
Evolutionary Motion Synthesis for a Modular Robot

using Genetic Algorithm

Eiichi Yoshida∗ † Satoshi Murata** Akiya Kamimura*

Kohji Tomita* Haruhisa Kurokawa* Shigeru Kokaji*

* Distributed System Design Research Group, Intelligent Systems Institute,

National Institute of Advanced Industrial Science and Technology (AIST)

1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564 Japan

** Department of Computational Intelligence and Systems Science,

Interdisciplinary Graduate School of Science and Engineering,

Tokyo Institute of Technology,

4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502 Japan

Abstract

An evolutionary motion synthesis method using genetic algorithm (GA) is presented for self-

reconfigurable modular robot M-TRAN designed to realize various robotic motions and three-

dimensional structures. The proposed method is characterized by its capacity to derive feasible

solutions for complex synthesis problem of M-TRAN through natural genetic representation. For

this purpose, the behavior of the robot is described using a motion sequence including both the

dynamic motions and configuration changes of the robot. It is a series of segments each of which

can specify simultaneous motor actuations and self-reconfiguration by connection/disconnection,

starting from a given initial configuration. This simple description can be straightforwardly en-

coded into genetic representation to which genetic operations can be applied in a natural manner.

We adopt traveling distance achieved by the evolved motion as the fitness function of GA. To

verify the effectiveness of the proposed method, we have conducted simulations of evolutionary

motion synthesis for certain initial configurations. Consequently, we confirm various adaptive

motions are acquired according to different initial configurations and fitness functions. We also

verify the physical feasibility of the evolved motions through experiments using hardware module

M-TRAN II.

Key Words: Modular Robotic System, Self-reconfiguration, Evolutionary Computation, Mo-

tion Synthesis, Genetic Algorithms

∗† Corresponding author (e.yoshida@aist.go.jp)

1 Introduction

Self-reconfigurable robots composed of simple robotic modules can change their shape by changing

their connection and generate various motions as a combination of each module’s movement. Their

applications include robots that must move around in unstructured environments, such as a rescue

robot that searches for survivors, a planetary exploring vehicle, or an inspection robot in hazardous en-

vironments. Modular robots can also be used as a static structure adaptive to environment. Recently,

many types of three-dimensional self-reconfigurable modular robot have been proposed 1)−8). We

have been developing a modular robot called M-TRAN (Modular TRANsformer) 9) and its software

for reconfiguration planning 12, 13). M-TRAN highlights its ability to realize both static structures

and dynamic motions in three dimensions, thanks to its compact simplified design and dextrous con-

nection mechanism. M-TRAN has successfully demonstrated its self-reconfigurability and dynamic

full-body motion capability through experiments 9). For example, a cluster of M-TRAN modules can

move as a crawler, then it can transform itself into a walking quadruped robot.

Due to their many degrees of freedom, motion synthesis of modular robots becomes a com-

putationally difficult problem. Many planning methods have been proposed for three-dimensional

self-reconfigurable robots 5, 6, 10, 11) including our reconfiguration planning method 12, 13). Most

researches focus on generating a reconfiguration sequence from one configuration to another. In addi-

tion to this “static” planning, dynamic motion synthesis must also be investigated so that the robot can

work effectively in each configuration. Especially for robots with full-body dynamic motion capacity

like M-TRAN, this motion synthesis is an important issue to fully exploit the high mobility of modular

robot. A motion synthesis method is therefore necessary that can generate feasible three-dimensional

motion with certain performance and is also widely applicable to different modular configurations.

Nevertheless, high complexity of this motion synthesis problem has been a major barrier to devel-

opment of such a method. It is difficult to apply frequently used schemes that learn the policy of

behavior decision as an action-selection table “if-state then then-behavior” 14, 15) because of dy-

namic motion and huge combinations of parameters describing states and behaviors. Path planning

method often used for mobile robots 16, 17) can difficulty in handling both the complex configuration

space and the dynamic motion of modular robot either.

