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Abstract
In this paper we present the development of hardware

and software of self-reconfigurable modular robots in Na-
tional Institute of Advanced Industrial Science and Tech-
nology (AIST), Japan. Thanks to their flexibility, versatil-
ity and fault-tolerance, self-reconfigurable modular robots
are expected to be used in various application fields, such
as space, rescue or micro-sized world. Our research group
has been pioneering this new field and developed several
hardware prototypes and corresponding software that ex-
ploit the robots’ potential. We have been successfully
demonstrated the feasibility of the self-reconfigurable mod-
ular robots based on experiments from different aspects.
Starting from two-dimensional (2D) self-assembling and
self-repairing machine Fractum, we review hardware de-
velopment in diverse directions, like to micro-world, three-
dimensional (3D) structures and motions; as well as the
progress of control software, including distributed control
and recent evolutionary motion acquisition.

1 Introduction
Self-reconfigurable modular robots are composed of

many modules and are capable of changing their config-
uration. Those robots, therefore, have adaptability, flexibil-
ity and versatility since they can reconfigure themselves to
be different types of robots, according to their surrounding
environment without external help. By applying decentral-
ized control to those robots, they can have fault-tolerance to
recover from partial damage. These advantages have been
attracting more and more researchers’ interest and many
studies have been conducted so far in two dimensions (2D)
[1]–[10] and three dimensions (3D) [11]–[26].

Self-reconfigurable modular robots are useful in situa-
tions where they should move and work in hazardous, un-
structured or unknown environments, as well as in case
where they are required to achieve different tasks, but not
specified beforehand. The potential applications of self-

reconfigurable modular robots range from static structure
to mobile robots. They can be applied to satellite anten-
nas, space stations, or deep-sea structures, for example, to
keep their strength according to applied force from outside.
As mobile robots, the self-reconfigurable modular robots
can be planetary exploring vehicle, rescue robots to search
for survivors. They can also be applied to robots work-
ing around micro-sized world. An example is a micro-
robot that moves around inside pipes in chemical plants by
changing its shape and reorganizing itself as a manipulator
to execute repairing tasks when it detects a fault.

Our group in AIST has been one of the frontier pioneers
in this field over past ten years. In this paper, we review our
achievement of developments starting from the first model
of self-assembling machine, as well as recent development
of self-reconfigurable modular robots. Figure 1 shows how
the development has proceeded in different research di-
rections including micro-sizing, versatile structure and dy-
namic motions; we have been exploring various possibility
of application for self-reconfigurable modular robots. Trac-
ing those developments, we will try to clarify the important
research issues to be solved in the future.
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Fig. 1: Development of self-reconfigurable modular
robots in AIST.



2 Fractum – Self-assembly and Self-repair
Fractum [2], we believe, is the first modular robot that

demonstrated the self-assembly and self-repair through
hardware experiments. The development of Fractum raised
a major conceptual shift of robot since it showed self-
assembly and self-repair capacity based on modular struc-
ture and distributed control scheme.

2.1 Hardware

A Fractum module has a hardware shown in Fig. 2. The
module is mainly composed of actuation part using electro-
and permanent magnets and information processing part
using a microcomputer.

The actuation part of a module has three-layered struc-
ture, with three pairs of permanent magnets in the top and
the bottom layer and three electro-magnets in the middle.
By changing the polarity of an electro-magnet, it is at-
tracted into, or repulsed from the gap between outer layers
of another module. Two modules change their connection
by an appropriate sequence of electro-magnet operations as
shown in Fig. 3. A module can connect with maximum six
modules. Although the design of one module is simple, a
collection of those identical modules can configure a vari-
ety of shapes by changing their connections.

The module is also equipped with serial optical channels
for local bilateral communication.

