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Abstract

Position control of an underactuated manipulator
that has one passive joint is investigated. The dy-
namic constraint caused by the passive joint is second-
order nonholonomic. Time-scaling of the active joint
trajectory and bi-directional motion planning from the
wnittial and the desired configurations provide an exact
solution of the positioning trajectory. The active and
passive joints can be positioned to the desired angles si-
multaneously by swinging the active joints only twice.
Feedback control constrains the manipulator along the
planned path in the configuration space. Simulation
and experimental results show the validity of the pro-
posed methods.
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1 Introduction

Given a class of robotic manipulation tasks, 1t
might be possible to use a simpler robot mechanism
(e.g. fewer joints, actuators or sensors) than ordinary
ones to perform the task by considering and utilizing
the task dynamics. Control of underactuated mecha-
nisms, which have fewer actuators than the number of
the generalized coordinates associated with the task,
has received increasing attention from the viewpoint of
nonholonomic systems in recent years. For example,
if we can dexterously control an underactuated ma-
nipulator that has passive joints equipped with no ac-
tuators, the weight, cost and energy consumption can
be reduced, and failure recovery of even fully-actuated
manipulators can be facilitated.

An underactuated manipulator is under a dynamic
constraint caused by the zero torque at the passive
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joints. The constraint is generally a nonholonomic
constraint as nonintegrable differential equations, un-
less the joints are placed in some special way. Exploit-
ing this constraint, the positioning of the manipulator
to the desired configuration can be achieved by the
motions of the active joints, even if the passive joints
are completely free joints with no brakes, etc.

The nonholonomic constraint of the underactuated
manipulator has different characteristics from those
of wheeled vehicles and space robots, which have been
treated as typical nonholonomic systems. The con-
straints of these examples are caused by the rolling
contact or the conservation of angular momentum, and
are represented as a first-order nonintegrable differen-
tial equation, H(q)q = 0, where q is the generalized
coordinate and ¢q is the generalized velocity. The state
equation is written as a drift-free symmetrical affine
system, ¢ = G(q)u, with the velocity input w. On the
other hand, the dynamic constraint of the underactu-
ated manipulator is described as a second-order nonin-
tegrable differential equation, M ,(q)g+b,(q,9) = 0,
including the generalized acceleration ¢, and is called
a second-order nonholonomic constraint. The state
equation, %[qT, " = flq,q)+ G(q)u, with the ac-
celeration or torque input u, has a drift term f(q, q).

There have been many studies on the conversion
of symmetrical affine systems to standard forms such
as the chained system or Caplygin system, and also
on motion planning and feedback control based upon
those forms. However, those methods cannot be di-
rectly applied to the affine system with a drift term.
Thus there are no unified control methods for under-
actuated manipulators yet, and most of the methods
so far proposed rely on the specific dynamics of the
individual mechanisms.

Here, we review the previous studies which treat
the underactuated manipulators as nonholonomic sys-
tems. Oriolo and Nakamura [1] derived the condi-



tion when the constraint by the passive joints is non-
integrable and hence nonholonomic. They also proved
that an underactuated manipulator cannot be stabi-
lized to an equilibrium point by using any smooth
state feedback when no potential force such as gravity
is applied to the passive joints. The first linear approx-
imation of such a system is not controllable. In con-
trast, the linear approximation of an underactuated
mechanism in the gravity field, e.g. an inverted pendu-
lum, is controllable and can be stabilized to the equi-
librium point with smooth state feedback, although
such a mechanism is also second-order nonholonomic.

A two-axis horizontal manipulator in which the first
joint is active and the second joint is passive is the sim-
plest articulated form of an underactuated manipula-
tor. Ref. [1] showed that its constraint is second-order
nonholonomic unless the center of mass of the free link
coincides with the passive joint. De Luca et al. [4]
proved this manipulator is locally accessible but does
not satisfy the sufficient condition for small-time local
controllability in Ref. [14]. The global controllability
has not been proved analytically.

Suzuki et al. [2] stabilized the passive joint angle
of this manipulator to an arbitrary angle by a peri-
odical motion of the active joint. They described the
behavior of the passive joint as a Poincaré map and
modified the amplitude of the active joint motion ac-
cording to the angle and angular velocity of the passive
joint. Suzuki et al. [3] used an averaging method to
represent the system in a simpler form and designed
the feedback control using a Lyapunov function. De
Luca et al. [4] proposed the position control by re-
peating the open-loop control, by which the system
approaches the desired state, based on the nilpotent
approximation.

