
A Motion Generation Method for a Modular Robot

Eiichi Yoshida∗ † Satoshi Murata** Akiya Kamimura*

Kohji Tomita* Haruhisa Kurokawa* Shigeru Kokaji*

* Distributed System Design Research Group, Intelligent Systems Institute,

National Institute of Advanced Industrial Science and Technology (AIST)

1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564 Japan

e-mail: e.yoshida@aist.go.jp

** Department of Computational Intelligence and Systems Science,

Interdisciplinary Graduate School of Science and Engineering,

Tokyo Institute of Technology,

4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502 Japan

Abstract

This paper discusses motion generation of a homogeneous modular robot called Modular

Transformer (MTRAN). The modules are designed to be self-reconfigurable so that a collection

of the modules can transform themselves into a robotic structure. The motion generation of the

self-reconfigurable robot is indeed a computationally difficult problem due to many combinatorial

possibilities of module configuration, even though the module itself is simple with two degrees

of freedom. This paper will describe a motion generation method for a class of multi-module

structure, based on a motion planner and a motion scheduler. The motion planner has two-layer

structure with global and local planners. The former is in charge of planning overall movement of

the cluster whereas the latter decides locally coordinated module motions called motion schemes.

After the motion is generated as a sequence of single motion schemes, the motion scheduler pro-

cesses the output plan to allow parallel motions to improve the efficiency. The effectiveness of the

motion generator is verified through a many-module simulation.

Key Words: Modular Robotic System, Self-reconfiguration, Motion Planning

∗† Corresponding author

1 Introduction

Self-reconfigurable modular robots have been intensively investigated in recent years. Especially,

homogeneous self-reconfigurable robots that can adapt themselves to the external environment by

changing their configuration and are also self-reparable by using spare modules. This type of robot is

useful in harsh environments where the adaptability and the self-maintainability becomes a significant

factor. They can serve as planetary exploring vehicles, robots for searching survivors in rubble, or

inspection robots in nuclear plants. Many interesting hardware design for three-dimensional (3D)

modular robots have been proposed 1)−6).

There have been a number of studies on distributed and centralized methods for generation of

modular robots. We have also developed several distributed methods for two-dimensional and three-

dimensional homogeneous modular robots 8, 9). These methods enabled them to self-assemble and

self-repair in a distributed manner using local inter-module communication. In contrast, most of

other methods are based on centralized planning. For instance, Kotay et. al 10) developed a motion

synthesis method for a class of module groups. Ünsal et. al 6) reported multi-level motion planners

for a bipartite module composed of cubes and links, based on heuristic graph search between module

configurations. These methods are dedicated to modules that have sufficient degrees of freedom to

move to every neighboring lattice position.

This paper seeks to build a methodology of generating motions of a modular robot called Modular

Transformer, or MTRAN, developed in AIST 7). MTRAN is a new type of modular robot that can

generate both static structure and dynamic robotic motion. This novel feature is realized by simplified

design of a module and a special connecting mechanism using magnets. Although we have shown

MTRAN can form various shapes such as a legged walking robot or a crawler-type robot, its motion

generation is not straightforward because of restricted degrees of freedom and non-isotropic spatial

property of movability of a module. The necessary motion combination should be correctly planned

for each particular local configuration. Also, a huge search space should be explored to check the

interchangeability between two arbitrary module configurations and the collision between modules in

3D space. For these reasons, it is currently difficult to find some generic laws of motion generation or

to directly apply our distributed methods for MTRAN.

This paper therefore focuses on building a feasible motion generator for a particular class of

module cluster by narrowing the search space of module motion as a first step to more general motion

generation method. The module cluster we will investigate is serially connected cube-like “blocks,”

each of which is composed of four modules. We will propose a motion generator that outputs a

block-based motion.

2

The motion generator consists of a motion planner and a motion scheduler to generate module

motions that allows the module clusters to move along a desired trajectory. The motion planner is

two-layered, and includes global flow planner and local motion scheme selector. The former outputs

possible module paths to realize the overall cluster motion. The latter selects valid paths and com-

prises them by collecting appropriate locally coordinated module motions based on a rule database.

These rules take account of non-isotropic module movability by associating appropriate pre-planned

motion schemes with various local configurations. The motion scheduler parallelizes the generated

motion plan by allowing motion steps in multiple motion schemes to be executed in parallel. This

improves the efficiency of module motion by reducing the steps of motions. The proposed method is

classified as a centralized motion generator assuming that all the information of modules in the cluster

is available.