As to robots’ motion generation itself, not limited to modular robots, a number of researches

can be found. Usage of central pattern generator (CPG) based on neural oscillators is a common

method for generation of biped or quadruped locomotion 18, 19). Kamimura also proposes a method

for motion generation of M-TRAN 20) using a CPG for fixed configuration. There have been studies

on evolutionary computation of robot configuration and its motion. Sims showed virtual creatures that

2

evolves their morphology and control mechanism 21). Hornby proposed evolutionary acquisition of

static structure as well as moving robots based on evolutionary computation based on L-System 22).

Although these evolutionary methods are promising for modular robots, motion synthesis methods

have hardly been addressed that integrates both dynamic motions and reconfiguration.

In this paper, we develop a simple and efficient motion synthesis method that can cope with

its high complexity to derive feasible solutions with sufficient performance for self-reconfigurable

robot M-TRAN. For this purpose, we introduce an evolutionary method using a genetic algorithm

(GA). In this method, we devise a genetic representation that encodes both robots’ motion and self-

reconfiguration by using a genotype that describes a sequence of segments including both motor

actuation and connection/disconnection of each module. The original point of this method lies in this

integration of the motion synthesis problem with high complexity into a GA-solvable form through a

natural segment-based motion description and encoding, which was difficult by action-selection table

or bit-string encoding. We have applied this method to randomly generated M-TRAN configurations

and conducted simulations to derive suitable motions using the moving distance as the fitness function

in GA. A dynamic simulation software library is used to model the real robots’ dynamics precisely.

This paper concentrates on verifying the ability of synthesis of dynamic motions, while the description

can potentially integrate self-reconfiguration as well. We will present various motions adaptive to

fitness functions and initial configurations, which are obtained as simulation results of GA. Physical

feasibility of evolved motions is experimentally confirmed using hardware prototype M-TRAN II.

2 Hardware and Motion Description

2.1 Module Structure

We briefly outline the hardware to give a basic idea of M-TRAN whose detailed hardware description

is given elsewhere 9). One module of the self-reconfigurable robot M-TRAN has two semi-cylindrical

parts connected by a link as shown in Fig. 1. Each part rotates by ±90◦ by a servomotor embedded

in the link and has three magnetic connecting faces (0 – 2). One of the two semi-cylindrical part has

active connecting faces with movable magnets that can disconnect themselves from other connect-

ing passive faces using shape memory alloy (SMA) actuator. A connecting face has electrodes for

communication and power supply from external power source. Therefore, all the connected mod-

ules can communicate to each other through inter-module communication network. Each module

has microprocessors for communication and driving actuators as well as batteries to allow the robot’s

autonomous operation.

3

Part 0

Part 1

pmym

zm

xm

θ 0

θ 1

Face 0

Face 1

Face 2
Unit length

Fig. 1: A module of M-TRAN.

2.2 Description of Motion and Reconfiguration

To describe how the robot moves and reconfigures itself, we introduce a simple syntax that denotes

connections and motor actuators of the modules that compose the whole robot. This syntax is designed

so that the robot’s motion is described in a simple manner by designating the initial state and the

motion sequence.

(A) Initial State

The position and orientation of one module are uniquely determined by specifying the position and

orientation of one part, together with the rotation angles of the servomotors. Therefore, the con-

figuration of the whole robot can be given by listing them for all the modules. Figure 2 illustrates

an example of initial state of a three-module configuration. We use an absolute coordinate system

where one unit length is defined as the length between the two rotational axes of a module. Each

semi-cylindrical part of module m is identified as 0 or 1. The position and orientation of module

m are defined as the position pm and the directions of the rotational axis zm and link ym of part 0

respectively in terms of the absolute coordinate system. The angles of servomotors are given by the

absolute rotation angles of each part (θ0, θ1). The initial state in Fig. 2 is given as follows:

ID 0 pm(0, 0, 0) zm(0, 1, 0) ym(−1, 0, 0)

(θ0, θ1) = (0◦, 0◦),

ID 1 pm(−1, 1, 0) zm(−1, 0, 0) ym(0, 1, 0)

