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Abstract

This paper presents a micro-sized self-reconfigurable modular robotic system using shape

memory alloy (SMA) actuators. Composed of identical robotic modules, the system can actively

configure various structures. The motion of module is based on two-dimensional rotation by using

an actuator mechanism with two SMA torsion coil springs. The micro-sized module measures

2cm cube and weighs 15g, half the size of the previous model developed so far. The feasibility

of reconfiguration was demonstrated using the micro-sized robotic modules. We also show an

extended three-dimensional (3D) model and discuss a distributed self-reconfiguration algorithm

for large-scale modular structures.
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1 Introduction

We have developed a series of self-reconfigurable robotic systems composed of identical modules
1)–7). By changing the configuration, these modular robotic systems can adapt themselves to the

external environment or repair themselves by using spare modules without external help. Thus they

have various potential applications, especially for structures or robots that should work in extreme

environments inaccessible to humans, for instance, in space or deep sea, or in nuclear plants.

This paper focuses on developing a micro-sized self-reconfigurable robot aiming such applications

as an inspection robot that moves around in very narrow space such as pipe space or in building de-

stroyed by disaster. Although many studies have been made on self-reconfigurable robots 8)–15), their
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micro-sizing has hardly been reported. We have so far developed a miniature self-reconfigurable mod-

ular robot using shape memory alloy (SMA) actuator 16). In this paper, we will present a new model

of module that measures 2cm cube and weighs 15g, to demonstrate the advantage of easy micro-

sizing of the simple SMA actuator mechanism. Its self-reconfiguration function is verified through

an experiment of module motions. We will evaluate the measured performance of actuators to verify

that they have enough torque for self-reconfiguration. An extended version of module that can con-

figure three-dimensional (3D) structure will also be investigated and a distributed self-reconfiguration

algorithm for large-scale system will be applied to the 3D model.

2 Micro-Sized Robotic Module

This section outlines the structure of micro-sized robotic module using SMA actuators. We have

designed the modules’ mechanism to be both self-reconfigurable and simple enough for micro-sizing.

The module has a square shape, where two actuators at orthogonal vertices rotate male connecting

parts that can be connected to female parts in another module. Figure 1(a)∼(c) shows a “step motion,”

which is the most fundamental motion generated by two modules. Module M1 changes its relative

position clockwise around M2 through appropriate operations of rotating actuators and connection

mechanisms.

Although this step motion can be regarded as one simple function in the algorithmic level, it

requires locally coordinated motion between neighboring modules based on inter-module communi-

cation in the hardware level. Figure 2 illustrates an example. When a module makes a step motion

(clockwise or counterclockwise rotation), the module sends signals to neighboring modules so that

the motion may be supported by rotating and releasing of appropriate male and female connecting
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Fig. 1: Basic motion of two modules.
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Fig. 2: Local motion coordination through inter-module communication.

parts. In this example, the module M1, intending to move counterclockwise, sends signals asking “re-

leasing” to M3 and “rotate counterclockwise” to M2. Inter-module communication can be realized

by embedding electrodes in male and female connecting parts.

By repeating these step motions, a collection of identical modules can construct various two-

dimensional (2D) shapes. This homogeneous modular structure is also capable of self-repairing using

spare modules if some part is damaged.

We adopted an SMA actuator mechanism for the micro-sized module. The SMA actuator gen-

erates torque based on strain energy and its torque-weight ratio is constant. This is advantageous

especially on micro-scales compared to conventional electromagnetic motors whose torque-weight

ratio decreases as their size becomes small 17). Although it is known that the response of SMA actu-

ators is relatively slow, this drawback can be overcome on micro-scales where the cooling efficiency

is improved by increasing ratio of surface area to volume. Another shortcoming of SMA actuator,

difficulty in precise control, is not a significant problem here since we need only discrete position

control (−90◦, 0◦, 90◦) in reconfiguration operation.

Figure 3 illustrates the developed rotational actuator dedicated for the micro-sized module. The

SMA torsion coil springs (memorizing the 0◦ shape in this case) are pre-loaded by twisting reversely

by 180◦. Without heating, the static torques balance and no output torque is generated. In this state,

the connecting part is fixed at the original 0◦ position by a mechanical stopper. Rotational motion is

generated when one of the springs is heated, usually by electric current. Since Young’s modulus of

SMA rises drastically when the temperature exceeds its phase transformation temperature, the heated

spring generates a large torque in the direction to restore the memorized 0◦ rotation state.
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Fig. 3: Rotating actuator mechanism using SMA torsion coil springs.