2.2 Distributed Self-Assembly/Repair Software

We have developed distributed self-assembly and self-
repair algorithms [5, 6], which are featured by the homo-
geneity as well as the hardware. Each module can decide
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Fig. 2: Structure of a module “Fractum.”
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Fig. 3: Basic module motion by two modules A and B.
Module B rotates itself by 60◦ through proper
magnet operations.

their behavior based only on local communication using
the same software downloaded to each module’s micropro-
cessor. The algorithm was developed to achieve a target
configuration, described as a collection of local connection,
from given initial states. Communication synchronization
is also implemented in a distributed manner [27].

The basic procedure of the algorithm is as follows [5].
(i) Each module calculates such measures as

• “difference” between the current and the target
configuration.

• “irritation” which increases during deadlock.
(ii) estimates the average difference around the module

using a diffusion process through the inter-module
communication.

(iii) if the module has relatively large difference, it
moves towards the direction to make it smaller.

Figure 4 shows the self-assembly and self-repair experi-
ment using eleven modules. Here the target configuration is
a ten-module triangle with one spare module, completed in
Fig. 4c. When one of the modules is given simulated fault
by cutting its power source in Fig. 4d, the self-repair pro-
cess starts to restore the original triangular configuration as
shown in Fig. 4e. This was the first hardware experiment
that demonstrates the self-repair capacity using more than
ten modules.

3 Micro-sizing: Using SMA Actuator
In pursuit of applications in micro-world, we have in-

vestigated micro-sized module using shape memory alloy
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Fig. 4: Self-assembly and self-repair experiment.



(SMA) actuators [8]–[10]. This module has a square shape
where two actuators at orthogonal vertices rotate male con-
necting parts, which can be connected to female parts in
another module. The basic motion of the modules is illus-
trated in in Figs. 5 (a)–(c).

The SMA actuator is suitable especially in micro-size
thanks to its constant high power/weight ratio and faster
response at smaller scales. We have devised an actuator
mechanism using SMA torsion coil springs shown in Fig. 6
to guarantee both large torque and wide motion range.

We developed the first micro-sized model that measures
5cm cube and weighs 80g (Fig. 7) and the second model
with 2cm cube size and 15g weight (Fig. 8). We have
demonstrated their self-reconfiguration capacity by many-
module experiments (Figs. 9(a)–(c), with the first model).
This module can also be extended in three-dimensions [10].
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Fig. 5: Basic motion of two micro-sized modules.
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Fig. 9: Reconfiguration experiment using 6 modules.

4 3D Self-reconfigurable Modular Structure
Besides micro-sizing, the development has been directed

into 3D versatile structure. This extension greatly widens
the applications of self-reconfiguration modular robots, es-
pecially in many dangerous environments that human can-
not access. It can be used as a prime structure for a space
station such as the beam for a solar panel. Not only can
it repair itself without human help, it can be reused as a
structure with another shape and function.

Development of 3D homogeneous module is a difficult
design problem since uniform connection capacity in 3D
must be realized. Our first 3D modular structure presented
in this section has strict spatial isotropic property; one mod-
ule has a symmetrical structure for the connection in all or-
thogonal directions.

4.1 3D Module Hardware

We have devised a 3D self-reconfigurable modular struc-
ture that has six rotation arms with connecting hand in three
orthogonal axes as shown in Fig. 10.

The hardware of this 3D module utilizes one DC motor



as an actuator. The module has a central box containing
a motor with a power transmission system (Fig. 11) that
distributes torque to one of 12 axes of arm rotation mecha-
nisms or connection hands. The connection hand has a spe-
cial mechanism so that the same hand can connect to each
other rigidly. The high reduction ratio and rigid connection
enables a module to lift another against gravity.

A jungle-gym like structure can be constructed using
those modules, and the structure can change its configu-
ration by repeating basic pairwise motion (Fig. 12). Two
connected modules X and Y are on a plane made of the
same modules in the initial configuration in Fig. 12a. Mod-
ule X becomes the “carrier” for module Y to move to the
final position shown in Fig. 12b. To realize this, module Y
releases its connection to the plane and is then carried as X
rotates by the vertical axis, finally connects to the underly-
ing module in the plane.

