
Applied Intelligence 23, 267–275, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Pitch-Dependent Identification of Musical Instrument Sounds∗

TETSURO KITAHARA
Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Sakyo-ku,

Kyoto 606-8501, Japan
kitahara@kuis.kyoto-u.ac.jp

MASATAKA GOTO
“Information and Human Activity”, PRESTO, JST/National Institute of Advanced Industrial

Science and Technology, Tsukuba, Japan
m.goto@aist.go.jp

HIROSHI G. OKUNO
Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Sakyo-ku,

Kyoto 606-8501, Japan
okuno@i.kyoto-u.ac.jp

Abstract. This paper describes a musical instrument identification method that takes into consideration the pitch
dependency of timbres of musical instruments. The difficulty in musical instrument identification resides in the pitch
dependency of musical instrument sounds, that is, acoustic features of most musical instruments vary according
to the pitch (fundamental frequency, F0). To cope with this difficulty, we propose an F0-dependent multivariate
normal distribution, where each element of the mean vector is represented by a function of F0. Our method first
extracts 129 features (e.g., the spectral centroid, the gradient of the straight line approximating the power envelope)
from a musical instrument sound and then reduces the dimensionality of the feature space into 18 dimension. In
the 18-dimensional feature space, it calculates an F0-dependent mean function and an F0-normalized covariance,
and finally applies the Bayes decision rule. Experimental results of identifying 6,247 solo tones of 19 musical
instruments shows that the proposed method improved the recognition rate from 75.73% to 79.73%.

Keywords: musical instrument identification, the pitch dependency, fundamental frequency, automatic music
transcription, computational auditory scene analysis

1. Introduction

Computational auditory scene analysis as well as vi-
sual scene analysis is important to augment communi-
cation channels between humans and computers and to
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Scientific Research (A), No.15200015, and Informatics Research
Center for Development of Knowledge Society Infrastructure (COE
program of MEXT, Japan).

achieve sophisticated human-computer interaction [8].
However, auditory information has not been used ex-
tensively except for speech. In particular, musical in-
strument identification is an important subtask for the
computational auditory scene analysis.

Musical instrument identification is also important
from a point of view of application. For example, a
user wants to search for certain types of musical pieces,
such as piano solos or string quartets, a retrieval sys-
tem can use the results of musical instrument identifi-
cation. Furthermore, the results of musical instrument
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identification will be important cues for reducing ambi-
guity when automatically transcribing a musical piece
played on multiple instruments.

The difficulties in musical instrument identification
reside in the fact that most of features of musical sounds
depend on some factors including pitch. In particular,
timbres of musical instruments are obviously affected
by the pitch due to their wide range of pitch.1 For ex-
ample, the pitch range of the piano covers over seven
octaves.

To attain high performance of musical instrument
identification, it is indispensable to cope with this pitch
dependency of timbre. Most studies on musical instru-
ment identification, however, have not dealt with the
pitch dependency [1–5]. Martin used 31 features in-
cluding spectral and temporal features with hierarchi-
cal classification and attained about 70% of identifi-
cation by the benchmark of 1,023 solo tones played
by 14 instruments. He pointed out the importance of
the pitch dependency, but left it as future work [5].
Eronen et al. used spectral and temporal features as
well as cepstral coefficients used by Brown [1] and at-
tained about 80% of identification by the benchmark
of 1,498 solo tones played by 30 instruments [2]. They
treated the pitch as one element of feature vectors, but
did not cope with the pitch dependency. Kashino et al.
also treated the pitch similarly in their automatic mu-
sic transcription system [4]. They also coped with the
difference of individuals of musical instruments (for
example, the difference of sounds of Yamaha’s pianos
and Boesendolfer’s ones) by template adaptation, but
did not deal with the pitch dependency [6].

In this paper, to take into consideration the pitch
dependency of timbre, we propose a method for mod-
eling the pitch dependency of timbre, F0-dependent
multivariate normal distribution. Each feature or basic
vector of features extracted from musical instrument
sounds is represented by the F0-dependent multivariate
normal distribution, the mean of which is represented
by a function of fundamental frequency (F0). This
F0-dependent mean function represents the pitch de-
pendency of each feature, while the F0-normalized
covariance represents the non-pitch dependency.
Musical instrument identification is performed both at
individual-instrument level and at non-tree category
level by a discriminant function based on the Bayes
decision rule.

The rest of this paper is organized as follows:
Section 2 proposes the F0-dependent multivariate nor-
mal distribution, and Section 3 describes a discriminant

function based on the Bayes decision rule. Sections 4
and 5 report the experimental results. Finally, Section 6
concludes this paper.