(θ0, θ1) = (0◦, 0◦)

ID 2 pm(−1,−1, 0) zm(−1, 0, 0) ym(0,−1, 0)

(θ0, θ1) = (0◦, 0◦)

Given those parameters, the connection and configuration of the modular robot can be uniquely

determined. Hereafter, the initial rotation angles are assumed to be 0◦ for simplicity. We also assume

4

yx

(0,0,0)

Module 0
ym

zm

pm

z

ym

zm

(-1,1,0)

Module 1

(-1,-1,0)
ym

zm

Module 2

pm

pm

Part 0

Part 1

Fig. 2: Description of initial state.

that the connectivity of all the involved modules are maintained, which means that there are no isolated

modules.

(B) Motion Sequence

The motion sequence is represented by a series of segments that describe the connective states and

motor actuation of the modular robot based on our formerly developed interface software 23). A

segment has two parts, motion and connection operation.

The motion operation has the form “m [ID basepart] θ0, θ1” to specify how the servomotors

of each module are actuated. Here command “m” denotes the operation motion and [ID basepart]

are the ID of the module and its base part during the operation respectively. For each motor actuation,

either of part 0 or 1 must be given as base part that is explicitly fixed to another module, while the

other part is referred to as moving part (Fig. 3). The motor actuation is specified by “θ0, θ1” as absolute

angles between -90◦ and 90◦, with 30◦ step for simplicity. We also assume the rotation velocity is

constant for any rotation angles.

The interface software keeps track of the whole configuration during the given operations and

computes all the necessary connections. Therefore, there is no need for providing explicitly all the

connections except for the following case. By default, the software assumes that the motion oper-

ation automatically cuts all the connections of moving part that changes its position. To maintain

these connections, the operation connection must be provided explicitly using the command “c” as

“c [ID part] dir.” The connection operation is specified by command c with ID and the part

that maintains its connection. The connecting face is designated by “dir” as either of connecting

faces 0, 1, or 2 as shown in Fig. 3.

5

{ m [1 1] , -90 }

base part : 1

base part : 0

{ m [1 0] 90, 0 }

base part : 0

{ c [1 1] 0
 m [1 0] 90, 0 }

Explicit
connection

moving part : 0
(disconnected)

moving part :1

moving part : 1
(disconnected)

Module 1
Module 0

Module 2

Initial configuration

Connecting faces

0

1

2

θ 0
θ 1

Motor angles

Part 0
Part 1

(a)

(b)

(c)

Fig. 3: Segments including simple motion and connection operations.

A segment can comprise simultaneous motion operations with necessary connection operation. A

segment is shown as a collection of those operations quoted by “{}.” There is also a command loop

for iterative segments, as the segments quoted by “L N { ... },” where N is the iteration number.

Figure 3 shows examples of segment where the above operations are combined. In this fig-

ure, there are three modules 0–2 that are serially connected with all the motor angles 0◦. For all

three segments (a)–(c), only module 1 is actuated. The segments (a) “m [1 1] 0, -90” and (b)

“m [1 0] 90, 0” are with base part 1 and 0 respectively. As can be seen, the results are different

depending on the base part. Note that the connection of moving part is cut in both cases of (a) and (b).

The segment (c) includes the connection operation “c [1 1] 0” that keeps the connection between

modules 1 and 2.

Even though this simple syntax has limitations in rotation angles and velocities, it turned out that

6

various motions of M-TRAN can be described that include simultaneous motor actuations with con-

nection/disconnection operations 9). This syntax also reduces the amount of descriptions because of

the above implicit connection representation and its automatic interpretation by the interface software.

3 Applying Genetic Algorithm to Motion Sequence

In this section genetic algorithm (GA) is integrated into motion synthesis of self-reconfigurable mod-

ular robot M-TRAN through segment-based encoding of motion sequence. Before explaining the

implementation, the advantages of using GA, such as simplicity, ease of obtaining feasible solutions

and analyzing the results, are described compared to other approaches.

