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Abstract

Discriminating between singing and speaking voices by using
the local and global characteristics of voice signals is discussed.
From the results of subjective experiments, we show that hu-
man beings can discriminate singing and speaking voices with
more than 70% and 95% accuracy from 300 ms and one sec-
ond long signals, respectively. From the subjective experiment
results, assuming that different features are effective for short-
term and long-term signals, we designed two measures using a
spectral envelope (MFCC) and the fundamental frequency (F0,
perceived as pitch) contour. Experimental results show that the
F0 measure performs better than the spectral envelope measure
when the input voice signals are longer than one second. Par-
ticularly, it can discriminate singing and speaking voices with
more than 80% accuracy with two-second signals. On the other
hand, when the input signals are shorter than one second, the
spectral envelope measure performs better than the F0 measure.
Finally, by simply combining the two measures, more than 90%
accuracy is obtained for two-second signals.

1. Introduction
Sounds from the human mouth include various acoustic events
such as speaking, singing, laughing, coughing, whistling, and
lip noises. The discrimination of these sounds contributes to
avoiding spoken dialogue system errors and to understanding
human speech communication.

Among such varieties of acoustic events, this paper focuses
on the discrimination between singing and speaking voices.
Many research results have reported the differences between
singing and speaking voices [1, 2, 3, 4, 5]. Typical characteris-
tics of the singing voice include: F0 and intensity vary widely;
F0 is constrained by the equal temperament; the spectral en-
velope of the singing voice has extra formant [6]; the F0 of a
singing voice has greater power than a speaking voice, etc.

Although some algorithms that discriminate “music” and
“speech” were reported [7, 8, 9, 10, 11, 12, 13], they had diffi-
culty discriminating singing and speaking voices because they
dealt with the “music” category consisting of only instrumen-
tal sounds and singing with accompaniment sounds and de-
pended on their spectral characteristics. The characteristics of
the singing voice without accompaniments have not been fully
discussed yet. Therefore, the goal of this study is to characterise
the nature of the singing voice and build a measure to discrimi-
nate it from the speaking voice.

The rest of the paper consists of the following sections. In
Section 2, the human performance of discrimination between
singing and speaking is discussed based on a subjective exper-
iment. In Section 3, some signal measures for discriminating
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e 1: Human discrimination performance between singing
peaking voices.

g and speaking voices are proposed. After introducing the
mples in Section 4, experimental evaluations are shown in
n 5. Section 6 discusses the results.

Human Performance of Discriminating
Singing and Speaking Voices

rst investigate the segment length necessary for human lis-
to discriminate singing and speaking voices by conduct-
bjective experiments using 50,000 voice signals (25 male
5 female speakers, extracted from 25 different songs of
fferent lengths). Ten subjects listened to 500 signals (250
g voices and 250 speaking voices) randomly extracted

those 50,000 voice signals and answered whether the voice
inging or speaking.

he results shown in Figure 1 show that approximately one
d is enough for a human to discriminate between singing
peaking. Even with a 300-millisecond signal, discrimina-
ccuracy is more than 70%. This suggests that not only the
term characteristics corresponding to rhythm and melody
so such short-term features as spectral envelopes carry the
minative features between singing and speaking voices.

on these observations, in the sections below, we will
op two measures for discriminating singing and speaking
s.
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Figure 2: Spectrogram of singing and speaking voices corre-
sponding to the same lyrics.

3. Discrimination Measures
In this section we propose two different measures — local and
long-term feature measures — for discriminating singing and
speaking voices. The local feature measure exploits the spectral
envelope represented by using Mel-Frequency Cepstrum Coef-
ficients (MFCC) and their derivatives (∆MFCC). The long-term
feature measure exploits the dynamics of F0 and prosody ex-
tracted from the voice signal.