4.2 3D Distributed Reconfiguration Method

A homogeneous self-repair method for a 3D modular
robot must be developed since methods for a 2D system
cannot be straightforwardly extended to 3D because of far
more degrees of freedom. To cope with such combinato-
rial complexity of a 3D system, we have developed a new
distributed method based on a recursive configuration de-
scription and local message passing.

The target configuration is expressed as a recursive graph
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Fig. 10 A 3D module. Fig. 11: 3D hardware.
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Fig. 12: Typical pairwise motion of three-dimensional
module. (a) Initial configuration. (b) Final con-
figuration after pairwise motion of modules X
and Y (X rotated about axis b-b).

which determines the geometrical relationship between
“nodes.” In the lowest level, the node denotes a module,
but in the upper second level, it represents a group of nodes
in the lowest level. In the third level, a node is equivalent
to a group of nodes in the second levels, and so on.

Self-assembly starts from the top layer of the description
and the modules generate necessary messages to transmit
to neighbors. In this method, the goal structure is roughly
shaped in the early stage, then the detailed structure is con-
structed in a distributed and concurrent manner as the self-
assembly proceeds. Figure 13 shows a simulation result
of self-assembly and self-repair of a 56-module structure,
starting from a 60-module box shape.

5 Recent Development: M-TRAN for 3D
Structure and Dynamic Motion

Hardware of 3D reconfigurable modular robotic system
is classified into two types, lattice type [11]–[17] includ-
ing 3D self-reconfigurable modular structure introduced in
the previous section, and linear type [19]–[21]. The former
corresponds to a system where each module has a fixed ge-
ometry of connections, and a group of them can construct
various types of static lattice structure such as a jungle-
gym. By contrast, it is difficult for such a system to gen-
erate some dynamic robotic motions. On the other hand,
the snake-like shape of the latter can generate dynamic mo-
tions, nevertheless self-reconfiguration is difficult for them.

We have recently developed a new type of modular robot

Initial state Gray units reached posi- Self-assembly completed
tions in goal shape

Self-assembly of 56-unit structure

4 units lost

spare units

Starting self-repair Self-repair after break- Self-repair completed
down of units

Self-repair after breakdown of units

Fig. 13: Self-assembly and self-repair simulation of 3D
modular structure.



that has both lattice type and linear type features, called M-
TRAN (Modular TRANsformer) [22]–[26]. The module
has a simple bipartite structure. Each part rotates about an
parallel axis by geared motors and has three magnetic con-
necting faces (Fig. 14). M-TRAN can form various shapes,
such as a legged walking robot or snake robot. Software
has also been developed to deal with problems of reconfig-
uration planning and motion generation, whose complexity
comes from M-TRAN’s non-isotropic geometric property.
This section outlines those recent issues on hardware and
software development of M-TRAN.

5.1 M-TRAN Module Hardware

Figure 15 shows the newest model “M-TRAN II.” Each
module has two semi-cylindrical parts, active and passive
parts, and two geared motors inside the link. The active part
has a movable plate with magnets that rises to the surface
by the attractive force of the magnets embedded in the pas-
sive part of another module, to connect electrically and me-
chanically. Two surfaces can be detached automatically by
heating the shape memory alloy coils by small light bulbs.

Figure 16 illustrates the internal structure of a module.
Electrodes are placed symmetrically on the same surface
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Fig. 14: A module of M-TRAN.
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Fig. 16: Internal structure of a M-TRAN II module.

for the power supply, global communication, and local
communication. A CPU circuit board is equipped inside
the passive part, including a microprocessor for global and
local inter-module communication. A power supply circuit
board and a battery are also embedded. Power for the mod-
ule can be supplied by an internal battery or by connecting
wires from outside to one of the modules.

5.2 Planning and Motion Pattern Generation

The motion generation software of M-TRAN has two
aspects, reconfiguration planning and locomotion pattern
generation. The former plans how the modular robot re-
configure itself, and the latter provides appropriate motion
patterns for given configuration. In this section we address
those software developments.