There have also been studies on the control of a hor-
1zontal three-axis underactuated manipulator in which
the third joint is passive. Ref. [5, 6] showed the
small-time local controllability of the equivalent mech-
anism at the equilibrium point. We proved the global
controllability of this manipulator by considering the
behavior of the center of percussion of the free link,
and constructing the trajectory between two arbitrary
states [7]. We also proposed a feedback control to sta-
bilize the translational and rotational trajectory seg-
ments in the positioning trajectory [8]. Imuraet al. [9]
derived the second-order chained form from the link
dynamics by transformation of the coordinates and
inputs. They also proposed a time-varying and non-
continuous feedback control which asymptotically sta-
bilizes the system from an arbitrary initial state to the
desired configuration.

Rathinam and Murray [10] showed the condition
for configuration flatness (the system is differentially
flat and the flat output depends only on the gener-
alized coordinates) of a mechanical system with one
passive joint. They also presented the method to cal-
culate the flat output when it exists. If the system
is configuration flat (e.g. the three-axis underactu-
ated manipulator in [7, 8, 9]), the possible trajectory
between two states can be systematically constructed
using the flat output.

Here, we propose a motion planning and feed-
back control method for an underactuated manipula-
tor which has one passive joint with no gravity applied.
Ref. [2, 3,4, 7, 8, 9] already proposed control meth-
ods for manipulators belonging to this class. However,
the methods in [2, 3, 4] resort to repetitive motion of
the active joint and usually take a long time for the
positioning. The methods in [7, 8, 9] can be applied
only when the passive joint is the final axis and can
move freely in the horizontal plane. Though Ref. [10]
probides a general and systematic approach, it cannot
be used unless the system has the flat output. For
example, the two-axis manipulator in [2, 3, 4] is not
differentially flat. In this paper, the trajectory for
the positioning is planned by time-scaling of the ac-
tive joint trajectory and bi-directional planning from
the initial and final configurations. This method can
provide an exact solution (not an approximated one)
for the position control. The manipulator can reach
the desired configuration by swinging the active joints
only twice.

The rest of this paper is organized as follows. In
Section 2, the manipulator is modeled to show the
dynamic constraint caused by the passive joint. In
Section 3, the behavior of the manipulator is consid-
ered when the time-axis of the active joint trajectory
stretches or shrinks. Then the trajectory for the posi-
tioning is designed by the bi-directional planning from
the initial and the desired configurations. The feed-
back control for tracking of the desired path is pro-
posed in Section 4. The simulations and experiments
in Section 5 demonstrate that the manipulator can
be positioned to the desired configuration by the pro-
posed method.

2 Model of Manipulator

We consider an n-axis serial underactuated manip-
ulator which has n-1 active joints and one passive
joint. The passive joint is a revolute joint without an-
gle limit, and neither gravity nor friction torque acts
on it. A horizontal underactuated manipulator with a



passive revolute joint around a vertical axis is a typical
example. We define 8, = [0, ...,0,_1]7 € R~ ! as the
active joint angle and 6, = @, € R as the passive joint
angle. The equation of motion of the manipulator is:

M.(8)8, +mD,(6)0, +b,(0,8) = 7, (1)

Mypa(0)6, + mpp(g)ép +b,(8, 9) = 0. (2)

The passive joint is not necessarily at the n-th axis.
The elements of the vectors and matrices can be rear-
ranged to get the above representation. Eq.(2) means
the dynamic constraint caused by the zero torque at
the passive joint.

)= [ M) ]

Mpa(8) 1y (6)

(Maa c %(n—l)x(n—l)’mpa c %n—l’mpp c %)
denotes the inertia matrix.

b,(6,6)

b(6,8) = [ b (6. 0) ] (by €ER""1 b, €R)

is a Coriolis and centrifugal term, and generally has a
form of

- 1.70M ,
M6 —-[-60 —60,..,-0
[2 a0, 2 o6y,

j=1k=1

1T8M6]T

b(8,6)

This manipulator is assumed not to satisfy the con-
dition for integrability in Ref. [1]. That is, the inertia
matrix M (6) explicitly includes the passive joint an-
gle 8,. Then the constraint (2) does not have the first
integral, which is a function of the joint angle € and
the angular velocity 6, and is a second-order nonholo-
nomic constraint that includes the angular accelera-
tion 6.