2. Musical Instrument Identification
using F0-dependent Multivariate
Normal Distribution

The key idea of our method is to approximate the pitch
dependency of each feature representing timbres of mu-
sical instrument sounds as a function of fundamental
frequency (F0). An F0-dependent multivariate normal
distribution has two parameters: an F0-dependent mean
function and an F0-normalized covariance. The former
represents the pitch dependency of features and the lat-
ter represents the non-pitch dependency. The reason
why the mean of a distribution of tone features is ap-
proximated as a function of F0 is that tone features
at different pitches have different positions (means) of
distributions in the feature space. Approximating the
mean of the distributions as a function of F0 makes it
possible to model how the features vary according to
the pitch with a small set of parameters.

2.1. Frequency Analysis

Given a musical instrument signal, it is first analyzed by
the short-time Fourier transform (STFT) with a 4096-
point Hanning window for every 10 ms, and spectral
peaks are extracted from the power spectrum. Then the
harmonic structure and the F0 is obtained from these
peaks.

2.2. Feature Extraction

The following 129 features are extracted:

(1) Spectral Features

1 Spectral centroid

2 Relative power of the fundamental component

3 – 30 Relative cumulative power of from funda-
mental to i-th components (i = 2, 3, . . . , 29)

31 Relative power in odd and even components

32 – 40 The number of the components the dura-
tion of which is p% longer than the longest du-
ration (p = 10, 20, . . . , 90)
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(2) Temporal Features

41 Gradient of the straight line approximating the
power envelope

42 – 58 Average differential of the power enve-
lope during t-sec interval from the onset time
(t = 0.15, 0.20, . . . , 0.95)

59 – 75 The ratio of the power at t-sec after the
onset time

(3) Modulation Features

76 The amplitude of AM

77 The frequency of AM

78 The amplitude of FM

79 The frequency of FM

80 The amplitude of the spectral centroid modu-
lation

81 The frequency of the spectral centroid modu-
lation

82 – 94 The amplitude of k-th MFCC

95 – 107 The frequency of k-th MFCC

(4) Peak Kurtosis Features

108 – 118 Temporal average of the kurto-
sis of spectral peaks in the i-th component
(i = 1, 2, . . . , 11)

119 – 129 The amplitude of the temporal modu-
lation of the kurtosis of spectral peaks in the i-th
component (i = 1, 2, . . . , 11)
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Figure 1. Power spectra of two different instruments at the onset time. These show that spectral peaks of an instrument with large non-harmonic
components, such as (b) Alto Sax, has small kurtosis in contrast to those of an instrument with small non-harmonic components, such as (a)
Recorder.

Whereas the spectral, temporal and modulation fea-
tures are designed based on previous studies, the peak
kurtosis features are original and have not been used
in previous studies. The kurtosis of spectral peaks is
related to how large non-harmonic components are in-
cluded. If a sound has small non-harmonic components,
spectral peaks will have large kurtosis. If it has large
non-harmonic components, they will have small kur-
tosis (see Fig. 1). These features are therefore used for
modeling the degree of incorporation of non-harmonic
components, which has not been considered in previous
studies.

After the feature extraction, the feature space is stan-
dardized and then the dimensionality of it is reduced by
two methods: the 129-dimensional feature space is re-
duced to a 79-dimensional one by principal component
analysis (PCA) with the proportion value of 99%, and
then is further reduced to a lower-dimensional one by
linear discriminant analysis (LDA). In this paper, the
feature space is reduced to an 18-dimensional space,
since we deal with 19 instruments.

2.3. Parameter Estimation of F0-dependent
Multivariate Normal Distribution

For each instrument ωi , the parameters of the
F0-dependent multivariate normal distribution, the F0-
dependent mean functionµi ( f ) and the F0-normalized
covariance �i , are calculated. The F0-dependent mean
function is obtained through approximating each ele-
ment of the feature vectors as a cubic polynomial with
the least-square method. For example, piano’s fourth
basic vector and cello’s first basic vector, obtained with
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Figure 2. Examples of F0-dependent mean functions. Because the
vertical axes of these graphs are not features defined in Section 2.1
but those obtained after standardization and dimensionality reduc-
tion (PCA and LDA), they do not have any units. In these graphs,
we plot all the data of pianos or cellos in our database, while F0-
dependent mean functions are estimated by only from training data
in our experiments.

the two successive dimensionality reduction method
(PCA and LDA), are depicted in Fig. 2(a) and (b), re-
spectively. Then, the F0-normalized covariance is cal-
culated by the following equation:

�i = 1

ni

∑

x∈χi

(x − µi ( fx))(x − µi ( fx))′,

where ′ is the transposition operator, χi and ni are the
set of the training data of the instrument ωi and its total
number, respectively. fx denotes the F0 of the fea-
ture vector x. Because the F0-dependent mean func-
tion represents the pitch dependency of features, the
F0-normalized covariance, obtained by subtracting the
mean from each feature, eliminates the pitch depen-
dency of features.