3 Hardware Implementation and Experiments

This section presents development of micro-sized hardware modules and a self-reconfiguration exper-

iment. We have so far developed a basic module model whose size is 5cm cube and whose weight is

80g including control unit, and verified its self-reconfiguration capacity using many modules 16). In

pursuit of wider applications requiring motion or tasks in narrow spaces, we proceed further micro-

sizing of modules. As mentioned in section 2, SMA actuator is advantageous in both torque-weight

ratio and response especially on micro-scales. This section also evaluates the actuator performance

of both models.

3.1 Micro-size Module

Figures 4 and 5 describe the design of a micro-sized module and a hardware prototype. The module

measures approximately 2cm cube and weighs 15g without control unit. The square-shape module is

equipped with two SMA actuators at the orthogonal vertices which rotate the drums (male connecting

parts). The original 0◦ position of the rotating drum is maintained rigidly by a stopper mechanism

Rotating drum

0  position
stopper mechanism

SMA spring
(0  unlock)

SMA torsion
springs Connecting pins

SMA spring
(release connection)

 3cm

Fig. 4: Structure of micro-sized module. Fig. 5: Prototype of a module.
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using plastic leaf spring as shown in Fig. 6. The rotation becomes possible when the stopper is pushed

downwards by heating the SMA spring. As can be seen Fig. 6, the stopper also limits the drum rotation

within the range from −90◦ to 90◦. The female connecting part has an auto-locking mechanism

that can hold and release (also driven by SMA) the drum of male connecting part (Fig. 7). Since

the modules can maintain the structure mechanically by the above locking connection mechanism,

the energy-consuming SMA heating is required only when some motion is made. Therefore, the

whole energy consumption can be minimized even in many-module system because only the moving

modules need the energy.

We adopt Ti-Ni-Cu SMA that has a large difference in Young’s modulus of non-heated and heated

condition, which leads to lower reverse torque from the non-heated spring. These SMAs are driven

by PWM (50[Hz], duty ratio approximately 30%) through low-resistance MOS-FET from a PIC mi-

croprocessor module BasicStamp II, as shown in Fig. 8. It allows a module to serially communicate

with the wired host PC as well as other connecting modules.

Figure 9 demonstrates the modules effectively realized the step motion in Fig. 1. In the current

development, the micro-sized module does not yet include the onboard microprocessor and inter-

module communication and is driven by a separate control unit. The integration of the controller and

communication device into the module will be addressed in the future development.

Bias leaf spring
(plastic)

SMA spring
for unlocking 0

Stopper

< 0  position (center) > <     90  position >

Fig. 6: Stopper mechanism of a male connecting part.

SMA spring
(to unlock)

rotating drum
(male part)

unlocking by
heating SMA

auto-locking

bias spring

connecting
pins

stopper

< locked >< unlocked >

steel leaf spring

Fig. 7: Auto-locking mechanism of a female connecting part.
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Fig. 9: Experiments of basic motion by two micro-size modules.

3.2 Performance Evaluation of Actuators

The output torque can be calculated for given rotational angle x◦ as follows 16):

T =
πd4

11520nD
× {E2(B − x) − E1(B + x)} − f . (1)

where d and D [mm] are diameters of wire and spring, n the number of turns, E1/E2 [kgf/mm2]

the Young’s moduli in non-heated/heated condition, B◦ the angle by which both springs are twisted

for pre-loading, f [kgf·mm] the rotational friction torque. Table 1 shows the specifications of SMA

actuators utilized in two developed prototypes of micro-sized module. The Ti-Ni-Cu SMA has a

large difference between E1(= 0 ∼ 1800) and E2(= 7000 ∼ 10000). Using these values, the

range of the output torque can be estimated. With pre-loading angle B = 270◦, the range of output

torque is calculated as shown in Table 1. The friction torque arises because the leaf spring of stopper

mechanism (Fig. 6) is always pushed against the rotating drum (male connecting part). These values

are measured in the hardware module using a torque gauge.

For example in the first model, the center of gravity is 20mm from the rotation axis and it weights

approximately 80g, thus the required torque to lift another module against gravity is 1.6kgf·mm at

rotational angle x = 0◦. Therefore, we can see the actuator can generate enough torque for self-

reconfiguration. In the same way, we can estimate the actuator of micro-sized model has also sufficient

torque, as the required torque for lifting motion is 0.2kgf·mm.
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We have measured the generated torque by using torque gauge and the results are given in Table 2.

As can be seen, the calculated torques of both models take values within the calculated ranges and

the actuators generate sufficient torque for carrying another module. We are going to improve the

performance by refining the design of module, for instance using micro-bearings to reduce the friction

torque. As to the response time and power consumption, Table 2 shows that the time required for 90◦

rotation is reduced from 7 seconds to 5, and the current per one SMA actuator from 3A to 1A. This

demonstrates that the micro-sizing of module improved these measures as indicated in section 2.