The frequently used approach describes the robot’s behavior as an action-selection table of “if-

state (configuration) then-behavior (connection, actuation)” and applies such schemes as reinforce-

ment learning or neural networks so that the robot can obtain the behavior policy based on this table

through trial and error. This is very effective for those problems that have complexity below certain

level, for example motion acquisition of simple robot or mobile robot navigation 14, 15). However,

especially for mobile robots, its motion synthesis has very high complexity 1 and also includes dy-

namic motions; it is not realistic to implement a system that learns such a large behavior table due to

combinatorial explosion.

Another promising approach is evolutionary motion generation and there have been a number of

researches. Among them is method based on CPG that can generate suitable motion patterns for fixed

body mechanisms in an emergent manner 18, 19). Other studies show another method that evolves

both body topology and control system 21, 22). However, those studies do not assume the topology

changes by self-reconfiguration using connection/disconnection.

Yet another alternative is path planning method 16, 17) often used for mobile robot navigation.

However, it is not appropriate for modular robot either, because the planner must deal with complex

configuration space with modular robots’ many degrees of freedom as well as dynamic motion.

For the above reasons, we adopt GA in such a way that a motion sequence can be represented in

a natural way; segment-based genetic representation is devised that encodes a motion sequence into

a genotype to which genetic operations like crossover and mutation are applicable. Besides its sim-

plicity, this integration of GA has several advantages. First, since this method searches in a complex

problem space by covering it with certain sparseness, we can expect that it derives feasible solutions
1One M-TRAN module has 26 possible connection states and 72 possible angular states (30◦ step). Since the number

of action is same, the size of state-action table becomes approximately 107. This size grows exponentially with the number

of modules.

7

for various initial modular configuration, but at the cost of optimality. Next, by giving an enough

length to the evolving motion sequence, we can also expect that meaningful motions are derived with

certain performance according to various the fitness functions. Finally, segment-based encoding en-

ables evolutionary acquisition of the modular robot’s motions as well as configuration changes, and

also makes it easy to analyze the resultant motion sequence. The simple motions obtained for small

modular robots can also be used as primitives that are combined into a larger system as described in

Section 6.

In the following, encoding and genetic operations are detailed in 3.1 and 3.2 respectively.

3.1 Encoding

We adopt a direct representation that encodes a segment-based motion sequence into a genotype string

where one gene corresponds to one segment (Fig. 4). This section explains the genetic simulator that

allows the modular robot to evolve its motion using a genetic algorithm. Since the motion sequence

defined in Section 2.2 is a series of segments that are the smallest elements of a genotype, the segment-

based encoding can be understood in a straightforward manner. Configuration changes may occur

during executing the motion sequence specified by a genotype.

In this framework, an arbitrary configuration can be chosen as an initial state for which an ap-

propriate motion sequence will be obtained through the evolution. On running GA, population is

provided as a collection of genotypes for given initial configurations.

Motion
Sequence

Genotype

{ c [0 1] 1
 c [0 1] 2
 m [1 0] 0 60
 m [0 0] 60 -60
 m [2 0] 60 -90 }

Initial configuration

Robot Motion

{ c [0 1] 1
 c [0 1] 2
 m [0 0] 0 -90
 m [1 0] 90 -90
 m [2 0] 90 -60 }

{ c [2 0] 0
 c [0 1] 1
 m [2 0] 60 30
 m [0 0] 30 -90
 m [1 0] 0 30 }

Gene 1 Gene 2 Gene 3

Segment 1 Segment 2 Segment 3

Fig. 4: Encoding a robot motion sequence into a genotype by assigning a gene to a segment.

8

3.2 Genetic Operations

Genetic algorithms mainly consist of the following processes in each generation; reproduction, ge-

netic operations including crossover and mutation, evaluation, and selection. We assume that initial

configurations are given in the first place. In the simulations in the next section, we will choose

examples from among randomly generated initial states.