2.4. Application of the Bayes Decision Rule

Once pitch and non-pitch dependencies of feature vec-
tors are represented by the F0-dependent multivariate
normal distribution, the Bayes decision rule is applied
to identify the name or category of musical instruments.
The discriminant function gi (x; f ) for the musical in-
strument ωi is defined by

gi (x; f ) = log p(x | ωi ; f ) + log p(ωi ; f ), (1)

where x is the feature vector of an input sound,
p(x | ωi ; f ) is the probability density function (PDF)
of this distribution and p(ωi ; f ) is a priori probability
of the instrument ωi .

The PDF of this distribution is defined by

p(x|ωi ; f ) = 1

(2π )d/2|�i |1/2
exp

{
− 1

2
D2(x,µi ( f ))

}
,

(2)

where d is the number of dimensions of the feature
space and D2 is the squared Mahalanobis distance de-
fined by

D2(x,µi ( f )) = (x − µi ( f ))′�−1
i (x − µi ( f )).

Substituting Eq. (2) into Eq. (1), thus, generates the
discriminant function gi (x; f ) as follows:

gi (x; f ) = −1

2
D2(x,µi ( f )) − 1

2
log |�i | − d

2
log 2π

+ log p(ωi ; f ).

The name of the instrument that maximizes this func-
tion, that is ωk satisfying k = argmaxi gi (x; f ), is de-
termined as the result of musical instrument identifica-
tion.

The a priori probability p(ωi ; f ) represents whether
the pitch range of the instrument ωi includes f ,
that is,

p(ωi ; f ) =
{

1/c (if f ∈ Ri )

0 (if f �∈ Ri )

where Ri is the pitch range of the instrument ωi , and
c is the normalizing factor to satisfy

∑
i p(ωi ; f ) =

1.
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3. Experiments and Results

3.1. Experimental Conditions

We conducted experiments on musical instrument iden-
tification for investigating improvement of the perfor-
mance by the proposed method. We obtained the recog-
nition rates by the commonly used multivariate normal
distribution (called baseline) and by the proposed F0-
dependent multivariate normal distribution, and com-
pared them.

The benchmark used for evaluation is a subset of the
“RWC Music Database: Musical Instrument Sound”
(RWC-MDB-I-2001) [7], which is a large musical instru-
ment sound databalse available to researchers around
the world. This subset summarized in Table 1 was se-
lected by the quality of recorded sounds and consists of
6,247 solo tones of 19 orchestral instruments. All data
are sampled at 44.1 kHz with 16 bits. We first divided
the whole data into 10 groups, and then repeated the
following step 10 times: each time, we left out one of
the 10 groups for training and used the omitted one for
testing. That means that nine tenths of the data listed in
Table 1 were used for calculating F0-dependent mean

Table 1. Contents of the database used in this paper.

Instrument name (Abbrev.) pitch range # of tones # of individuals Intensity Articulation

Piano (PF) A0–C8 508 3 Forte, normal Normal only

Classical Guitar (CG) E2–E5 696 & piano

Ukulele (UK) F3–A5 295

Acoustic Guitar (AG) E2–E5 666

Violin (VN) G3–E7 528

Viola (VL) C3–F6 472

Cello (VC) C2–F5 558

Trumpet (TR) E3–A�6 151 2

Trombone (TB) A�1–F�5 262 3

Soprano Sax (SS) G�3–E6 169

Alto Sax (AS) C�3–A5 282

Tenor Sax (TS) G�2–E5 153

Baritone Sax (BS) C2–A4 215

Oboe (OB) A�3–G6 151 2

Faggoto (FG) A�1–D�5 312 3

Clarinet (CL) D3–F6 263

Piccolo (PC) D5–C8 245

Flute (FL) C4–C7 134 2

Recorder (RC) C4–B6 160 3

functions and F0-normalized covariances. This exper-
iment technique is called 10-fold cross validation.

We evaluated the category-level performance of our
method, because the category of instruments is useful
for some applications including music retrieval. For
example, when a user wants to find a piece of piano
solo on a music retrieval system, the system can reject
pieces containing instruments of different categories,
which can be judged without identifying individual in-
strument names. We adopted the categories of musical
instruments summarized in Table 2, which are deter-
mined based on the sounding mechanisms of instru-
ments and existing studies [2, 5].