Table 1: Actuator specifications.

Micro-size model 1st model16)

Wire diameter d [mm] 0.45 0.8

Spring diameter D [mm] 4.5 8.0

Number of turns n 3 3

Friction torque f [kgf·mm] 0.3 0.2

Calculated torque T [kgf·mm]
0.9 ∼ 1.9 (x = 0◦) 6.3 ∼ 12.4 (x = 0◦)

0.21 ∼ 1.2 (x = 90◦) 2.6 ∼ 8.2 (x = 90◦)

Table 2: Measured actuator performance.

Micro-size model 1st model

Torque T (calculated)
0.9 ∼ 1.9 (x = 0◦) 6.3 ∼ 12.4 (x = 0◦)

0.21 ∼ 1.2 (x = 90◦) 2.6 ∼ 8.2 (x = 90◦)

[kgf·mm] (experiment)
1.1 (x = 0◦) 7.1 (x = 0◦)

0.3 (x = 90◦) 3.0 (x = 90◦)

Time for 90◦ rot. approx. 3 [sec] approx. 7 [sec]

Current (mean, per actuator) [A]
approx. 1 approx. 3Voltage: 6 [V]
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4 3D Extension and Distributed Self-Reconfiguration Software

This section first explains that the proposed modular robotic system can be extended to three dimen-

sions, and next describes a distributed self-reconfiguration algorithm for many-module structure.

4.1 Extension to 3D Reconfigurable System

A three-dimensional (3D) module can be designed by extending the concept of the developed 2D

module. First, the SMA rotational actuator mechanism is extended so that it can generate rotational

motion along two orthogonal axes by using four SMA torsion coil springs as shown in Fig. 10. This

corresponds to a male part and a connecting part should be equipped at one end. Next, a 3D module is

constructed by embedding three of these connecting parts in a octahedral body including three female

parts in such a way that all the motion directions are covered, as illustrated in Fig. 11. The female

parts can be realized as a similar auto-locking mechanism to the developed 2D module. The body is

designed so that collision between modules can be avoided during reconfiguration motion.

By connecting two modules as shown in Fig. 12, rotational motions in horizontal and vertical

directions are possible around the connected vertex by means of a two-axis actuator. The SMA

actuator should be designed to generate enough torque to achieve the desired motions.

Figure 13 illustrates the step motion by two 3D modules, where irrelevant actuators are omitted for

clarity. Starting from the initial state Fig. 13a, the right-hand module changes its position to Fig. 13e

through coordinated actuator operations. A group of modules can move on orthogonal-cubic lattice

to form various 3D structures based on this step motion.

SMA torsion
springs

Connecting part (male)

Fig. 10: Two-axis SMA actuator mechanism.

female part
(  3)

male parts
(  3)

body

Fig. 11: A 3D module.
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Horizontal motion

Vertical motion

Fig. 12: Two modules connected.

connection

(a) (b) (c)

disconnection

(d) (e)

Fig. 13: Motion of 3D modules.

4.2 Distributed Self-reconfiguration of Many-Module System

As the motion of 3D SMA module is compatible to that of the 3D self-reconfigurable structure 2, 3),

its distributed self-reconfiguration methods 5) can be applied to the octahedral 3D modules. We have

applied the distributed self-reconfiguration algorithm to small number of 3D SMA modules 16) based

on Markov Random Field (MRF). Although this simple algorithm has such advantages as low com-

putational cost and communication load, it cannot be applied when the number of modules increases.
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Table 3: Difference between algorithms for small-scale and large-scale systems

small-scale (previous16)) large-scale (proposed)

System scale applicable small (∼ 10 modules) large (10 modules ∼)

Target description flat, for only simple shapes hierarchical, for complicated shapes

Computational cost low (simple MRF) high (complicated target description)

Communication load
low (only few information

high (frequent message passing)
on neighboring connection)

Here we introduce a distributed reconfiguration algorithm for large-scale system. Table 3 summa-

rizes the difference between the algorithms for small-scale and large-scale systems. As explained in

this table, the proposed algorithm is dedicated to self-assembly and self-repair of complicated shapes

composed of many modules, say more than twenty modules.

Figure 14 illustrates the self-reconfiguration method for large-scale systems. It is based on a

recursive description of the target shape by using a layered graph. Primitive description types are

introduced that determine the geometrical relationship between “nodes,” denoting a group of modules

here. By assigning another sub-structure to each nodes, various complex shapes can be described in

a recursive manner. A module can belong to multiple levels in the course of self-assembly.

