothing method [18].

3 Drum Transcription Technique
To implement INTER:D, we must estimate the power spectro-
grams of the individual bass and snare drums (spectrogram es-
timation) and detect the onset times of each drum sound (onset
detection). Both are difficult because each musical piece has
different power spectrograms (sound characteristics) for the
drum sounds and there are many onset times of other sounds in
a real-world sound mixture. To solve these problems, we used
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Figure 4: Smoothing frequency components along time axis
before and after equalized spectrogram segment.

our AdaMast drum transcription system [21]. It uses template-
adaptation and template-matching methods, using the power
spectrogram of each drum sound as a template. In this sec-
tion, we discuss the advantages of AdaMast for implementing
INTER:D.

3.1 Requirements
The spectrogram estimation and onset detection, must be per-
formed for both the bass and snare drums.

Spectrogram Estimation The power spectrogram of the in-
dividual tone of each drum sound must be estimated in
the polyphonic spectrogram of the musical piece. The
spectrogram of each drum sound is not registered with
the system in advance because the sound characteristics
depend on the piece.

Onset Detection The onset times of each drum must be de-
tected in the polyphonic spectrogram of the musical
piece. This is difficult because various musical instru-
ment sounds often overlap with the drum sounds.

3.2 Approach
To meet these requirements, we use the AdaMast drum tran-
scription system. The template-adaptation method of AdaMast
first yields the power spectrogram (estimated sound character-
istics) of each drum used sound in the input audio signal. The
template-matching method of AdaMast then detects its onset
times from the same audio signal.

Template Adaptation obtains the power spectrograms of the
individual bass and snare drum sounds in the input audio
signal. Before using this method, we must prepare in-
dividual power spectrograms (we called them seed tem-
plates in a previous study [21]) for both drums — two
templates in total. Note that the seed templates are dif-
ferent from the actual power spectrograms of the drum
sounds in the input audio signal. This method adapts
each seed template to its corresponding power spectro-
grams of drum sounds included in the input audio signal.

Template Matching detects all the onset times of the bass and
snare drum sounds in the polyphonic audio signal, even
if other instrument sounds overlap them. To enable this,



we designed a distance measure that is robust for poly-
phonic mixtures. Using this distance measure, we com-
pare the adapted power spectrogram obtained by tem-
plate adaptation with the power spectrogram of the input
audio signal to identify the onset times.

The adaptation and matching are sequential and are inde-
pendently performed for transcription of the bass and snare
sounds. The detailed algorithms are described in Section 4.

3.3 Related Work
From the viewpoint of methodology, drum transcription meth-
ods are roughly categorized into three types: feature-based clas-
sification, sound source separation, and template-based detec-
tion. They can also be categorized by focusing on the complex-
ity of the input audio signals: individual tones, drum tracks, or
musical pieces such as popular songs.

Feature-based classification methods are based on acous-
tic feature models trained using a database. Herrera et al. [11]
compared conventional classifiers in experiments on identify-
ing individual drum sounds. To transcribe drum sounds in
drums-only audio signals, the use of N-grams [14], probabilis-
tic models [15], and HMM&SVM [6] have been proposed.
To identify drum sounds extracted from polyphonic audio sig-
nals, Sandvolt et al. [17] proposed a feature-model adaptation
method that is robust to the distortion of features since feature
distortion caused by other sounds is a major problem.

Sound source separation methods, which are commonly
used, originated from spectrogram decomposition formulation
in independent subspace analysis (ISA) [1]. To transcribe drum
sounds in audio signals of drum tracks, various assumptions are
made in decomposing a single music spectrogram into multi-
ple spectrograms of drum tracks; ISA [3, 19] assumes the sta-
tistical independence of sources, non-negative matrix factor-
ization (NMF) [16] assumes their non-negativity, and sparse
coding [20] assumes their non-negativity and sparseness. Fur-
ther developments were made by FitzGerald et al. [4, 5]. They
proposed prior subspace analysis (PSA) [5], which assumes
the prior frequency characteristics of drum sounds, and ap-
plied it to transcribe drum sounds in the presence of harmonic
sounds [4]. For the same purpose, Dittmar and Uhle [2] adopted
non-negative ICA that considers the non-negativity of sources.
To attain good separation results in any case, it is necessary to
estimate the number of sources, but it is difficult to precisely
estimate it in general.