A. Reconfiguration planning using local rules
Despite the greatly improved versatility of M-TRAN

through simplified module design, its motion planning is
not straightforward because of module’s restricted degrees
of freedom and non-isotropic spatial property of movabil-
ity. Since distributed planning cannot directly applies, we
have developed two-layered centralized framework, com-
posed of global and local planner (Fig. 17) for reconfigura-
tion of a class of regular structures [24]. This reconfigura-
tion is based on locomotion by multi-module blocks.

The global planner decides the overall motion called
“flow” for the cluster to trace the given 3D trajectory by
sending the “tail” modules towards the “head.” The local
planner decomposes the global motion into individual mo-
tions based on a database of local rules. Each rule includes
a local reconfiguration motion called “motion scheme” that
is associated with an applicable local configuration. From
among matched rules, the local planner selects a rule that
gives the maximum distance to realize the global motion.
This method is classified as a centralized method.

Figure 18 shows some snapshots taken from the planned
motion of a cluster of 22 modules starting from a configura-
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Fig. 17: Reconfiguration planner architecture.
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Fig. 18: Simulated plan of motions in different flow direc-
tions from initial configuration on a plane.

tion on a plane. The cluster first changes its flow direction
in the horizontal plane, then moves in a vertical direction.
This simulation result demonstrates that this approach ef-
fectively solves the complicated planning problem.

B. Evolutionary generation of locomotion pattern
For robots with full-body dynamic motion capacity like

M-TRAN, this motion synthesis is as important as the re-
configuration planning to fully exploit the high mobility of
modular robot. However, due to many degrees of freedom
of modular robot, motion synthesis of modular robots also
becomes a computationally difficult problem. We have de-
veloped a couple of evolutionary pattern generation meth-
ods for this purpose using genetic algorithms (GA).

In the first method called ERSS (Evolutionary Reconfig-
uration Sequence Synthesis) [25], the GA is applied to the
motion sequence directly. This method is characterized by
its simplicity and ease of extension to evolutionary synthe-
sis of plans including configuration changes.

The second method is called ALPG (Automatic Loco-
motion Pattern Generation) Method [26] which seeks loco-
motion pattern for an arbitrary module configuration using
a neural oscillator as a CPG (Central Pattern Generator)
model and GA to optimize the parameters for locomotion.

B-1. Evolutionary Reconfiguration Sequence Synthesis

The ERSS method is characterized by its capacity to de-
rive feasible solutions for complex synthesis problem of
M-TRAN through natural genetic representation. For this
purpose, the behavior of the robot is described using a mo-
tion sequence described as a series of segments each of
which can specify simultaneous motor actuation and self-
reconfiguration by connection/disconnection.

Figure 19 shows the adopted direct genetic representa-

tion that encodes a motion sequence (devised in [23]) into
a genotype string where one gene corresponds to one seg-
ment. Given an initial configuration, the following pro-
cesses are implemented in each generation for total pop-
ulation of 50; reproduction, genetic operations including
crossover and mutation, evaluation, and selection.

Evaluation is conducted by two phases; first by its phys-
ical feasibility and next by its performance using fitness
functions. Here, as the fitness function, the robot’s trav-
eling distance between the initial and the final positions is
computed through the motion described by the genotypes
during a certain period of time. Three selection schemes,
elite, ranking and random are combined here. The dynam-
ics of robot motion are simulated using a dynamics simula-
tor library Vortex developed by Critical Mass Labs.

Figure 20 show the experiments of two fittest motions at
different generations 27 and 40 of total 50, where the fit-
ness function is the moving distance along the arrow. At
the earlier generation of 27, the GA outputs a crawling mo-
tion using friction in Fig. 20(1). Then at generation 40, a
more efficient motion is discovered where the central mod-
ule lifts the other two and swings them forward to gain the
distance, as in Fig. 20(2).