3.2. Results of Musical Instrument Identification

Table 3 summarizes recognition rates by both baseline
and proposed methods. The proposed F0-dependent
method improved the recognition rates at individual-
instrument level from 75.73 to 79.73% and at category
level from 88.20 to 90.65% in average. It also reduced
recognition errors by 16.48 and 20.67% in average at
individual-instrument and category levels, respectively.
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Table 2. Categorization of 19 instruments.

Category Instruments (abbreviation)

Piano Piano (PF)

Guitars Classical Guitar (CG), Ukulele (UK),
Acoustic Guitar (AG)

Strings Violin (VN), Viola (VL), Cello (VC)

Brasses Trumpet (TR), Trombone (TB)

Saxophones Soprano Sax (SS), Alto Sax (AS),
Tenor Sax (TS), Baritone Sax (BS)

Double Reeds Oboe (OB), Faggoto (FG)

Clarinet Clarinet (CL)

Air Reeds Piccolo (PC), Flute (FL), Recorder (RC)

The observation of these experimental results is sum-
marized below:

• The recognition rates of six instruments (Piano (PF),
Trumpet (TR), Trombone (TB), Soprano Sax (SS),

Table 3. Accuracy by usual distribution (baseline) and F0-dependent distribution (proposed).

Individual-instrument level Category level

Baseline Proposed Improv. Baseline Proposed Improv.

PF 74.21% 83.27% +9.06% 74.21% 83.27% +9.06%

CG 90.23% 90.23% ±0.00% 97.27% 97.13% −0.14%

UK 97.97% 97.97% ±0.00% 97.97% 98.31% +0.34%

AG 81.23% 83.93% +2.70% 94.89% 95.65% +0.76%

VN 69.70% 73.67% +3.97% 98.86% 99.05% +0.19%

VL 73.94% 76.27% +2.33% 93.22% 94.92% +1.70%

VC 73.48% 78.67% +5.19% 95.16% 96.24% +1.08%

TR 73.51% 82.12% +8.61% 76.82% 85.43% +8.61%

TB 76.72% 84.35% +7.63% 85.50% 89.69% +4.19%

SS 56.80% 65.89% +9.09% 73.96% 80.47% +6.51%

AS 41.49% 47.87% +6.38% 73.76% 77.66% +3.90%

TS 64.71% 66.01% +1.30% 90.20% 92.16% +1.96%

BS 66.05% 73.95% +7.90% 81.40% 86.05% +4.65%

OB 71.52% 72.19% +0.67% 75.50% 74.83% −0.67%

FG 59.61% 68.59% +8.98% 64.74% 71.15% +6.41%

CL 90.69% 92.07% +1.38% 90.69% 92.07% +1.38%

PC 77.56% 81.63% +4.07% 89.39% 90.20% +0.81%

FL 81.34% 85.07% +3.73% 82.09% 85.82% +3.73%

RC 91.88% 91.25% −0.63% 92.50% 91.25% −1.25%

Ave. 75.73% 79.73% +4.00% 88.20% 90.65% +2.45%

Baseline: Usual (F0-independent) distribution.
Proposed: F0-dependent distribution.

Baritone Sax (BS), and Faggoto (FG)) were im-
proved by more than 7%. In particular, the recog-
nition rate for pianos was improved by 9.06%, and
its recognition errors were reduced by 35.13%. This
big improvement was attained since their pitch de-
pendency is salient due to their wide range of pitch.

• The recognition rates for the four types of sax-
ophones at individual-instrument level (47–73%)
were lower than those at category level (77–92%).
This is because sounds of these saxophones were
quite similar. In fact, Martin reported that sounds of
various saxophones are very difficult even for hu-
mans (music experts) to discriminate [5].

• Since we adopt the flat (non-hierarchical) catego-
rization, the recognition rates at category level de-
pend on the category. The recognition rates of GUI-
TARS and STRINGS at category level were more than
94%, while those of BRASSES, SAXOPHONES, DOU-
BLE REEDS, CLARINET and AIR REEDS were about
70–90%. This is because instruments of these cat-
egories have similar sounding mechanism: these
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categories are subcategories of “wind instruments”
in conventional hierarchical categorization.

• The readers might think that a typical alternative ap-
proach of dealing with the pitch dependency could
be a method that simply adds the value of the F0 to
the feature vector (i.e., the number of dimensions of
the feature vector is increased by one). We therefore
compared this alternative method with our method.
The experimental results showed that the alternative
method is inferior to our method: the recognition rate
was 75.88% on average, which is almost same with
the baseline method.