After briefly introducing the hardware design and model description in Section 2, the structure

of the motion generator is addressed in Section 3. Sections from 4 to 7 give detailed descriptions of

the each component of the generator. Finally, Section 8 concludes the paper and discusses the future

development of the motion generator.

2 Hardware Design and Model Description

2.1 Design of MTRAN

A module of MTRAN consists of two semi-cylindrical parts connected by a link (Fig. 1). Servomo-

tors are embedded in the link part and each of the parts can rotate by 180◦. Each module has six

connecting surfaces (three for each part) that can actively connect and disconnect to other modules by

using magnets and shape memory alloy (SMA) actuators. The connecting surfaces are equipped with

electrodes for power supply and serial communication. All the connected modules can be supplied

power if one of them is connected to the power source. In each module a microcomputer BasicStamp

II (Parallax Inc.) using PIC16C57 processor (Microchip Technology Inc.) is mounted that receives

commands from a host PC and drives servomotors and SMA actuators.

2.2 Model description

Each semi-cylindrical part of a module is identified as p1 and p2 in the model description. The

position and orientation of the module m are uniquely determined by specifying the position and

orientation of one part, together with the rotation angles of the servomotors. Here, Σm is a local

3

coordinate system fixed on p1 of module m where the axes zm (rotation axis) and ym (the symmetrical

axis of the semi-cylindrical part) are defined as shown in Fig. 1. Let Σ0 be the absolute coordinate

system. The position and orientation of module m is determined by using:

• the central position pm(x, y, z) of p1 with respect to Σ0,

• the orientation of basis vectors zm and ym of Σm with respect to Σ0,

• the absolute rotation angles of each part (θ1, θ2).

Hereafter, we assume that both parts of modules move only on orthogonal-lattice grid and that the

rotation angles (θ1, θ2) are limited to either 0◦ or ±90◦ for simplicity. A unit length of the lattice grid

is defined as the length between the two rotational axes of a module. A module therefore occupies

two adjacent points in the grid.

We also denote the connection faces as Ciz+, Ciz− and Ciy (i = 1, 2 for p1, p2) according to Σm.

The state of a connecting face, S(face), takes either of the following:

T(ID) Connecting to module ID

T(*) Connecting to a module but ID not specified

F No module connected

The connection state of a module is written as [S(C1z+), S(C1z−), S(C1y)], [S(C2z+), S(C2z−), S(C2y)].

For example, Fig. 2 shows the initial configuration of two modules shown in Fig. 3, which is described

as follows.

θ 1

p1

p2

θ 2

pm

Connecting
faces

C1z+

C1z -

C1y

C2z+

C2z -

C2y

Direction of
link

ym

zm

Σm

xm

Σo

y

z

x
O

1 unit length

Fig. 1: A module of MTRAN.

4

p1
p1

 module 1 module 2

Σox y

z y1

z1

y1
z1

O

Fig. 2: An example of module configuration.

ID 1 pm(−1, 0, 0) zm(0, 1, 0) ym(0, 0, 1)

(θ1, θ2) = (−90◦, 0◦),

connection state: [F, F, T(*)], [T(2), F, F]

ID 2 pm(−2, 1, 0) zm(0, 0, 1) ym(0, 1, 0)

(θ1, θ2) = (0◦, 0◦)

connection state: [F, T(*), T(1)], [F, T(*), F]

2.3 Motion description

When a module makes a motion, one of the parts should be attached to another module to keep the

connectivity. We call this fixed part a base part. A motion step is described using module IDs, base

parts, rotation angles and the number of carried modules and their IDs if any.

A motion sequence is a collection of these motion steps. Figure 3 shows an example of two-

module motion sequence in which module 1 reorients module 2 starting from the initial state in Fig. 2.

In step 1, there are two moving modules, and the module ID 1 rotates by relative angles (∆θ1 = 90◦,

∆θ2 = 0◦) with base part p1 and carries another module ID 2, which does not make rotation, and so

on. This motion sequence consists of two steps and is described as follows.

step 1

ID 1 base p1 rot(90, 0) carry 1 ID 2

ID 2 base p1 rot(0, 0) carry 0

step 2

ID 1 base p1 rot(-90, 90) carry 1 ID 2

ID 2 base p1 rot(0, 0) carry 0

5

Helper

 Initial State Step 1
90

 Step 2
-90

90

Fig. 3: Mode conversion from pivot to forward-roll.