3.1. Local (short-term) feature measure

It has been reported that the singing voice has additional reso-
nance to the speaking voice at a medium frequency range known
as singer’s formant [6]. It is also known that the spectral shape
of the breathy voice has steeper tilt than the speaking voice [14].
Therefore, we hypothesize that the spectral envelope has a dis-
criminative cue of a singing voice that can be extracted from a
short-term signal. Figure 2 shows the spectrogram of singing
and speaking voices when a speaker sang and read the same
phrase in the lyrics of a song. The difference of spectral enve-
lope as well as harmonic structure can be observed. As for the
measure for a spectral envelope, Mel-Frequency Cepstrum Co-
efficients (MFCC) and their derivatives (∆MFCC), which are
successfully used for envelope extraction in speech recognition
applications, are used. Every 10 ms, the MFCC are calculated
for a 100-ms hamming windowed frame1 whereas ∆MFCC is
calculated as regression parameters over five frames.

In this approach, the distributions of MFCC vectors are
modeled by 16-mixture Gaussian Mixture Models (we used di-
agonal covariance matrices) for both singing and speaking voice
signals, and discrimination is performed through the maximum
likelihood principle:

d̂ = argmax
d=sing,speak

f(x; Λd),

where Λd, (d = sing, speak) are the GMM parameters for the
distributions of MFCC vectors denoted by x.

1To avoid inappropriate dependence of the spectral envelope on pho-
netic identity, a longer frame length is required. A 100-ms frame per-
formed best in our preliminary experiments. The sampling frequency
of the signal is 16 kHz.
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Figure 3: F0 contour and Note-Like-Unit extracted.

Long-term feature measure

the singing voice is generated under the constraint of
ic and rhythm patterns, the dynamics of prosody are dif-
from the speaking voice. Therefore, dynamics of the

dy extracted from voice signals over several musical notes
pected to be cues for discriminating singing and speaking
s. To capture such features, we designed several measures
on F0 contour.

F0 Extraction

estimated by using a predominant-F0 estimation method
PreFEst [15], originally designed for estimating the

y and bass lines in polyphonic audio signals. This method
ates the relative dominance of every possible harmonic
ure in the sound mixture and determines the F0 of the most
minant one. The relative dominance is obtained by treat-
e mixture as if it contains all possible harmonic structures
different weights and estimating their weights by Maxi-
A Posteriori Probability (MAP) estimation.
sing the PreFEst method, we calculated the F0 value for
10 ms, and then a F0 trajectory was smoothed by a me-
lter of a 100 ms moving window. Furthermore, ∆F0 is

lated by the five point regression, as in the MFCC case.

Trigram of the Note-Like-Unit (NLU) sequence

pture the long-term characteristics of the singing voice, we
efine a prosodic unit called Note-Like-Unit (NLU), which
ly corresponds to a musical note. As depicted in Figure 3,
is an interval within which F0 remains a chromatic semi-
i.e., 100 cents. Conversion from the frequency in [Hz],
o [cent], fcent, is given by

fcent = 1200 log2

fHz

440 × 2
3
12−5

.

nce the NLU sequence is obtained for the signal, we then
wo different prosodic labels to each NLU with respect to
ration and relative F0 value of the unit. As for the duration
one of the five labels (L1 to L5) is assigned to each NLU

ted in Table 1. For the relative F0 label, one of the three
(UP, DN, and CN) is assigned to each NLU as listed in



Table 1: Duration and Relative F0 Label

Label Duration

L1 50-150 ms
L2 150-300 ms
L3 300-600 ms
L4 600-1200 ms
L5 1200 ms-

Label Relative F0

UP higher
DN lower
CN same

relative position
to the preceding NLU

Table 1. Finally, trigrams of each label sequence are trained for
both singing and speaking voices and used for the discrimina-
tion. In the discrimination stage, the two NLU-based measures
are integrated into a likelihood measure through a weighting
sum of log likelihood as follows:

d̂ = argmax
d=sing,speak

[α log P (OF0; Θd,F0) +

(1 − α) log P (OD; Θd,D)] ,

where α is the weight for balancing two log probabilities, Θd,F0

and Θd,D , (d = sing, speak) are the trigram model parameters
for the relative F0 and duration labels of NLU sequences de-
noted by OF0 and OD .

3.2.3. Distribution of ∆F0

Since Japanese intonation is characterised by a falling F0 con-
tour, we can use the distribution of ∆ F0 calculated over a
long-term period as a measure for discriminating the singing
and speaking voices. This approach contrasts the method dis-
cussed above where we tried to capture melodic constraints in a
singing voice using NLU.