Template-based detection methods are based on a typical
pattern recognition approach — the distance between a tem-
plate and an input pattern is calculated. Goto and Muraoka [9]
proposed a template-matching method that uses spectrogram
templates, and transcribes drum sounds in drum-track audio
signals consisting of drum sounds only. Gouyon et al. [10]
proposed a method that classifies mixed sounds extracted from
polyphonic audio signals into two categories (bass and snare
drums). To detect these drum sounds to be classified, they de-
veloped a template-adaptation method that uses waveform tem-
plates. It can deal with drum-sound variations found in musical
pieces. Zils et al. [22] extended Gouyon’s method to extraction
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Figure 5: Console panel of AdaMast controller.

of bass and snare drum sounds from CD recordings. In general,
it is difficult to deal with the difference between a template and
an actual pattern used in a musical piece. To deal with this
difference in the time-frequency domain and achieve more ro-
bust performance, AdaMast [21] was developed by integrating
Goto’s matching method and Zils’ adaptation method.

3.4 Advantages of AdaMast
AdaMast is fast enough to achieve a stress-free music apprecia-
tion environment. This was an important factor in our decision
to use AdaMast to transcribe drum sounds. Figure 5 shows the
console panel used to control AdaMast. Because content anal-
ysis (drum transcription) has a heavier load than the equaliz-
ing processing, the analysis parameters should be adjusted to
match machine performance. If all options are applied, it will
take less than the length (playing time) of a musical piece —
i.e., it is faster than the real-time performance — to complete
content analysis on a dual 3.0-GHz Xeon machine.

4 Implementation of AdaMast
As described above, AdaMast [21] is a template-based drum-
sound transcription system that consists of successive template-
adaptation and template-matching. The former yields power
spectrogram PX , and the latter detects the onset times of the
corresponding drum sounds. These results are used by the
equalizing functions of INTER:D.

4.1 Algorithms
The template-adaptation and template-matching methods can
be executed in parallel for the bass and snare drums.

4.1.1 Template Adaptation

This method obtains a spectrogram template that is adapted to
its corresponding drum-sound spectrogram in the polyphonic
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audio signal. The adapted template is used as power spectro-
gram PX for the equalizing processing. Before starting the
adaptation, it is necessary to prepare an arbitrary seed template
for each bass and snare drum sound.

Our method is based on an iterative adaptation algorithm.
An overview is shown in Figure 6. First, onset-candidate de-
tection stage roughly detects onset candidates in the input audio
signal of a musical piece. Starting from each onset candidate,
a spectrogram segment with a fixed time length is extracted
from the power spectrogram of the input audio signal. Then,
using the seed template and all the spectrogram segments, the
iterative algorithm successively applies segment selection and
template updating to obtain an adapted template.

Let Ti (i = 1 · · ·ND) denote a frame detected as an onset
candidate and Pi denote a spectrogram segment extracted from
Ti (ND is the number of detected onset candidates). These
selection and updating work as follows:

1. Segment selection calculates the reliability Ri that spec-
trogram segment Pi includes the drum sound spectro-
gram. The reliability is defined as the reciprocal of the
Euclidean spectral distance:

Ri =
1√∑10

t=1

∑2048
f=1

(
T́g(t, f) − Ṕi(t, f)

)2
, (3)

where Tg is the template after the g-th adaptive iteration.
In practice, we used a modified version of this measure.
T́g and Ṕi are low-pass filtered spectrograms:

T́g(t, f) = FD(f) Tg(t, f), (4)