3 Structure of Motion Generator

The goal of motion generator is to let a cluster of MTRAN modules move along a certain given three-

dimensional trajectory in the lattice grid (Fig. 4). For instance, the trajectory corresponds to a path

that a plant inspection robot or a planetary explorer should trace. This allows the module cluster to

move into narrow space or to go over the obstacle. The motion generator should output appropriate

motion sequence that realizes the cluster motion guided along the desired trajectory.

Nevertheless, the search space is too large to be explored to generate an arbitrary motion for an

arbitrary configuration1. To develop a feasible motion generator, we consider a particular class of

module clusters (Fig. 5) composed of four-module blocks that look like large cubes. All the rotation

axes (zm) of the modules in a block are oriented in the same direction whereas ym axes of different

layer are orthogonal. The reasons why we adopt this cube-like block among several possibilities are:

1For N modules, at each step there are
∑N

i NCi possibilities at maximum to choose which module to move. For

each case, each module can take maximum 9 possible states for angles (θ1, θ2), even using discrete angle 0◦ and ±90◦.

Base part selection has also 2 possibilities.

Given trajectory

Module cluster
Planned motion

Fig. 4: Planning of cluster motion.

6

A block by 4 modules.

Fig. 5: A cluster composed of two layers with two converter modules.

(1) various sizes of 3D structures can be easily configured since the block has an isotropic shape,

(2) it is the smallest block that has such isotropic shape that can be connected at any of its faces,

(3) a global motion along 3D trajectory can be planned in a simple way on the basis of blocks, and

(4) the connectivity of all the modules is maintained in a cluster composed of these block.

A couple of modules that have different direction of rotation axes, called converters, are attached to

on top of the cluster. The converter modules are used to change the direction of rotation axes modules

in the chain cluster.

Given the trajectory as a block-base motion as an input, the motion should be planned for each

module. However, the module’s non-isotropic geometrical property makes it difficult to obtain the

motion sequence straightforwardly. Since a module has only two parallel rotation axes, its three-

dimensional motion usually requires a combined coordinated motion sequence of other surrounding

modules. If this motion sequence is not carefully planned, the resultant sequence may not be possible

for such reasons as inappropriate orientation of rotation axes, collision between modules, or loss of

connectivity during the motion. Since generally applicable laws have not been found for planning

these motion sequences, some database of rules to look up is necessary.

In this paper, we propose a motion generator composed of a motion planner and a motion sched-

uler. The motion planner has a two-layered architecture to cope with the complexity of the planning

problem. The upper layer decomposes the planning problem into subproblems solvable by the lower

layer. The lower layer is designed to solve simplified planning problems based on a database of rules

for each local configuration. After the motion planner outputs a serial sequence of motion schemes,

the motion scheduler processes it into a motion plan including motion steps that can be executed in

parallel. This makes use of the concurrent feature of the modular robot and increases the efficiency

be reducing the total time required for the plan.

7

 Global plannerMotion
trajectory

 Motion scheme selector

Target position of
 moving tail block

- moving order O
 Candidate list

 Rule database

if local config
then motion scheme

For each moving order O:

- Verifies feasibility of paths
P based on rule database

 for each module

- paths P for
 each member module

 Candidate list

Motion plan
S

Add and update: New motion plan
T

Input:

Output:
Planning result:

Fig. 6: Motion planner architecture.

4 Motion Planner Architecture

This section gives more detailed description of the motion planner. The upper and lower layers of the

motion planner are called the global flow planner and the local motion scheme selector respectively.

As shown in Fig. 6, the global flow planner searches possible module paths and motion orders to

provide the global cluster movement, called flow, according to the desired trajectory. This is realized

as a motion of a block such that the tail block is transferred toward the given heading direction.

The local motion scheme selector verifies if the paths generated by the global planner are valid for

each member module of the block based on rule database. If a given path from the global planner

turns out to be valid, the selector updates the motion plan by adding a set of local reconfiguration

motion sequences called motion schemes. Otherwise it tries another possible module path generated

by the global planner. The selector copes with the non-isotropic property of module movability by

associating the coordinated motion with the corresponding local configuration in the form of rules.

Note that this is a centralized planning method assuming that all the information of modules in the

cluster is available.

In the following planning method, we give the following assumptions:

(1) One module can lift only one other module.

(2) Only one motion scheme is allowed at a time.

(3) At least two converter modules are assumed in the whole cluster.

(4) The flow direction should go straight at least by two unit lengths.

The first assumption comes from the limited torque capacity of the hardware. The second one will be

relaxed when the motion scheduler processes the plan. The remainders are introduced to simplify the

8

planning problem.