In this approach, the distributions of ∆F0 values are mod-
eled by 16-mixture GMMs for both singing and speaking voice
signals, and discrimination can be performed by a maximum
likelihood principle:

d̂ = argmax
d=sing,speak

f(y; Ωd),

where Ωd, (d = sing, speak) are the GMM parameters for the
distributions of ∆F0 values denoted by y.

4. Voice Database
The method was tested on an original voice database devel-
oped at the National Institute of Advanced Industrial Science
and Technology. The database includes 7500 sound samples
about five to eight seconds long that consist of 3750 sam-
ples of singing voice and 3750 samples of speaking voice
recorded from 75 subjects (38 male, 37 female). At an arbi-
trary tempo without musical accompaniment, each subject sang
two excerpts from chorus and “verse A” sections of twenty-
five songs (50 sound samples), and read the lyrics of those ex-
cerpts (50 sound samples), resulting in a total of 100 samples
per subject. The songs were selected from the popular mu-
sic database “RWC Music Database: Popular Music” (RWC-
MDB-P-2001) [16], which is an original database available to
researchers around the world.

5. Evaluation of the Proposed Method
In this section, we show experimental evaluations. First, we
evaluate the discrimination performance using spectral enve-
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e 4: Discrimination accuracy using short-term features
s of MFCC and ∆MFCC).

Second, we evaluate the method using the long-term fea-
i.e., the NLU sequence and F0. Finally, we compare the

term and short-term features.

Performance of short-term features (MFCC)

luating the discrimination performance using spectral en-
e, 2500 sound samples of the singing and speaking voices
subjects were used for training the GMMs of the MFCC
MFCC, and 480 sound samples of 50 subjects were used

sting the method. The MFCC was used up to the 12th
cients. Figure 4 shows the discrimination accuracy as a
ion of the input voice length. As seen from the figure,
mination accuracy is almost monotonically improved as
ngth of the test set increases. Moreover, combining with
CC, the discrimination accuracy is improved at most by
With test data of two seconds length, the total perfor-

e is 81.8%; however, it is 18.2% lower compared to the
n listener result.

Performance of long-term features

ods using long-term features are also evaluated using the
test samples as above. In Figure 5, performances using

igrams of NLU label sequence and the GMM of ∆F0 are
ared. For the NLU trigram, α = 0.5 is used for integrating
ion and F0 probabilities.
s shown in the figure, NLU trigram performs better than
GMM for detecting speaking voices, and ∆F0 GMM
better for singing voices. ∆F0 GMM performed better
LU trigram in total.

Comparing long-term and short-term features

ure 6, the discrimination results using MFCC+∆MFCC
F0 are plotted. It can be seen in both measures that the

ute performance improved when a longer signal was avail-
For input signals shorter than one second, MFCC per-
d better, whereas ∆F0 performed better for signals longer
ne second.
inally, two GMM measures are integrated into a likelihood
ure, where the integrating weight was assumed to be 0.5. It
e seen from Figure 6 that the discrimination performance
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Figure 5: Discrimination accuracy using long-term features
(NLU trigram and ∆F0 GMM).
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Figure 6: Comparing long-term and short-term features.

is improved by integrating two measures.

6. Discussion
The results clarified that the two measures can effectively and
complementarily capture the signal features that discriminate
singing and speaking voices. The discrimination using the
MFCC and ∆MFCC is effective for less than one second sig-
nals. The difference between the spectrum envelopes of the
singing and speaking voices is a dominant cue for the discrimi-
nation of short signals. On the other hand, the discrimination us-
ing the ∆F0 is effective for the signals of one second or longer.
The GMM of ∆F0 appropriately deals with the difference of
global F0 contours of singing and speaking voices by modeling
local changes of the F0.

7. Summary
In this paper, we discussed the discrimination of singing and
speaking voices by modeling two different aspects of voice sig-
nals in singing and speaking. Our discrimination method based
on MFCC attained approximately 65% accuracy even with 300
ms signals. On the other hand, when voice signals longer than
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