Ṕi(t, f) = FD(f) Pi(t, f), (5)

where FD(f) (D = BD, SD) is a low-pass filter function,
as shown in Figure 7. We assume that it represents the
typical frequency characteristics of bass drum sounds (BD)
and snare drum sounds (SD). Spectrogram segments with
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Figure 7: Low-pass filter functions FBD and FSD represent typi-
cal frequency characteristics of bass and snare drums.

selected spectrogram segments

frame

fr
eq

u
e
n
c
y
 b

in

updated
template

Figure 8: Template updating by collecting median power at
each frame and each frequency bin for selected spectrogram
segments.

high reliabilities are then selected; this selection is based
on a fixed ratio to the total number of segments.

2. Template updating then reconstructs an updated template
by estimating the power that is defined, at each time
and each frequency bin, as the median power among the
selected spectrogram segments (Figure 8). The median
operation can suppress harmonic components in the up-
dated template. The template is thus adapted to the cur-
rent piece and used for the next adaptive iteration. The
updated template, T́g+1, is weighted by filter function
FD and is obtained by

T́g+1(t, f) = median
1≤i≤NS

Ṕ (i)(t, f), (6)

where P (i) (i = 1, · · · , NS) are the spectrogram seg-
ments selected by segment selection. NS is the num-
ber of selected spectrogram segments, which is set to
0.1 × ND in this paper.

4.1.2 Template Matching

This method detects all the onset times of the drum sounds
in the polyphonic audio signal, even if other musical instru-
ment sounds overlap the drum sounds. To find the actual onset
times, this method determines whether the drum sound actu-
ally occurs at each onset candidate time, as shown in Figure 9.
The matching distance is calculated using Goto’s distance mea-
sure [9]. Since this method focuses on whether the adapted
template is included in a spectrogram segment, it can calculate
an appropriate distance even if the drum sound is overlapped
by other musical instrument sounds.
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1. Weight-function preparation generates a function that
represents the spectral saliency of each frequency com-
ponent in the adapted template. This function is used
for selecting characteristic frequency bins. The weight
function w is defined as

w(t, f) = FD(f) TA(t, f), (7)

where TA is the adapted template, which is equivalent to
power spectrogram PX used for the equalizing process-
ing, and FD is the filter function.

2. Power adjustment calculates the power difference be-
tween the template and each spectrogram segment by fo-
cusing on the characteristic frequency bins. If the power
difference is larger than a threshold, it judges that the
drum sound spectrogram does not appear in that segment
and does not execute the subsequent processing. Other-
wise, the power of that segment is adjusted to compen-
sate for the power difference. Let P ′

i be a power-adjusted
spectrogram segment.

3. Distance calculation calculates the spectral distance be-
tween adapted template TA and each P ′

i . If P ′
i (t, f) is

larger than TA(t, f), Goto’s distance measure regards
P ′

i (t, f) as a mixture of frequency components not only
of the drum sounds but also of other musical instrument
sounds. In other words, if we determine that P ′

i (t, f) in-
cludes TA(t, f), then the local distance at frame t and
frequency bin f is minimized. Therefore, the local dis-
tance is defined as

γi(t, f) =
{ 0 if (P ′

i (t, f) − TA(t, f) ≥ Ψ) ,
1 otherwise, (8)

where Ψ is a negative constant, which is set to −12.5
[dB] in this paper.

Total distance Γi is calculated by integrating local dis-
tance γi in the time-frequency domain, weighted by w:

Γi =
10∑

t=1

2048∑
f=1

w(t, f) γi(t, f). (9)

To determine whether the target drum sound occurred at
a time corresponding to spectrum segment P ′

i , distance
Γi is compared with threshold ΘΓ. If Γi < ΘΓ, we con-
clude that the target drum sound occurred. The ΘΓ is
automatically determined using Otsu’s thresholding al-
gorithm [12].

