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Abstract-- In this paper, we present an optimization-

based retargeting method for precise reproduction of 
captured human motions by a humanoid robot. We take 
into account two important aspects of retargeting 
simultaneously: spatial relationship and robot dynamics 
model. The former takes care of the spatial relationship 
between the body parts based on “interaction mesh” to 
follow the human motion in a natural manner, whereas the 
latter adapts the resulting motion in such a way that the 
dynamic constraints such as torque limit or dynamic 
balance are being satisfied. We have integrated the 
interaction mesh and the dynamic constraints in a unified 
optimization framework, which is advantageous for 
generation of natural motions by a humanoid robot 
compared to previous work that performs those processes 
separately. We have validated the basic effectiveness of the 
proposed method with a sequence of postures converted 
from captured human data to a humanoid robot. 
 

Index Terms-- Humanoid, Retargeting, Optimization. 

I.  INTRODUCTION 
One of the advantages of human-size humanoid 

robots is its ability to generate whole-body motions 
maintaining similar dynamics to humans. This ability 
allows a humanoid robot to serve as an entertainer like a 
dancer of an actor [1], or also to use various machines 
and devices designed for humans [2]. As an extension 
of the latter use, a new application has recently been 
studied: a humanoid robot as an evaluator of human 
assistive devices [3], [4]. If a humanoid reproduces 
human motions faithfully, it can be used to test the 
devices instead of human subjects. This brings several 
benefits such as no need for ethical process, repeated 
test with exactly the same motions under the same 
conditions, and qualitative evaluation through sensory 
measurement like torque and force. It has been 
demonstrated that the human- size humanoid HRP-4C [5] 
can evaluate the effect of load reduction quantitatively 
by estimating motor torque [4], taking an example of a 
supportive wear called “Smart Suit Lite” [6] designed to 
reduce load at the lower back with embedded elastic 
bands. 

The important issue in those applications is how to 
generate natural motions of a humanoid robot. There 
have been a number of studies on “motion retargeting” 
techniques in or- der to generate humanoid motions 
based on those of a human measured by a motion capture 
system. Retargeting captured motion to humanoids has 

been actively studied during the last decade, thanks to 
the progress of their dynamic capability. The work of 
Pollard [7] is one of the pioneering studies that enable 
reproduction of human motions by a humanoid, in this 
case the upper body of Sarcos humanoid robot, by taking 
into account various constraints. Nakaoka et al. 
developed a technique to transfer Japanese traditional 
dancing motions to a humanoid by introducing a notion 
of leg task model [8], [9]. Miura et al. [10] devised a 
walking pattern generator that allows the humanoid robot 
HRP-4C to walk in a manner extremely close to humans, 
including stretched knees, swing- leg trajectory and 
single support phase on the toe. Other imitation methods 
have been proposed based on a dynamic controller [11], 
[12], motion recognition and primitives [13] and 
extraction of upper-body motion from markerless motion 
input [14], [15]. 

On the other hand, motion retargeting has been 
investigated intensively in computer graphics domain, 
typically to generate motions for new characters based on 
motion capture data using space-time constraints solver 
[16]. Recently, Ho et al. proposed a new retargeting 
method called “interaction mesh” that preserves the 
spatial relationship between closely interacting body 
parts and objects in the environments [17]. Nakaoka 
and Komura extended this method for retargeting to a 
humanoid robot by taking advantage of its capacity to 
adapt motions to a character with highly different 
physical properties [18]. Usage of interaction mesh 
brings natural following of original human motion and 
self-collision avoidance. Although this method includes 
balance consideration by shifting the waist, this approach 
remains specific instead of general whole-body motion 
optimization and does not deal with dynamic constraints 
such as torque limits. In addition, those constraints are 
treated separately after generating re- targeted motion to 
adapt to the humanoid. 

Another related domain is the optimization technique 
that is more and more employed to generate robot 
trajectories minimizing certain cost function under 
mechanical or dynamic constraints. Miossec et al. 
applied nonlinear optimization to dynamic whole-body 
motion like a kicking motion of a human-size humanoid 
[19]. Recently the optimization is utilized for generation 
of multi-contact dynamic motion through modeling of 
dynamic constraints using Taylor expansion [20]. For 
dynamic trajectory optimization for digital human, an 
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efficient algorithm has been proposed [21], [22]. 
Suleiman et al. proposed another trajectory optimization 
technique based on Lie algebra that allows efficient 
computation through analytic integration of dynamics 
[23] and applied it to human motion imitation [24]. The 
latter research aims at optimizing the humanoid 
trajectory to be as close as human motion, but self-
collision avoidance is incorporated as a post-processing to 
the optimized motion like previous work [18]. This is 
disadvantageous because separate application of collision 
avoidance may lead to unnatural motions. 

Methods in previous research are, therefore, still 
lacking the capability to optimize humanoid motions by 
taking into account the associated problems for 
retargeting in a unified manner. The main contribution of 
the paper is the optimization process integrating 
retargeting, dynamics constraints and self-collision at the 
same time, in order to create the humanoid motion as 
close to human motions as possible. In this paper, we 
address this retargeting by formulating it as a nonlinear 
optimization problem under spatial and dynamic 
constraints. First, the captured motion is pre-processed 
to provide better initial guess for the optimization. Then 
the full optimization problem is solved considering the 
spatial relationship and dynamic robotic constraints 
simultaneously. The spatial relationship between body 
parts of captured motion is reserved by using interaction 
mesh as introduced by [17], which achieves self-collision 
avoidance in consequence. This paper is organized as 
follows. Section II describes the overall method and in 
particular how the retargeting is performed. Section III 
describes the details of each step of the optimization-
based retargeting method. Section IV introduces 
RobOptim, an optimization framework for robotics used 
to implement the proposed method. Section V presents 
the results of retargeting with validation of dynamic 
simulations, before concluding the paper. 