5 Global Flow Planner

The input to the global planner is the desired trajectory of the cluster. The cluster flow is defined as

the trace of block motion, where the tail block is removed and put at the other end as the new head, as

shown in Fig. 7. By one block motion, the head of the cluster moves by two unit length on the lattice

grid. Among several way of generating this kind of a block motion, we adopt simple motion schemes

sending modules one by one towards the head. The modules move on the side of the cluster (Fig. 7).

The output of the global planner are the possible paths Pmi (i = 0, 1, . . . , NP) for each member

module m in the tail block and its motion orders Oi (i = 0, 1, . . . , No), where NP and No are the

numbers of candidate paths and orders respectively. An order Oi describes in what order the four

member modules in a block moves along the corresponding path.

A path Pmi is derived by tracing lattice positions on the side of the cluster, starting from the initial

tail position until the module reaches one of target positions next to the current head block (Fig. 8).

A module may have multiple target positions and paths, and their number varies depending on the

cluster configuration. After the tail block motion is completed, it becomes a new head block. Then

the next tail will be sent to the head, and so forth.

Tail

Flow direction

New head

<Initial state> <Final state>

<Transient state>

Head

Modules moving on the side of cluster

Block

Target
position

Fig. 7: Example of block motion.

9

path P1

path P2
goal points

p1 p2

path points
p1 p2

Possible paths

Moving module

Possible target
positions

Flow direction

Fig. 8: Path of a module for block motion.

The order of applying motion steps Oi should be decided in such a way that the connectivity

of whole cluster is maintained. For instance, consecutive transportation of the two modules in the

upper layer of the tail block in Fig. 8 are not allowed because the connectivity condition of two lower

modules is violated when the two upper modules move.

6 Motion Scheme Selector

Based on the output of the global planner, appropriate motion schemes should be selected to achieve

the planned block motion, considering connectivity and collision avoidance. The motion scheme se-

lector play this part using a database of rules. In the following, after outlining the selection procedure,

we will detail rule description and matching, and validity check of module paths.

6.1 Selection procedure

According to the motion order Oi (i = 0, 1, . . . , No) given from the global planner, the selector

verifies the validity of possible paths Pmj (j = 0, 1, . . . , NP) of each member module m in the

block, in increasing order of traveling distance. Namely, the path with the shortest length is first tried,

next the second shortest, and so on. Each rule includes a motion scheme associated with an initial

configuration that is described as a connectivity graph (Fig. 9a). Among the rules that matches the

current local configuration, a motion scheme that gives the largest forward movement is selected. The

motion scheme of the selected rule is stored in the temporary motion sequence T . If all the motion

steps of the member modules are correctly determined, the planner updates the motion plan S by

appending the output sequence T to it. Otherwise, the selector tries next possibilities of P or O.

10

6.2 Rule description and matching

A rule Rk (k = 1, 2, . . . , NR) in the database is composed of a if-condition part and a then-action

part, where NR is the total number of rules. The former is a connectivity graph Gk that describes a

local connection state to be matched to the current local configuration of the moving module. The

latter corresponds to a motion scheme Mk written in the form of motion sequence.

Figure 9b illustrates the graph description of local configuration. In the connectivity graph Gk, a

node is assigned to each module. The node includes such data as a temporary ID number, rotation

angles and the states of the six connecting faces. To make the rules applicable to various cases, we

introduce a wild card state “*” (don’t care) that matches all the states.

An arc in the connectivity graph denotes the connection to other modules and specifies the relative

direction of z and y axes of connecting module m, such as [(z(m), y(m)]. Every module configuration

1 2

3
4

< Initial config. >

Graph of initial config
of connected modules

\

 Rule

if: then: Motion scheme

step 1:
 ID 1 base p2
 rot (90, -90) carry 0
step 2:
 ID 1 base p1
 rot (-90, 90) carry 0

p1 p2

1
2

3
4

step 1 step 2

motion sequence

< Motion scheme applied >

Moving module:

z

1

ID 1
rot (θ 1 = 0, θ 2 = 0)
connection state
p1[*, *, F]
p2[*, *, T(ID:2)]}

node
ID 2
rot (θ 1 = 0, θ 2 = 0)
connection state
p1[T(ID:4), *, T(ID:1)]
p2[*, *, *]

node

arc z(ID:2)=z(ID:1)
y(ID:2)=y(ID:1)

(b) Detailed graph description

(a) Rule description

y

Fig. 9: Example of a rule for a rolling motion scheme

11

can be described in the this graph form starting from one top node. These rules are currently manually

coded.