4.2 Advantages of Using Two Distance Measures
We use two different distance measures between the template
adaptation and matching methods. In the adaptation method,
it is desirable to detect only semi-pure drum sounds that have
little overlap with other sounds. Those drum sounds tend to
result in a good adapted template that includes few frequency
components of other sounds. Because it is not necessary to
detect all the onset times of the target drum sounds, the distance
measure does not need to consider spectral overlapping of other
sounds. In the matching method, on the other hand, we used
Goto’s distance measure because it is necessary to exhaustively
detect all the onset times even if the target drum sounds are
overlapped by other sounds.

5 Evaluation
We performed subjective experiments using five songs taken
from a popular music database, “RWC-MDB-P-2001” devel-
oped by Goto el al. [8]. These songs contain sounds of vocals
and various instruments, as songs in commercial CDs typically
do. All original data were sampled at 44.1 kHz with 16 bits,
stereo. We converted them to monaural signals.

5.1 AdaMast
We first evaluated the onset detection accuracy of AdaMast.
The results are shown in Table 1. The power spectrograms and
onset times of the bass and snare drums were obtained using
the template-adaptation and template-matching methods. The
power spectrograms were accurately estimated.

5.2 Volume Control
We tested INTER:D with five subjects to evaluate the quality
of volume control for two cases: a 10-[dB] cut and a 5-[dB]
boost. Each subject listened to audio signals in which the vol-
ume of the bass or snare drum sounds was changed by using
INTER:D and audio signals in which the low-frequency sounds
were equalized by using a traditional graphic equalizer. They
compared these signals in terms of the impression of the nega-
tive effects on sounds other than the target drum sounds (bass or
snare drum sounds). The comparison results were numerically
scored: a value of 10 (reference in comparison) corresponds to
the impression of negative effects caused by the graphic equal-
izer; a value of 0 corresponds to the impression of almost no
negative effects.

The five subjects each gave four scores corresponding to
four cases (only the bass drum was attenuated, only the snare



Table 1: Onset detection accuracy.
piece bass snare average
No. 7 98.0 % 85.7 % 91.9 %

No. 21 77.3 % 84.7 % 81.0 %
No. 35 76.1 % 74.5 % 75.3 %
No. 47 94.7 % 74.8 % 84.8 %
No. 52 99.3 % 90.8 % 95.1 %

Table 2: Volume control evaluation results for INTER:D.
10 [dB] cut 5 [dB] boost

piece bass snare bass snare
No. 7 3.6 5.0 2.4 3.4
No. 21 3.2 4.0 2.4 2.4
No. 35 3.6 5.0 2.2 3.0
No. 47 3.8 5.0 2.6 3.2
No. 52 3.0 4.0 2.6 2.8
average 3.4 4.6 2.4 3.0

Note: This table shows the average score for negative effects
on other instrument sounds when the bass or snare drum sounds
were attenuated or amplified. The lower the score, the better the
impression of the sounds equalized by INTER:D. The scores
were averaged over the five subjects.

drum was attenuated, only the bass drum was amplified, and
only the snare drum was amplified) for each of the five songs1.

Table 2 shows the results of this subjective evaluation.
These results of low scores indicate that the negative influ-
ence caused by INTER:D was much less than that caused by
the graphic equalizer. The scores for snare drum sounds were
higher (worse) than those for bass drum sounds: equalizing
snare drum sounds was more difficult than equalizing bass
drum sounds because frequency components of snare drum
sounds are distributed in wide frequency bands. In addition,
these results also indicate that the attenuation was more diffi-
cult (had worse scores) than the amplification. By comparing
Table 1 with Table 2, the detection accuracy was not related to
the evaluated scores at least in our experiments.

5.3 Timbre Change
We tested INTER:D with the same five subjects to evaluate
the quality of timbre change for two cases, timbre replacement
and timbre muting. Each subject listened to audio signals in
which the bass and snare drum sounds used were replaced with
other drum sounds with different timbres and to audio signals
in which the bass and snare drum sounds were muted (atten-
uated completely). The subject was then asked to complete a
subjective questionnaire about the impression made by those
signals.