Motion
Sequence

Genotype

{ c [ 0 1 ] 1
   c [ 0 1 ] 2
   m [ 1 0 ]  0   60
   m [ 0 0 ] 60 -60
   m [ 2 0 ] 60 -90 } 

  

Initial configuration

Robot Motion

{ c [ 0 1 ]  1
   c [ 0 1 ]  2
   m [ 0 0 ] 0   -90
   m [ 1 0 ] 90 -90
   m [ 2 0 ] 90 -60 }
 

{ c [ 2 0 ] 0
   c [ 0 1 ] 1
   m [ 2 0 ] 60  30
   m [ 0 0 ] 30 -90
   m [ 1 0 ]  0   30 }
 

Gene 1 Gene 2 Gene 3

Segment 1 Segment 2 Segment 3

Fig. 19: Encoding a robot motion sequence into a geno-
type by assigning a gene to a segment.

(a) (b) (c) (d)
(1) Crawling motion at generation 27.

(a) (b) (c) (d)
(2) Lift-and-swing motion at generation 40.

Fig. 20: The evolved motions using the moving distance
along the arrows as fitness function. (1) After
rolling itself (b), the robot crawls using friction
(c,d). (2) The central module lifts the other two
(b) and swings them (c) to gain the distance (d).



Figure 21 shows another example of motion where total
traveling distance in an arbitrary direction is used as the
fitness function. As a result, a whole-body twisting motion
was finally acquired after simulation of 50 generations.

B-2. Automatic Locomotion Pattern Generation
To obtain rhythmic motion pattern, we took another ap-

proach that applies a neural oscillator as a model of the
Central Pattern Generator (CPG) to control each module’s
motion to realize stable locomotion. Each module’s motor
has its own CPG [28] and is controlled directly by the CPG
output as shown in Fig. 22. The oscillations of the CPGs
are mutually entrained, which is caused by feedback sig-
nals from the rotation angle corresponding to each of the
CPG and connected neurons.

We implemented GA on the ALPG software to evolve
the locomotion pattern automatically. The initial values
of internal states of each CPG and connecting weights be-
tween neurons evolve together. Each genotype is repre-
sented as a string of those values to which crossover and
mutation is applied. Total population size is 150 and the
maximum generation is 150. We also use the moving dis-
tance as the fitness function for the modular robot to move
faster in a fixed direction and an elite selection is adopted.

Figure 23 shows several experiments of evolved loco-
motion. The sequence of each module is downloaded in
advance. In the experiments, all modules operate on an
internal battery and no tethers are attached. These experi-
ments confirmed the validity of the simulation and the im-
plemented model.

(a) (b) (c) (d)
Fig. 21: A whole-body motion evolved using the total

moving distance as fitness function. (a) initial
condition. The robot is rolling itself (b, c) and
flipping over (d) to move in the desired direction.
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Fig. 22: Schematic view of neural oscillator.

6 Conclusions

This paper reviewed the development of self-
reconfigurable modular robots in AIST. Starting from
2D model Fractum, we have conducted a wide spectrum of
research work to explore the potential of the new concept
of modular robots. Usage of shape memory alloy (SMA)
actuator enables a micro-sized module that has just the
size of 2cm cube. The other research orientations of
development seek versatile structure and dynamic motion
in 3D world to fully exploit the reconfiguration capacity.
Distributed reconfiguration methods have also been studied
to achieve adaptive and fault-tolerant control. Based on
those experiences, we have recently developed M-TRAN
modular robot featured by novel and original design to
generate both static structure and dynamic robotic motions
in 3D world, autonomously using battery. Methods for
rule-based reconfiguration planning and evolutionary
motion generation have been devised to cope with the high
complexity of M-TRAN control.

One of the important issues of future work is integration
of sensors into self-reconfigurable modular robots. Soft-
ware aspect is equally significant for efficient reconfigura-
tion planning and motion generation. We will address the
method of generic behavior decision for the modular robots
based on distributed or hierarchical approach together with
evolutionary computations in pursuit of adaptive and robust
operation of modular robots.
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