To find a motion scheme of a module m for the given path Pmj , the selector searches rules that

matches the local configuration of m. Let Gm be the current connectivity graph of module m. Match-

ing between Gm and rule templates Gk (k = 1, 2, . . . , NR) proceeds from the top node down to the

connecting nodes. During the matching process, the connection states and rotation angles are com-

pared for corresponding nodes, as well as the connecting directions in each arc. The graph matching

succeeds if all the nodes and arcs turned out to be compatible. All the matching possibilities are

tested for each rule, such as mirrored configurations and configurations where the parts p1 and p2 are

swapped. The selector makes a list of all the matched rule Rk to check the validity as described next.

In order to implement the motion scheme selector, we extracted several fundamental motion

schemes as follows.

(1) rolling on a side of a straight cluster (Fig. 9)

(2) carrying a module along a trajectory whose heading direction changes by right-angle on a plane

(no direction change of rotation axes).

(3) converting the direction of rotational axes of a module using converter modules.

(4) moving the converter modules to appropriate positions.

For those basic motion schemes, we have extracted approximately 30 basic rules, which are currently

hand-coded.

6.3 Validity check of a module path

For each rule Rk (k = 1, 2, . . . , Nf) that matched to the current configuration Gm, the validity of

associated motion scheme Mk is checked. If there exist valid motion schemes, then the selector

chooses the one that gives the largest forward movement for the path Pmj .

The validity check is performed from two aspects, collision avoidance and connectivity of total

cluster. By applying the motion scheme Mk to the module m, collision can be detected by calculating

the sweeping area of its motion steps. Similarly, the connectivity is examined during the motion by

tracing the connected modules from module m in the cluster.

When more than one rules are found valid, one of the motion schemes is selected based on some

additional criteria, such as the maximum traveling distance along the path.

12

7 Motion Scheduler

The output of the planner described so far is a sequence of motion schemes S to achieve the desired

trajectory. However, as shown in the assumption (2) in Section 4, only one motion scheme is allowed

at a time in this plan. This severely limits the concurrent feature of the modular robot because other

modules do not move even if they can.

The motion scheduler is devised to improve the efficiency through parallel execution of multiple

motion schemes.

7.1 Parallelizing a motion plan

The plan S can be decomposed into a series of motion sequences Mi (i = 1, 2, . . . , 4 × NB), each of

which corresponds to a single path P for a i th moving module mi, where NB is the total number of

moving blocks. This Mi is a unit element of scheduling. Initially, the current pointer ti is set to 1 for

each Mi.

Figure 10 shows how the motion scheduler works. The parallelization process of a plan proceeds

by incrementing ti in the sequences Mi, starting from M1. Suppose the first non-finished motion

sequence is Mi during scheduling. For every motion step at ti in Mi, the next sequence Mi+1 is tested

Mi Mi+1 Mi+2

Mi

steps

Motion sequences

1 2 3 4

Raw plan

ti

Mi+1

ti+1

ti+2

 Mi+2

Parallelized
plan

L

a unified step

current pointer

Fig. 10: Parallelization of plan by motion scheduler.

13

if the motion step at their current pointer ti+1 can be executed in parallel. The scheduler verifies:

• whether the t th
i motion step of Mi and t th

i+1 motion step of Mi+1 can be executed at the same

time, avoiding collision and keeping the connectivity of the cluster, and

• whether the Mi can correctly terminate when the t th
i+1 motion step of Mi+1 is made in parallel

with t th
i motion step of Mi.

The first verification is done basically by the same validity checker described in 6.3. The second

verification is necessary because it may happen that Mi cannot be completed by inserting other motion

steps during its execution. For this verification, the whole sequence of Mi should be simulated from

the parallelized motion steps.

If the above parallel motion steps turn out to be feasible, the next motion sequence Mi+2 is tested.

In this case, after checking collision and connectivity, the correct termination of both Mi and Mi+1

should be confirmed in the second verification. In this way, up to L in total motion sequences are

tested until no more motion steps are found executable in parallel. Then those motion steps executable

in parallel are unified into one motion step. After these motion steps are parallelized, the motion

scheduler increments the current pointers ti, ti+1, . . . for motion sequences Mi, Mi+1, . . . The same

procedures are repeated throughout the plan S generated by the motion planner. As a result, module

motion S ′ using parallel motion sequence are derived.