(A) Crossover and Mutation

Figure 5 shows how crossover and mutation are applied to the introduced genotype. The crossover

operation is applied to two different strings that represent motion sequences. Two of new strings are

generated from those strings as illustrated in Fig. 5. This operation can be done in a similar way to

the crossover for bit strings. Here we adopt one cross-point crossover in this paper.

The mutation operation is applied to one string from which random number of segments are

chosen to be mutated. The selected segments are replaced by those randomly generated (Fig. 5).

These segments include connection “c” and motion “m” operations in which their ID, part, rotation

angles (by 30◦ step), and connecting faces are specified randomly.

The crossover and mutation operations are applied to the ratio rc and rm of the total population

respectively.

< Crossover >

Genotype = Motion sequence

Segment Crossover
point

Segments selected
for mutation

Replaced by
random segments

< Mutation >

Fig. 5: Crossover and mutation operations.

9

(B) Evaluation and Selection

After these operations, evaluation is conducted by two phases for the newly generated genotypes; first

by its physical feasibility and next by performance evaluation using fitness functions.

The first evaluation is necessary because some motions represented by the resulting genotypes

after the genetic operations may not be physically feasible due to the following hardware limitations

of the robot. The desired motion cannot be completed when:

(1) connectivity is not maintained by inappropriate disconnections,

(2) collision between the modules occurs, or

(3) excessive force or torque are applied to the connection faces or servomotors.

The above motion feasibility is verified by the interface software introduced in 2.2(B). Therefore, if

a resulting genotype turns out to be infeasible, it is rejected and other possibilities are explored by

genetic operations. This is an important step to maintain the population of genotypes representing

feasible motion sequences.

Next, the physically feasible genotypes undergo the second evaluation for selection. This evalua-

tion is performed based on the fitness function, which must be chosen depending on the task and the

constraints such as hardware limit of environments. The fitness function can be traveling distance,

energy consumption, reconfiguration steps, or their combinations.

In this paper as the fitness function, the robot’s traveling distance between the initial and the final

positions is computed through the motion described by the genotypes during a certain period of time.

Here the position of the robot is represented as its center of mass. All the genotypes in the population

are evaluated using this fitness function. Later in the simulation section, the reconfiguration steps are

fixed as all the length of genotypes representing motion sequences is the same. However, this can also

be used as a part of the fitness function in other applications.

Those genotypes that correspond to suitable motions are preserved in the next generation ac-

cording to the calculated fitness function. We adopt here a hybrid selection to prevent premature

convergence and maintain genetic variety. Three selection schemes are combined in this hybrid selec-

tion, elite, ranking and random selections, which are applied to the ratio selite, srank and srand of the

population respectively. Elite and ranking selections are to keep the fittest and relatively fit genotypes.

Random selection is introduced in order not to lose the variety of the population.

In this way, a new population is succeeded to the next generation and the same genetic process is

repeated.

10

4 Simulation Results

Simulations have been conducted to verify that the proposed method can generate proper motions

according to its configuration. In this paper, we focus on motion synthesis for fixed configurations

as a first stage of development, although the proposed evolutionary method can designed to deal with

configuration changes.

In the following simulations, evolutionary motion synthesis is simulated for randomly generated

initial configurations composed of three modules on a flat plane with friction. Given an initial con-

figuration, three fitness functions, the absolute traveling distance in ±x and ±y directions and the

total traveling distance are used to observe how the motions evolve according to different fitnesses.

For the simulations, we use the crossover and mutation ratio rc = 0.5 and rm = 0.05. The ratios of

hybrid selection are selite = 0.1, srank = 0.3, and srand = 0.6 respectively. The GA is conducted with

population size 40 and total generations 50 starting from a randomly generated initial population.

Here the length L of genotype string is constant as L = 10 for simplicity. The simulation repeats

the interpreted motion sequence until a period of T = 100 seconds elapses to evaluate the traveling

distance.

The dynamics of robot motion are simulated using a dynamics simulator library Vortex developed

by Critical Mass Labs. In the simulation, we assume that a velocity control for servomotors with

constant angular velocity v = π/6 and maximum torque to lift another module against gravity. The

connection between modules is considered to be sufficiently rigid. Such parameters as size and mass

of the robot, gravity, and friction are also appropriately modeled.