Most subjects answered that the timbre change (timbre re-
placement) was an interesting function because good-quality
audio signals were generated even though the impression made
by those signals with different drum sounds often greatly dif-
fered from that made by the original signals. We found that

1The sound files are available at
http://winnie.kuis.kyoto-u.ac.jp/members/yoshii/EWIMT2005/.
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Figure 10: Music information retrieval (MIR) system based on
automatic annotation and sharing of music contents.

accurate onset detection was more important for improving the
sound quality when changing the timbre than when controlling
the volume. On the other hand, most subjects thought that the
audio signals in which the drum sounds were muted sounded
artificial. Muting drum sounds resulted in low-quality audio
signals because frequency components that did not belong to
the drum sounds were also largely attenuated. When other
drum sounds were added in the timbre replacement, however,
those additional sounds compensated for the undesired spectral
attenuation, resulting in good-quality audio signals.

6 Discussion
The importance of music content analysis for audio signals
has been increasing in the field of music information retrieval
(MIR). MIR aims at retrieving musical pieces by executing
a query about not only text information such as artist names
and music titles but also musical contents such as rhythms and
melodies. Although the amount of digitally recorded music
available over the Internet is rapidly increasing, there are only
a few ways of using text information to efficiently find target
musical pieces in a huge music database. Music content analy-
sis enables MIR systems to automatically understand the con-
tents of musical pieces and to deal with them even if they do
not have metadata about the artists and titles. Although onset
time information for drum sounds is low-level music content,
it can be used as a basis for higher-level music content analysis
concerning the rhythm such as beat tracking and tempo estima-
tion.

One reason we used AdaMast for drum transcription is that
it features fast content analysis, as described in Section 3.4. It
also is suitable for transmitting the analysis results over the In-
ternet. Once the power spectrograms and onset times of the
drum sounds in a piece are analyzed, the drum-sound anno-
tation files should be shared among people who have the same
piece in order to prevent computer resources from being wasted.
This framework of music content sharing can be considered an
extended version of the text-based CD Database (CDDB) ser-
vice. Since INTER:D requires only a single spectrogram and



the onset times for each drum sound, the size of each annota-
tion file is only about 300 [KB]. If we did not use AdaMast and
instead used a sound source separation method to implement
INTER:D, it would be necessary to transmit all the signals for
the drum tracks for equalizing the music to another computer.
However, the annotation file is too large (approximately over
100 [MB]) to be shared efficiently through the Internet. It is
also difficult to store many annotation files on a server. The fast
and compact drum-sound annotation capability of AdaMast is
thus important for practical use.

Figure 10 shows a diagram of an MIR system based on the
integration of low-level digital audio technology, semantic an-
notation, and content sharing. A user using a personal com-
puter can download annotation files for musical pieces if they
are registered in a storage server or upload annotation files if
they are not registered. A user can also retrieve musical pieces
that have contents similar to a query. Music content annotation
systems such as AdaMast can thus form the basis of Semantic
Web for music.

7 Conclusion
We have described a drum sound equalizer, INTER:D, with
a simple and easy-to-use interface that has sliders to control
the volume and dropdown lists to select the timbre. A lis-
tener can control the volume of bass or snare drum sounds
without changing the volume of other sounds by moving the
corresponding sliders. In addition, the listener can change the
original timbre of each drum sound by selecting a different one
from the timbre list. These functions are achieved by automati-
cally detecting the onsets of each drum sound while estimating
its power spectrogram. In other words, drum-sound annotation
based on low-level signal processing enables new music inter-
action in active appreciation of music.

Testing results of popular song equalization on a real-time
music-playback system we implemented demonstrated the ef-
fectiveness of the concept of active music listening. We plan to
apply our equalizing method to various kinds of instruments.
and to apply the drum-sound annotation technique to the devel-
opment of a music information retrieval system sharing content-
based music annotations.
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