7.2 Generated motion

The motion generation framework described so far is applied to a module cluster composed of 22

modules. The desired trajectory includes horizontal and vertical direction changes of cluster flow as

shown in Fig. 11. At the initial state, the flow direction is y direction. First, the cluster first changes

the flow in −x direction and advances by three blocks. It then moves by one block in z direction after

the vertical direction change. Figure 12 shows some snapshots taken from the generated motion. At

the final step 199, the converters are at the positions where they are involved in transferring the final

x
y

z

Desired flow
directionCurrent

direction

90 horizontal 90 vertical

Fig. 11: Desired trajectory of module cluster

14

step 25 step 80 step 123

Converters

step 146 step 170 step 199 (finished)

Fig. 12: Generated plan for desired motion in Fig. 11.

block.

The raw plan generated by the motion planner takes 354 motion steps, where only one motion

scheme is allowed at one step. After processing the plan by the motion scheduler, the length was

reduced down to 199 steps. The motion scheduler tries to put motion steps of maximum three motion

sequences in parallel (L = 3). In this example, the length of the plan was shortened by 44%, which

means that the efficiency cluster motion was greatly improved. The further increase of L did not

affect the result in this case because after this level of parallelization nearly no more motion steps

can be interleaved throughout the plan. In this way, the parallelism of the modular robot can be fully

exploited so that the efficiency can be close to the maximum.

8 Conclusions and Discussions

This paper discussed motion generation of a self-reconfigurable modular robot MTRAN designed to

generate both static structure and dynamic robotic motions. We proposed a motion generator com-

posed of motion planner and motion scheduler. The motion planner has a two-layered architecture,

global flow planner and local motion scheme selector. The former part provides the possible paths

and motion orders to realize the flow of the cluster. The latter combines a series of motion schemes

based on a rule database to make the flow. The motion scheduler interleaves the motion sequences in

15

the plan generated by the planner to improve the efficiency of cluster motion. The simulation result

showed that the total motion steps of motion plan was greatly reduced by the motion scheduler.

In spite of the limited class of applicable structures in this paper, we believe our approach will be

effective for other classes. To extend this framework, we intend to extract necessary basic rules sets

that are valid for various classes of module clusters. Depending on the problems, “meta-rules” for

how to use these rules should also be investigated. Evolutionary method will be tested for acquisition

of these basic rules and meta-rules. The motion scheduler is considered to be widely applicable

to improve the efficiency of the module motion through parallelism. Future work also includes the

evaluation of this efficiency by investigating theoretically optimal motion. On hardware side, we are

also aiming to implement the motion planner to the hardware modules. The usage of sensors will be

indispensable to adaptation in real world. By integrating motion generator framework with a sensor

system, we are aiming to realize a modular robot that can move around in environments with bumps

or walls, adapting its shape to the outside world.

References

1) S. Murata, et al.: “A 3-D self-reconfigurable structure,” Proc. IEEE Int. Conf. on Robotics and

Automation, 432–439, 1998.

2) K. Kotay, et al.: “The self-reconfiguring robotic molecule,” Proc. IEEE Int. Conf. on Robotics

and Automation, 424–431, 1998.

3) P. Will, et al. : “Robot modularity for self-reconfiguration,” Proc. SPIE, Sensor Fusion and

Decentralized Control in Robotic Systems II, 236–245, 1999.

4) A. Casal and M. Yim: “Self-reconfiguration planning for a class of modular robots,” Proc. SPIE,

Sensor Fusion and Decentralized Control in Robotic Systems II, 246–257, 1999.

5) A. Castano, et al. “Autonomous and self-sufficient CONRO modules for reconfigurable robots,”

Distributed Autonomous Robotic Sytems 4, Parker L E, et al. eds., Springer, 155–164.

6) C. Ünsal, et al. : “A modular self-reconfigurable bipartite robotic system: implementation and

motion planning,” Autonomous Robots, 10-1, 23–40, 2001.

7) S. Murata, et al. : “Hardware Design of Modular Robotic System,” Proc. 2000 IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, F-AIII-3-5, 2000.

8) E. Yoshida, et al. : “A distributed method for reconfiguration of 3-D homogeneous structure,”

Advanced Robotics, 13-4, 363–380, 1999.

16

9) K. Tomita, et al. : “Self-assembly and self-repair method for distributed mechanical system,”

IEEE Trans. on Robotics and Automation, 15-6, 1035–1045, 1999.

10) K. Kotay and D. Rus: “Motion synthesis for the self-reconfigurable molecule,” Proc. 1998

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 843–851, 1998.

17