Given the description of a target shape, self-reconfiguration proceeds by assembling first top-level

structure, then down to sub-structure and so forth, using inter-module communication. Figure 15

shows an example of self-assembly process of the 24-module planar shape from 27-module cube,

where shaded modules have already reached a position in the target shape.

initial state

detailed shape specified
by extending lower level

final shape

rough shaping

node

unit embodied
in a node

line

square

octahedron

cube

 primitive types
of description

Fig. 14: Hierarchical graph structure for self-assembly.
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Self-repair is also possible when some of the modules are lost or damaged. Upon the detection

of fault, surrounding modules send messages to spare modules in order that they move and repair the

faulty part. If the damaged part includes multiple modules in different levels of the target description,

first the status of the modules involved in the self-repair is reset back to the relatively highest level

in the target description. Then self-repair is performed from the higher level down to lower levels.

Figure 16 shows a simulation result of self-repair after three modules have been removed.

The algorithm can be applied to small-size space structure such as solar panels or antennas. Trans-

ported in a compact folded form, they can expand themselves to the structure required by the mission,

and repair themselves when failure or loss is detected somewhere in the structure.

5 Conclusions

This paper presented micro-sized self-reconfigurable robotic systems driven by SMA actuator mech-

anisms. The module is designed to allow a collection of identical modules to configure a variety

of 2D structures. By using an actuator mechanism composed of SMA torsion coil springs, we real-

ized micro-sized robotic modules that measure 2cm cube and weigh 15g. The self-reconfiguration

spare units

initial state (cube) 10 steps after 35 steps after (completed)

Fig. 15: Self-assembly of many-module structure.

3 units lost

Self-repair starting
using spare units

Starting self-repair 20 steps after (completed)

Fig. 16: Self-repair of many-module structure.
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functionality was verified through a self-reconfiguration experiment using the developed hardware

prototypes. The performance of the SMA actuators was also evaluated by measuring their output

torque to confirm that they generate sufficient power. Furthermore, we designed an extended 3D self-

reconfigurable robotic system based on the 2D module. It was shown that the self-reconfiguration and

self-repair of large-scale systems is also possible by computer simulations.

References

1) S. Murata, et al.: “Self-assembling machine,” Proc. IEEE Int. Conf. on Robotics and Automation,

441–448, 1994.

2) S. Murata, et al.: “A 3-D self-reconfigurable structure,” Proc. IEEE Int. Conf. on Robotics and

Automation, 432–439, 1998.

3) H. Kurokawa, et al.: “A 3-D self-reconfigurable structure and experiments,” IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS’98), 860–865, 1998.

4) E. Yoshida, et al.: “A distributed reconfiguration method for 3-D Homogeneous Structure,” Int.

Conf. on Intelligent Robots and Systems (IROS’98), 852–859, 1998.

5) E. Yoshida, et al. : “A distributed method for reconfiguration of 3-D homogeneous structure,”

Advanced Robotics, Vol.13, No.4, 363–380, 1999.

6) K. Tomita, et al.: “Self-assembly and self-repair method for distributed mechanical system,”

IEEE Trans. on Robotics and Automation, Vol.15, No.6, 1035–1045, 1999.

7) S. Murata, et al. : “Self-reconfigurable Modular Robotic System,” Proc. Int. Workshop on Emer-

gent Synthesis, 113–118, 1999.

8) M. Yim: “New locomotion gaits,” Proc. IEEE Int. Conf. on Robotics and Automation, 2508–

1524, 1994.

9) G. Chirikjian, et al.: “Evaluating efficiency of self-reconfiguration in a class of modular robots,”

J. of Robotic Systems, Vol.12, No.5, 317–338, 1996.

10) G. Hamlin and A. Sanderson: “Tetrobot: A modular approach to reconfigurable parallel

robotics,” Kluwer Academic Publishers, 1998.

11) K. Kotay, et al.: “The Self-reconfiguring robotic molecule,” Proc. IEEE Int. Conf. on Robotics

and Automation, 424–431, 1998.

12) C. McGray and D. Rus: “Self-reconfigurable molecule robots as 3D metamorphic robots,” Proc.

12



IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 837–842, 1998.

13) P. Will, et al. : “Robot modularity for self-reconfiguration,” Proc. SPIE, Sensor Fusion and

Decentralized Control in Robotic Systems II, 236–245, 1999.

14) A. Casal and M. Yim: “Self-reconfiguration planning for a class of modular robots,” Proc. SPIE,

Sensor Fusion and Decentralized Control in Robotic Systems II, 246–257, 1999.
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