Since my,(0) # 0 from the property of the inertia
matrix, the angular acceleration ép of the passive joint

18,

Op = =1y, (6) ™ {mya ()8 + b,(8,6)} (4)
from Eq.(2). The angular acceleration of the active
joints 1s treated as the control input w = 6,. The
state equation can be represented as an affine system,

6. 6. 0

d | 6, ép 0

E Qa — 0 + I u. (5)
6, —m;pl by —m iy,

The first term in the right side is the drift term.

3 Motion Planning

We develop a motion planning method for the po-
sition control in this section. Namely, we find the tra-
jectory and input to transfer the manipulator from the
initial configuration to the desired configuration. The
manipulator should have zero velocity at the initial
and final state. Though 1t is easy to stop the active
joints, the passive joint usually continues moving due
to the drift. Therefore, we must choose the trajectory
along which the active and passive joints simultane-
ously stop at the desired angles.

First, we discuss the behavior of the manipulator
when the trajectory profile of the active joints is scaled
along the time-axis. Next, we consider the trajectory
that can be realized from the initial state, and the
trajectory that can reach the desired state. Those
two trajectories are connected by the free rotation of
the passive joint. The idea of bi-directional trajectory
planning from both the initial and desired states was
suggested by Ref. [11], which proposed a bi-directional
approach to the motion planning of a space robot. Our
method gives an exact solution, not an approximated
one, for the positioning. In the planned trajectory,
all the joints can be positioned simultaneously to the
desired angles by swinging the active joints only twice.

3.1 Time-scaling of Trajectory

Here, we consider the motion of the passive joint
when the time-axis of the active joint trajectory
stretches or shrinks uniformly. It is shown that the
angle of the passive joint at the final point of the tra-
jectory does not vary however the time-axis i1s scaled,
and that the angular velocities of the passive joint at
both ends of the trajectory are proportional to the
scaling factor.

The active joints are given the following trajectory,

8, = f(rt) = [fi(kt), ..., famr(rt)]T, (6)
which is a function of time ¢t (0 < t < 1/k).
fi(), .., fa—1(s) are twice differentiable scalar func-

tions. The constant x > 0 is the time-scaling factor.
Suppose s = «t is a new time-variable, then
do; 5 d*0;

K K d52

ds’

(i=1,...,n). (7)

Substituting Eq.(7) to Eq.(4), and considering Eq.(3),
we obtain

d*6,

d*e dé
_ 1 a
T 1y () {mpa(g)ﬁ

+ 0,06, )} (8)



Eq.(8) is a differential equation with s being the in-
dependent variable and includes neither ¢ nor x explic-
itly. The input, d?8,/ds?, is the second-order deriva-
tive of f(s) with regard to s, and depends on s only.
Hence the solution of this differential equation can be
represented as a function of s, 0,(s). In other words,
the manipulator moves along the same path ! irre-
spective of k. When the passive joint starts from
the same initial state 6,|,—0, df),/ds|;=o and the ac-
tive joints are given the same trajectory 68, = f(s)
(0 < s < 1), the passive joint reaches the same final
state 0, |,=1, d6,/ds|s=1. Thus 6, and §,/k at t = 1/«
are independent of the scaling factor £ and have con-
stant values.

Furthermore, we add the following boundary con-
dition,

dif dif
f(O) = GaOaf(l) = 6(11; E(O) = E(l) =0

on the active joint trajectory f(s). The active joints
start from 8,9 with zero velocity, and stop again at 84
for any time-scaling factor k. We call such a motion
as a “swing” of the active joints. Suppose the passive
joint takes the initial state (s = 0) as zero velocity
at the angle @,0. The active joints stop at s = 1,
but the passive joint does not stop due to the drift
term in Eq.(5). It usually has non-zero velocity 1
at the angle ¢,,. Those values can be calculated by
giving the active joint acceleration 8, to Eq.(4) and
integrating the equation numerically from the initial
state. The passive joint has the same angle 0, at
the end of the trajectory for arbitrary scaling factor
&, while the angular velocity 6,1 is proportional to &.