In this section we report some simulation results of evolved motion. The first result shows how

different motions develop for different fitnesses, and the second one is an example of a dynamic

whole-body motion.

4.1 Evolution of Motions for Different Fitnesses

The first simulation result demonstrates that different motions have been obtained for the same initial

configuration depending on fitness functions. The genetic algorithm was applied to an initial con-

figuration in Fig. 2 placed on a flat plane using two fitness functions; the total moving distances in

±x and ±y directions. Figure 6 shows two fittest motions at different generations 27 and 40, using

the absolute moving distance in ±x direction as the fitness function. At the earlier generation of 27,

the GA outputs a crawling motion using friction as shown in Fig. 6(1). Then more efficient motion

is discovered where a central module lifts two other modules and swings them forward to gain the

11

x y
Moving direction

(a) (b) (c) (d)

(1)
x y

Moving direction

(a) (b) (c) (d)

(2)

Fig. 6: Two different motions evolved using the absolute moving distance in ±x direction as the

fitness function. (1) Crawling motion using friction at generation 27. (a) initial condition. The robot

rolls itself (b), and make crawling motion to move in −x direction (c, d). (2) “Lift and swing” motion

acquired at generation 40. (a) initial condition. The central unit lifts the other two (b), swings them

toward −x direction (c) and gain distance (d).

distance at generation 40, as in Fig. 6(2). Figure 7 is the development of average and maximum value

of fitness functions in the population, the traveling distance in ±x direction after 100 seconds. We

can observe that the maximum fitness function drastically rises from 4.2 to 7.7 at generation 40 when

the lifting motion was acquired. The average fitness is also gradually improved through generations.

Figure 8 shows the evolved motion after total 50 generation using the moving distance in ±y

direction as the fitness. This is an inchworm locomotion using two modules at both ends and the

robot moves by the distance of 18.1.

4.2 Example of Whole-Body Motion

Figure 9 shows another random configuration for which total traveling distance in an arbitrary direc-

tion is used as the fitness function. As a result, a whole-body twisting motion was finally acquired

after simulation of 50 generations. During this motion, the robot continuously twists its body and

repeats flipping itself to move in a certain direction. Although it is a simple motion that iterates a

12

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

Fi
tn

es
s

Generation

max
average

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

Fi
tn

es
s

Generation

max
average

Fig. 7: Development of fitness function of distance in ±x direction.

x y

Moving
direction

(a) (c) (d)(b)

Fig. 8: Motion evolved using the absolute moving distance in ±y direction as the fitness function. (a)

initial condition. The robot moves by an inchworm locomotion by the modules at both ends.

x y

Moving
direction

(a) (c) (d)(b)

Fig. 9: A whole-body motion evolved using the total moving distance as the fitness function. (a) initial

condition where the arrow shows the moving direction. Using almost all the degrees of freedom, the

robot is rolling itself (b, c) and then total body is flipped over (d) to move in the desired direction.

sequence composed of just 10 segments, it can keep twisting skillfully and produce a steady advance.

The development of fitness function is shown in Fig. 10. The simulation output a motion that achieves

the maximum distance of 25.0 in 100 seconds after 50 generations. We can also observe the gradual

13

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

Fi
tn

es
s

Generation

max
average

Fig. 10: Development of fitness function of total moving distance.

improvement of the average fitness.

To summarize, we have shown that suitable motion sequence has been obtained according to the

given initial configurations and different fitness functions. From the above simulation results, we

demonstrated that the proposed evolutionary method can generate motions of modular robot in an

adaptive and effective fashion.

5 Experiments

We have conducted experiments to verify the evolved motion can be realized using hardware module

of M-TRAN II model developed recently 20). Compared to the previous model M-TRAN, this hard-

ware is downsized one box part from 6.6cm cube to 6 cm, and the performance is improved in motor

control, communication capacity, and power consumption. These improvements allows the modules

to operate autonomously using battery.