4. Evaluation of the Bayes Decision Rule

The effect of the Bayes decision rule in musical instru-
ment identification was evaluated by comparing with
the k-NN rule (k-nearest neighbor rule; k = 3 in this
paper) with/without LDA. Three variations of the di-
mensionality reduction are examined:

Table 4. Accuracy by k-NN rule and the Bayes decision rule.

k-NN rule (k = 3) Bayes decision rule

79-Dim. 18-Dim. 79-Dim. 18-Dim.

PCA PCA&LDA PCA PCA&LDA

PF 53.94% 46.46% 63.39% 55.91% 59.06% 83.27%

CG 79.74% 77.16% 75.72% 98.28% 97.27% 90.23%

UK 94.58% 92.54% 97.63% 67.12% 80.00% 97.97%

AG 95.05% 92.79% 97.00% 19.97% 44.14% 83.93%

VN 47.73% 46.02% 45.83% 89.58% 84.47% 73.67%

VL 55.93% 54.24% 61.86% 71.19% 79.24% 76.27%

VC 86.20% 85.84% 84.23% 45.16% 30.82% 78.67%

TR 36.42% 38.41% 47.02% 41.72% 72.85% 82.12%

TB 70.99% 54.58% 77.86% 75.19% 78.24% 84.35%

SS 23.08% 14.20% 24.85% 48.52% 66.86% 65.89%

AS 37.59% 29.79% 40.43% 72.70% 41.84% 47.84%

TS 62.09% 66.01% 68.63% 30.07% 61.44% 66.01%

BS 68.84% 67.91% 66.98% 55.35% 54.42% 73.95%

OB 47.68% 48.34% 49.01% 43.71% 81.46% 72.19%

FG 64.10% 65.06% 74.36% 40.38% 30.12% 68.59%

CL 93.45% 87.93% 93.10% 95.51% 93.45% 92.07%

PC 84.08% 84.90% 84.08% 63.27% 58.37% 81.63%

FL 88.06% 72.39% 94.03% 35.82% 84.33% 85.07%

RC 97.50% 93.75% 97.50% 85.00% 96.25% 91.25%

Ave. 70.27% 66.98% 72.53% 62.11% 66.50% 79.73%

(a) Reduction to 79 dimension by PCA,
(b) reduction to 18 dimension by PCA, and
(c) reduction to 18 dimension by PCA and LDA.

The last one is adopted in the proposed method.
The experimental results listed in Table 4 showed

that the proposed Bayes decision rule performed better
in average than the 3-NN rule. Some observations are
as follows:

• The Bayes decision rule with 79-dimension showed
poor performance for Acoustic Guitar (AG), Trumpet
(TR), Soprano Sax (SS), Tenor Sax (TS), Oboe (OB),
and Flute (FL), since there are insufficient training
data to estimate parameters of a 79-dimensional nor-
mal distribution. For small training sets with 79-
dimension, k-NN is superior to the Bayes decision
rule.

• LDA with the Bayes decision rule improved the accu-
racy of musical instrument identification from 66.50
to 79.73% on average. Although it seemed that PCA
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with 79-dimension performed better than LDA for
Classical Guitar (CG), Violin (VN), and Alto Sax
(AS), the cumulative performance of LDA for the
categories of strings and saxophones is better than
that of PCA.

• We did not conduct the experiment using only LDA.
This is because LDA cannot be applied to features
that are highly correlative: the inverse matrix of the
with-in covariance, which is used by LDA, is not ac-
curately calculated when the feature space includes
some highly correlative dimensions. Because PCA
not only reduces the dimensionality but also orthog-
onalizes the feature space, for our features, some of
which are highly correlative, using PCA before LDA
is effective.

5. Conclusions

In this paper, we presented a method for musical in-
strument identification using the F0-dependent multi-
variate normal distribution which takes into consider-
ation the pitch dependency of timbre. The method im-
proved the recognition rates at individual-instrument
level from 75.73 to 79.73%, and at category level
from 88.20 to 90.65% on average, respectively. The
Bayes decision rule with dimensionality reduction by
PCA and LDA also performed better than the 3-NN
method.

Future work will include to extend our method to
deal with real-world music signals such as musical
pieces and phrases containing several sounds of the
same instrument. From the viewpoint of computa-
tional auditory scene analysis, it is also important to
deal with a variety of sounds including non-musical
sounds. We therefore plan to extend our method to
deal with such general sounds because we can ex-
pect that our approach of handling the pitch depen-
dency is also effective for general sounds that have
pitches.
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