Conversely, we can consider such angle f,0 and an-
gular velocity épo at s = 0 that the passive joint has
zero velocity at the end of the swing (s = 1). 8,0 and
épo can be calculated backwards by integrating Eq.(4)
in the reverse direction from ¢t = 1/x to ¢t = 0. Such
a trajectory can exist unless d*6,/ds? = 0 during the
swing. The passive joint angle #,5 at the initial state
does not change regardless of the scaling factor &, and
the angular velocity épo is proportional to k.

3.2 Bi-directional Motion Planning
The trajectory for the positioning between two con-

figurations is planned utilizing the property of the
time-scaling described above. It is assumed that the

LA path means a geometrical curve in the configuration space
that is not associated with time. We make a distinction from
a trajectory, which represents the motion with the progress of
time.

active joints stop at a certain intermediate position
besides the initial and the desired positions. The po-
sitioning trajectory is composed of three trajectory
primitives. The first one is the trajectory from the
initial state which can be realized by the swing of the
active joints from the initial to the intermediate posi-
tion. The next one is the free rotation of the passive
joint while the active joints stay at the intermediate
position. The last one is the trajectory that can reach
the desired state by the swing from the intermediate
to the desired position. Those trajectories are param-
eterized by the time-scaling factor for each swing and
the intermediate position of the active joints. The
parameters of the swings are chosen so that the tra-
jectory from the initial state and the trajectory to the
desired state can be smoothly connected by the tra-
jectory of free rotation.

The initial and the desired configurations of the ma-
nipulator are denoted by [82,,0,0]7 and [82,,0,4]7,
respectively. The intermediate position of the active
joints is represented as 8,,,,. First, the active joints
move from the initial position 8,y to the intermediate
position 8, according to the trajectory

Ha = fA(K?At) (0 S [ S I/K?A)

which satisfies the following boundary conditions,

d d
fA(O) = gaOafA(l) = Ham, %(0) = C{; (1) =0

(Swing A). Then the active joints stay there for a
while. Finally, the active joints move to the desired
position 8,4 according to the trajectory

Ha = fB(K?Bt) (0 S [ S I/K?B)
satisfying the boundary conditions,

d d
£5(0) = Bam. £5(1) = 600, T20) = D1y =0

(Swing B). Figure 1 and Figure 2 show the trajecto-
ries of the active and passive joints in the state space
for a two-axis manipulator.

When the time-scaling factor k4 for Swing A equals
1, the angle and angular velocity of the passive joint
at the instant the active joints reach 64, are denoted
by 9;2:1 and 9;2:1, respectively. These values can be
easily obtained by numerically integrating Eq.(8) over
0 < s < 1. In the same way, the time-scaling factor
kp for Swing B is assumed to be 1. Then the ini-
tial passive joint angle 9;521 and the angular velocity

95521 at which the manipulator stops at the desired
configuration 6,4, 0,4 after Swing B can be calculated
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Fig.2: Trajectory of passive joint

back by the integration of Eq.(8), where the time-axis
is reversed in this case. See the thin lines of Figure
1 and Figure 2.

When the time-scaling factor k4 for Swing A has
an arbitrary positive value, the passive joint angle @, 4
at the end of the swing does not depend on x4 and is
constant. The angular velocity ¢, 4 is proportional to
KA. ) )

Opa = 0537, Opa = raly;™ (9)

The passive joint angle ¢,p at the start of Swing B
does not change with kg, and the angular velocity
6pp 1s proportional to g, too.

Opp = 055", Oy = kpliE™" (10)

While the active joints stand still at the intermedi-
ate position, the manipulator is equivalent to a rigid
link pivoted around the passive joint at a fixed location
in the inertial coordinate frame. Therefore the passive
Joint rotates with constant angular velocity. The pas-
sive joint passes through 6,5 if 6,4 # 0, since the
passive joint is a limitless revolute axis. If épA = épB
and Swing B starts at the moment the passive joint
reaches ,p, Swing A and B can be smoothly con-
nected. The angular velocity of the passive joint at
the end of Swing A and the start of Swing B can be

equalized by the time-scaling, if we can find such inter-
mediate position of the active joints, 6,,,, that 9;2:1

and 9“521 have the same turning directions. From
Eq.(9) and (10), the time-scaling factors should sat-
1sfy, . .

Kka/kp =055~ 054=1 (11)

The time-axis of the active joint trajectory in each
swing is scaled using these x4 and kg, like the thick
line in Figure 1. Then the state of the passive
joint traces the thick line in Figure 2 and stops
at the desired angle. The pause at the interme-
diate position 84, is the smallest positive value of
(0pp — Opa + 2n7) /0,4, where n is an integer.