The evolved motion sequence is downloaded to each module to move the modules in the same

way as the simulation. During the experiments, the modular robot is driven by the batteries embed-

ded in each module. Figures 11 and 12 show the experiment using the results in Figs. 6 and 8 in

Section 4.1. Figure 13 is the experimental result of the whole-body twisting motion obtained in Sec-

tion 4.2. In general, the evolved motions are executed properly by the hardware and the robot moves

in the expected direction.

The above experiments verified the motion derived by the proposed evolutionary motion synthesis

is physically feasible. However, we also observed that some motions are not executed as expected.

To improve the accuracy of simulation, modeling of friction and motor property must be refined.

14

(a) (b) (c) (d)
(1) Crawling motion.

(a) (b) (c) (d)
(2) Lift-and-swing motion.

Fig. 11: The evolved motions in Fig. 6 using the absolute moving distance in ±x direction as the

fitness function. (1) After rolling itself (b), the robot crawls in the desired direction using friction. (2)

To achieve the evolved “lift and swing” motion, the central module successfully lifts and swings the

other two modules.

(a) (b) (c) (d)

Fig. 12: The evolved motion in Fig. 8 using fitness function of moving distance in ±y direction. The

robot realizes an inchworm locomotion.

6 Conclusions and Future Work

6.1 Conclusions

This paper presented an evolutionary motion synthesis for a modular robot using the genetic algorithm

(GA). The method is featured by the ability to obtain feasible motions for the complex sysnthesis

problem and to describe the evolution of both the motor actuation and configuration changes of the

robot. We first introduced a simple description of motion and reconfiguration of modular robot M-

TRAN, in the form of motion sequence composed of segments. Next, a natural way of encoding those

15

(a) (b) (c) (d)

Fig. 13: The whole-body motion evolved in Fig. 9 using the total moving distance as the fitness

function. The twisting and flipping motion is properly executed.

motion sequences into genotypes by regarding a segment as a gene, and such genetic operations as

crossover and mutation are defined accordingly. We have conducted simulations using the absolute

traveling distance as the fitness functions of GA to verify that suitable motions can evolve for given

initial configurations. The simulations are conducted so as not to include configuration changes as

we focused on the evolutionary acquisition of robot motion. Using the proposed framework, various

motions were evolutionarily obtained in accordance with different fitness functions. It is noteworthy

that completely different motions evolved depending on different fitness functions that are moving

distances in different directions. Finally, the feasibility of evolved motions are verified using hardware

modules. We confirmed that the proposed method can output physically feasible motions by the

hardware.

6.2 Future Work

As noted above, this paper concentrates on the evolution of the robot motions and although configu-

ration changes can be integrated in the genetic representation, they are not included in the simulation.

The next step of this work is to investigate how the configuration changes must be included to evolve

the behavior of the robot effectively.

From the evolutionalism point of view, the results obtained in this paper corresponds to individual

evolution, whereas the evolution of configuration seeks to evolve the species. The latter becomes

significant where the robot encounters a drastic change of the external environment that cannot be

handled solely by the limited motion variety within a fixed configuration. One of the ways to represent

those topology changes is a network between different configurations. Figure 14 illustrates an image

of adaptive system including evolution of both individual and species. In this system, repertoire of

evolved primitive motions is stored in each individual configuration. If the environmental change

is considered to be significant, appropriate reconfiguration process must be invoked based on the

configuration network; in Fig. 14, this corresponds to reconfiguration between quadruped and crawler.

16

Crawler configurationQuadruped configuration

(1) Motion transition based on evolved motion
 repertoire within the same configurations

(2) Changing between different configurations
 on the network

Fig. 14: Adaptive system including evolution of motion and configuration.

To realize such a system, integration of sensors becomes an important research topic. We will continue

investigating the design of an adaptive system for modular robots. Improvement of precision of

modeling in simulations is also an issue to be tackled in future work, as well as selection of appropriate

parameters of GA.