The necessary condition to plan the desired trajec-
tory with the above method is that there exists such
intermediate position, 6,,, that 9;2:1 and 9;521
have the same signs. It is neither obvious nor easy
to show analytically for what combination of the ini-
tial and the desired configurations there exists such
0. . Instead, we numerically show later that such in-
termediate positions exist in a wide area for a two-axis
planar manipulator.

Provided the above condition is satisfied, the inter-
mediate position 8y, , the angular velocity of the pas-
sive joint during the free rotation, and the trajectory
profile of the active joints f 4(-), f5(-) remain uncon-
strained as the freedoms in the trajectory design, and
can be exploited for optimizing the trajectory (e.g.
minimum-time).

Most of the computational effort to plan the motion
lies in the numerical integration of Eq.(8) for Swing A
and B. One set of the integrations for one intermedi-
ate position @,y provides information on the possi-
bility of positioning (whether 9;2:1 and 9;521 have
the same sign) and the ratio of the time-scaling fac-
tors, K4 /kg. The computational load depends on the
search method for 6,,, and is generally small. Once
6., that enables the positioning is found, the exact
solution trajectory is obtained immediately. Note that
the solution 1s not an approximated trajectory by it-
erative calculations.

4 Feedback Control

Since no potential force such as gravity acts on
the passive joint, this manipulator cannot be asymp-
totically stabilized to an equilibrium point with any
smooth state feedback [1]. However, the open-loop
trajectory for the positioning from the initial configu-
ration to the desired configuration is rigorously calcu-
lated by the motion planning in the previous section.



The manipulator is expected to reach the neighbor-
hood of the desired configuration if some feedback con-
trol can be assembled in accordance with this nominal
trajectory.

Actually, the passive joint angle #,4 and the an-
gular velocity épA just after Swing A do not have to
completely coincide with the planned values, as far
as 0,4 has the same sign as the angular velocity 0,5
at the start of Swing B. The time-scaling factor kp
for Swing B is modified as kg = 9p3/9;§:1, where
épB is the measured angular velocity when the pas-
sive joint reaches f,p. The trajectory of Swing B that
stops at the desired configuration can be renewed us-
ing this kp. Consequently, feedback control is essen-
tial in Swing B.

The manipulator moves along the geometrically
identical path in the configuration space when the
time-axis of the active joint trajectory is scaled uni-
formly. If the posture of the manipulator is con-
strained along the desired path, the time-axis might
be automatically scaled and the velocity profile along
the path could be what the desired trajectory is scaled
to be. Since the desired trajectory is planned so that
the velocity of each joint becomes zero at both ends
of the trajectory, the manipulator is expected to stop
at the desired configuration however the time-axis is
scaled.

In this section, we first show that the swing of n—1
active joints can be represented by one coordinate.
Next, the feedback control is developed to make the
manipulator follow the desired path using the accel-
eration of this coordinate as the input. We proposed
the path tracking control of an underactuated manip-
ulator in Ref.[12]. However, in that method the path
coordinate frame had to be defined based on the de-
sired path. The feedback control law in this paper
does not use the path coordinate frame and requires
the planned trajectory data only.

4.1 Single Coordinate Representation of
Active Joints

The motions of the n — 1 active joints are con-
strained by each other according to the function f(-)
as in Eq.(6). These motions can be combined to one
degree-of-freedom motion. Suppose the coordinate
which represents this motion is z, € R, then the active
joint position 8, is represented as,

0o =g(za) = [01(2a), oy gnr(xa)]". (12)

x4 can be considered as a distance along the path of
the active joints. The function g(-) means the coordi-

nate transformation from z, to 8,. The active joint
velocity 6., and acceleration 8, are

. . d*g ., dg .
z 0,=—z Zg.
as a l’g a + dl‘a a

dg
dz,

6, = (13)

Substituting them to the constraint (2) results in

&g .,
d—x(zlxa =0.

dg .. -
My %xa + mppby + by + Mpa

This equation can be rewritten as

Ma(Ta,0p)2a + mp(2a,0,)0p + b(2a,0,, iq,60,) =0

(14)
where,
dg d’g .
Mg = mpaE’ mp = myp, b=1bp+ mpa@l’i
(15)

Eq.(14) represents the dynamic constraint between the
coordinate z, describing the active joint motion, and
the passive joint angle @,. It has the same form as the
constraint of a manipulator with one active and one
passive joint.

4.2 Feedback for Path Tracking

We assume the desired geometrical path in the con-
figuration space is represented as

0y = ,4(x4). (16)

In other words, the passive joint angle f, is uniquely
determined for the position of the active joints, x,.
Eq.(16) defines the geometrical relationship between
¢, and z,, and does not depend on time. This re-
lationship can be obtained by eliminating s from the
desired trajectory

0p = de(s),

g = Lad(s)

planned for each swing. z, should be monotonously
increasing or decreasing, and z, and s should have a
one-to-one correspondence, in order to represent the
path as Eq.(16). . is not allowed to stop or go back
along the trajectory. Such swings of the active joints
must be given in the motion planning. The angle error
ep of the passive joint from the desired path is defined
as

ep = 0p — Opa(a). (17)

Differentiating the above equation with respect to
time,
dipq .

ép = 9}0 - El’a (18)



dé d?6
R e

(19)
The angular acceleration of the passive joint, ép, 1s,
ép = —m;l(mai‘a +9b)

from the dynamic constraint (14). Substituting it to

Eq.(19),

dgpd . 1 dzgpd -2
dl‘a )l‘a — mp b — d—x(zll‘a

& = —(my 'mg + (20)

When the acceleration of the error is €,, the accelera-
tion of the active joints is,

_ d 6
é my b+ st
.. p
Ty = — — (21)
-1 -1 d€
mp Mg + d mp Mg + I

ifm,; Y+ _ Bpa # 0. €p is determined by the following

PD feedback
ép = —k’vép — kpep (22)

where kp and ky are position and velocity feedback
gains, respectively. The acceleration z, of the active
joints is calculated by substituting Eq.(22) to Eq.(21).
Then the error converges to zero as €, +kvé, +kpe, =
0. The manipulator is thus constrained to the desired
path.

The second term of the right side in Eq.(21) is the
feedforward term in the sense that it gives the motion
along the desired path if e, = 0. However, it is actu-
ally a state feedback which does not depend on time,
since it consists of the functions of z,, 0,, £, and 0,
only. The acceleration of the active joints is not given
as a function of time.

The calculations of Eq. (17) (18) (2

quire fpq(za), Cif 2L () and &

1) and (22) re-

(l‘a) as functions of
z, In real-time. 6,4(s), dfl’s’d( ) gd (s) can be
obtained in advance as functions of s from Eq.(8) and
its integration, while the desired trajectory is planned.
zq(s), ddxs” (s) 7.5 (s) are calculated as the active

joint motion. If these values are stored in memory ar-

rays, nypj (s)

2
ddi’;d (s) can be calculated as follows:

d6pa 9 d*0p4  dfpa dz,
dgpd s d gpd __ds® de, ds?
de, ~ dza’ de? dr, 2
¢ ds ¢ ds

As x4 1s strictly increasing or decreasing according to
. . 8
s, s can be uniquely determined for z,. 0,4, 2= and

2
ddi’;d are obtained by table-lookup using this s.

The velocity and acceleration of the manipulator
along the desired path are determined by the shape of
the path and the initial velocity. Substituting ¢, = 0
to Eq.(21), the acceleration #, of the active joints is,

_1b+ d? Opa - 2
ia:—l—a. (23)
mp Mg + s

de a’ .
24 and =—2% are functions of z,. The angle 6, of the
dw . de? p

passive joint is also a function of x,, and then m, and
. . K : 6., .
m,, are functions of x,, too. Considering 6, = =2z,
P ’ dr g

and Eq.(3)(13)(15), b is a product of 2 and a function
of x,. Hence Eq.(23) can be rewritten as,

— a(xa)j:i. (24)

a(zq) is a function of z, determined by the shape of
the path. If the time-axis is scaled by the factor £ > 0
as s = ki,

o Hda:a Pg = K2 At
a a —
ds’ ds?
then
2
d°z, dz, .,

"o a0 (25)
Eq.(25) explicitly includes neither ¢ nor «, and has
the equivalent form of Eq.(24). Therefore, if the time-
axis of the trajectory that satisfies Eq.(24) is scaled
by a constant factor, it is also a solution of Eq.(24).
It is the only solution for that scaling factor because
of the uniqueness of the solution. Since the planned
trajectory is one of the solutions of Eq.(24), all the tra-
jectories when the manipulator is constrained to the
desired path coincide with the trajectories to which
the desired trajectory is time-scaled.
From
drg dtg
dt de,