References

1) S. Murata, et al.: “A 3-D self-reconfigurable structure,” Proc. 1998 IEEE Int. Conf. on Robotics

and Automation, 432–439, 1998.

2) K. Kotay, et al.: “The self-reconfiguring robotic molecule,” Proc. 1998 IEEE Int. Conf. on

Robotics and Automation, 424–431, 1998.

3) A. Castano, R. Chokkalingam, and P. Will: “Autonomous and Self-Sufficient CONRO Modules

for Reconfigurable Robots,” Distributed Autonomous Robotics 4, Springer, 155–164, 2000.

4) S. Murata, et al. : “Hardware Design of Modular Robotic System,” Proc. 2000 IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, F-AIII-3-5, 2000.

5) C. Ünsal, H. Kılıççöte, and P. Khosla: “A modular self-reconfigurable bipartite robotic system:

Implementation and Motion Planning,” Autonomous Robots, 10-1, 23–40, 2001.

17

6) M. Yim, Y. Zhang, J. Lamping, and E. Mao: “Distributed Control for 3D Metamorphosis,” Au-

tonomous Robots 10-1, 41–56, 2001.

7) D. Rus and M. Vona. “Crystalline Robots: Self-reconfiguration with Compressible Unit Mod-

ules,” Autonomous Robots, 10-1, 107–124, 2001.

8) E. Yoshida, et al: “Micro Self-Reconfigurable Modular Robot Using Shape Memory Alloy,”

Journal of Robotics and Mechatronics, 13-2, 212–219, 2001.

9) A. Kamimura, et al. : “Self-Reconfigurable Modular Robot – Experiments on Reconfiguration

and Locomotion –,” Proc. 2001 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 606–612,

2001.

10) K. Kotay and D. Rus: “Motion synthesis for the self-reconfigurable molecule,” Proc. 1998

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 843–851, 1998.

11) E. Yoshida, et al. : “A distributed method for reconfiguration of 3-D homogeneous structure,”

Advanced Robotics, 13-4, 363–380, 1999.

12) E. Yoshida, et al: “A Motion Generation Method for a Modular Robot,” Journal of Robotics and

Mechatronics, 14-2, 177–185, 2002.

13) E. Yoshida, et al: “A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Exper-

iments,” Internal Journal of Robotics Research, to appear.

14) M. Asada, et al: “Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforce-

ment Learning,” Machine Learning, 23-2/3, 279–303, 1996.

15) H. Kimura and S. Kobayashi: “Reinforcement Learning for Locomotion of a Two-linked Robot

Arm,” Proc. of the 6th Europian Workshop on Learning Robots (EWLR-6 1997), pp.144–153,

1997.

16) J.-C. Latombe: Robot Motion Planning, Kluwer Academic Press, 1991.

17) S. M. LaValle and J. J. Kuffner: “Rapidly-Exploring Random Trees: Progress and Prospects,”

Int. Journal of Robotics Research, 20-5, 378–400, 2001.

18) G. Taga: “A model of the neuro-musculo-skeletal system for human locomotion II – real-time

adaptability under various constraints,” Biolog. Cybern., 73, 113–121, 1995.

19) H. Kimura, et al.: “Realization of dynamic walking and running of the quadruped using neural

oscillator,” Autonomous Robots, 7-3, 247–258, 1999.

20) A. Kamimura, et al. : “Automatic Locomotion Pattern Generation for Modular Robots,” Proc.

18

2003 IEEE Int. Conf. on Robotics and Automation, submitted.

21) Karl Sims: “Evolving Virtual Creatures,” Computer Graphics, Annual Conference Series (SIG-

GRAPH ’94 Proceedings), 15–22, 1994.

22) S. Hornby, et al. : “Body-Brain Coevolution Using L-systems as a Generative Encoding,” Proc.

Genetic and Evolutionary Computation Conference (GECCO) , 868–875, 2001.

23) H. Kurokawa, et al. : “Motion Simulation of a Modular Robotic System,” Proc. 2000 IEEE Int.

Conf. on Industrial Electronics, Control and Instrumentation, 2473–2478, 2000.

19