ld(jea)2
2 dx, '

o= (26)
Eq.(24) can be considered as a linear differential equa-
tion where z, is the independent variable and #2 is
the unknown variable. The initial condition is given
as #q = #qp at ¥4 = 240, hence Eq.(24) can be solved

as
Tq

#(ea) = iZyesn( [

Lao

2a(z)dz). (27)

exp(f * 2a(z)dz) is a positive function of z,, and
equals 1 at £, = x40. The time-scaling of the solu-
tion is obvious from Eq.(27), too.



4.3 Switchings of Control Law

When e, =0, £, = 0 and ép = 0, the active joint
acceleration, #,, calculated from Eq.(21) equals zero.
This means the manipulator cannot start moving from
the initial zero-velocity state by only the path tracking
control. It 1s necessary to accelerate the manipulator
with a feedforward control according to the desired
trajectory of the active joint, £44(t), #44(t) and Z44(¢),
at least in the initial part of Swing A.

The configuration where mzjlma + dipj =0 is sin-
gular in Eq.(21), and the feedback control in the pre-
vious section cannot be applied there. If #, — 0 and
6, — 0, then b(xq,0p,%4,0,) — 0 in Eq.(14) and
m;lma + B, . Therefore, the initial and the

ey
desired configurations of the positioning are singular.

Furthermore, nypd cannot be defined where ddxs” =
and dfl’s’d # 0, and Eq.(18)(21) cannot be calculated.

The end of Swing A and the start of Swing B come
under this case because the active joints are at rest
and the passive joint rotates there. The control law of
Eq.(21) cannot be used in the neighborhood of these
points.

The control law of the previous section does not
depend on time and automatically scales the time-
axis. It cannot be smoothly switched to the feedfor-
ward control that gives the active joint trajectory as
a function of time. The active joint acceleration on
the desired path i1s proportional to the square of the
velocity, #2, from Eq.(24). We represent the desired
trajectory of the active joints as functions of the po-
sition u4, i.e. the desired acceleration is Z44(%,) and
the desired velocity is #44(%4). The position where
the control law is switched 1s x40 and the velocity at
that time 18 #40. When the active joint acceleration is
given as

ol o

Tgq = i’id(l‘ao) LTadlTa),
Eq.(24) is satisfied at the moment of the switching and
the control law is continuously changed. Z,q(24) can
be defined all over the trajectory and the control input
can be always obtained. Since Eq.(28) has a form of
a state feedback that does not depend on time, it is
consistent with the time-scaling by the control law in
the previous section.

5 Simulations and Experiments

We tested the proposed motion planning and feed-
back control method with the simulations and exper-
iments using a two-axis planar manipulator (Figure

Fig.3: Two-axis planar underactuated manipulator

3) in which the first axis is active and the second axis
is passive. m is the mass of the second link, I is the
moment of inertia of the second link around the cen-
ter of mass, [ is the distance between the passive joint
and the center of mass of the second link, and L is the
length of the first link. The dynamic constraint due
to the passive joint is,

(Lcosb, + /\)éa + /\ép + Lsin Hpég =0 (29)

where A =1 4 I/(ml). A is the distance between the
passive joint and the center of percussion of the second
link.

First, the trajectories for the positioning are
planned by the method of Section 3. The active joint
trajectory of each swing, which corresponds to f(xt)
in Eq.(6), is given by

0a(t) = Oa1 + (0a2 — 0a1) (Kt — 5= sin 2mkt)
61(1 (1) = K(fa2 — 041)(1 — cos 2mkt)
0.(t) = 27k*(042 — 041) sin 27kt

In Swing A, 8,1 is the initial angle 8,0, and 8,5 is
the intermediate angle 84,,. In Swing B, 6, is the
intermediate angle f,,,, and 8,; is the desired angle
f.q. The maximum acceleration of the active joints
is limited. The time-scaling factor, k4 and xp, for
each swing is determined so that the peak angular
acceleration, 2mk? (0,42 — 041), for one swing equals the
maximum and the acceleration for the other swing is
within the limit.

The positioning trajectories are planned from the
initial configuration 8, = O[rad], §, = O[rad] to var-
ious desired configurations, and the intervals for the
positionings are examined. The desired configurations
are in the area of 0 < 0, < 7, —7 < 8, < 7w and the
step angle is w/12. The intermediate angle of the ac-
tive joint is searched within the initial angle 7 with
/180 step to find the angle where the positioning in-
terval becomes minimum. The parameters of the ma-
nipulator are L = 0.3[m] and A = 0.2[m]. The an-
gular acceleration of the active joint is limited within
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Fig.5: Planned trajectory

6] < 4r[rad/sec’]. Figure 4 shows the position-
ing intervals ([sec]) to the desired configurations. To
the configurations marked as 4, the positioning takes
more than 10 seconds. The positioning trajectory can-
not be found for the configuration marked as —. Po-
sitioning to most of the desired configurations can be
achieved within 10 seconds.

Figure 5 and Figure 6 show an example of the
planned trajectories. The initial configuration is 8, =
Ofrad], 6, = O[rad] and the desired configuration is
8, = 0.524[rad], 6, = 1.571[rad]. The intermediate
angle of the active joint is 8, = —0.541[rad]. The
Swing A, the free rotation period, and Swing B take
0.520, 0.018 and 2.077 [sec], respectively. The total
positioning interval is 2.615 seconds. Eq.(8) is numer-
ically integrated using the fourth-order Runge-Kutta
method. The trajectory for each swing is divided into
256 steps, and the intermediate angle is chosen from
40 candidates. The motion planning for one trajectory
takes 8.8 [sec] with a personal computer (80486CPU,
50MHz).

Next, we verified the path tracking by the feedback
control in Section 4. As the manipulator has one ac-
tive joint, x4 coincides with #,. The desired path is the
Swing B part of the positioning trajectory in Figure
6. An angle error of 0.1 [rad] is given to the passive

— Feedback Control Time (sec)
0 T 1 1 1

Fig.7: Tracking error (simulation)

joint at the start of Swing B. Figure 7 shows the plot
of the tracking error e,. In the case of the feedforward
control (thin line), the error increases and the manip-
ulator cannot stop at the end of the trajectory. On the
other hand, the feedback control suppresses the error
and the manipulator follows the path (thick line). The
manipulator stops at 6, = 0.524[rad], 8, = 1.571[rad]
and positioning is achieved in spite of the initial error.

Then, the positioning of an experimental manipu-
lator (Figure 8) is actually performed. The manipu-
lator has two active joints and one passive joint. The
base joint is fixed and the experiment is conducted
using the remaining two joints. The length of each
link is 0.3 m. The active joint i1s driven by a 20W
dc motor with a reduction gear. The angle of each
joint 1s measured by a rotary encoder. A personal
computer (80486CPU, 50MHz) is used for the con-
trol. The feedback for the path tracking is applied
during Swing B only. Figure 9 shows the experimen-
tal result of the positioning from the initial configu-
ration 6, = 0.000[rad], 6, = 0.000[rad] to the desired
configuration 6, = 0.524[rad], 6, = 1.571[rad]. The
manipulator stops at 6, = 0.523[rad], 8, = 1.594[rad]
in 2.55 seconds. Figure 10 also shows the positioning
from 6, = 0.523[rad], 8, = 1.474[rad] to 8, = O[rad],
6, = O[rad]. The initial and the desired configurations
are nearly swapped from the case of Figure 9. The ma-
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Fig.8: Experimental setup

Fig.9: Motion of manipulator (experiment)

nipulator reaches 6, = —0.001[rad], 8, = —0.015[rad]

in 2.05 seconds.

6 Conclusions

We proposed a motion planning and feedback con-
trol method for the position control of an underactu-
ated manipulator with one passive joint on which no
gravity acts. The trajectory for positioning is planned
by time-scaling of the trajectories that are numerically
calculated from the initial and the desired configura-
tions, and connecting them by the free rotation tra-
jectory. This method gives the exact solution for the
positioning, and the active and passive joints reach
the desired angles simultaneously by only two swings
of the active joints. Feedback control that makes the
manipulator follow the desired path is also proposed.
We experimentally demonstrated that position con-
trol to the desired configuration can be achieved by
the proposed methods.

In future work, generalization of the proposed
methods for general class of underactuated manipu-
lators (more passive joints, with gravity and friction)
should be discussed further. The robustness of the
feedback control against the modelling error and the
external disturbance should also be considered.
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Fig. 10: Motion of manipulator 2 (experiment)
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