II.  METHOD OVERVIEW 
The proposed retargeting framework consists of three 

steps as shown in Fig. 1 and takes a time series of 
captured marker positions to generate a retargeted robot 
joint trajectory. The main part of the retargeting is the 
second step, which is the main optimization process 
whereas the first and last steps are additional data 
processing for efficient optimization and motion 
conversion respectively. 

The first pre-processing takes care of initial guess for 
the optimization. It takes care of retargeting problem only 

to fit the marker positions to the target robot structure, to 
obtain the initial state that helps the optimization process 
converge quickly. This geometric problem can be 
represented as a linear problem using the interaction 
mesh [17] with a quadratic cost rendering its resolution 
extremely efficient. 

The main optimization process is initialized using the 
result of the first step and then takes the full problem 
into consideration. This optimization incorporates 
robotic constraints such as motion balance and torque 
constraints together with the spatial relationship modeled 
also by interaction mesh. The previous work [18] adopts 
a two-step approach for this optimization: first the 
markers were optimized before adapting the motion by 
optimizing joint angles for the robot in order to satisfy 
robotic constraints. In contrast, in the proposed method 
the optimization variables are the marker position 
throughout the retargeting process until it is converted 
to joint angles at the last step. This is advantageous to 
make the constraint matrix sparse [17] and also to 
maintain a global optimization framework unifying all 
the constraints simultaneously. Inverse kinematics 
computation of the target robot is employed in order to 
estimate the nearest robot configuration from the marker 
positions at each time step. This allows evaluating 
robotic constraints such as dynamic balance or joint 
torque limit by using deduced joint velocity and 
acceleration. The robotic constraints being non-linear, 
this main optimization problem is much more 
computationally intensive. 

The third post-processing step is conversion of the 
resultant marker positions into the robot joint 
configurations that is done in a straightforward manner 
using inverse kinematics. 

Fig. 1.  The two step retargeting process. The final inverse kinematics step is only here to convert the final motion to joints trajectory. 
 

Fig. 2. Examples of interaction mesh representing the spatial 
relationship between body parts, applied to a digital character and 
a humanoid [18]. 
 



 

III.  OPTIMIZATION-BASED RETARGETING 
 
As described in the previous section, our retargeting 

method has two main components: motion retargeting 
and robotic motion generation that are integrated in the 
optimization. This section will detail their computational 
aspects. 

A.  Motion retargeting 
The retargeting algorithm employed in the first two 

steps in the framework of Fig. 1 relies on the notion of 
“interaction mesh” to ensure that spatial relationship 
between bodies is preserved. We will briefly describe 
how it is incorporated in the optimization based on 
previous work by Ho et al [17].  

By applying Delaunay Tetrahedralization [25] on the 
marker set, one can generate a mesh which is 
parameterized by the marker positions Vi = (p1

i · · · pm
i ) 

where 1 ≤ i ≤ n. n denotes here the number of frame 
composing the motion and m the number of markers in 
each frame. p1

i represents the position of the first marker 
in the i-th frame. 

Given a particular interaction mesh, one can compute 
the “Laplacian Coordinate” of one marker as follows: 
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  In Eq. (1), Nj is the one-hop neighborhood of the 
marker j in the interaction mesh and wl 

j is the weight of 
the marker l when computing the Laplacian Coordinate 
of marker j. This weight is inversely proportional to the 
distance between j and l. 

Considering these two notions, it is possible to 
introduce the “Laplacian Deformation Energy” 
associated to a marker set which serve as a cost function 
in this problem: 
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The Laplacian Deformation Energy is the square of 
the norm of the difference between the Laplacian 
Coordinates of the original marker set and the updated 
marker set V 'i = (p1

i ’ · ·· pm
i’). 

In practice, this cost function penalizes motion of 
highly connected markers whereas isolated ones will 
move for a lower cost. 

A second cost function is added to the first one to 
smooth the motion. To achieve this goal, the marker set 
acceleration energy is considered: 
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V 'i-1 , V 'i, V 'i+1 being the new marker set position for 
the frame i − 1, i and i + 1. Acceleration energy is always 
null for first and last frame. 

The final cost function C is by consequence expressed 
by: 
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where α is the weighting coefficient. Additionally, a 
link length constraint is defined. This constraint aims 

at retargeting the motion so that it fits the robot 
morphology. It is defined with the target length le of a 
link e as: 

2221
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where pe
1 and pe

2 are the end vertices of the link e. 
Whenever there is a need for some part of the robot 

body to stay fixed, an optional positional constraint is 
also provided through an equality constraint: 

ii PV ='      (6) 
for 0 ≤ i ≤ m, with Pi being a vector representing desired 
positions. 

The quadratic problem is then solved to generate a 
new set of marker positions. The goal of the first pre-
processing step in Fig. 1 is to obtain the marker positions 
that fit the robot structure sufficiently well. Of course, the 
resulting motion may still not be feasible due to physical 
constraints. The output marker positions from the pre-
processing is used as the initial guess for the main 
optimization process considering robotic constraints and 
retargeting at the same time, as explained in the next 
subsection. 

B.  Robotics motion generation 
We here define a non-linear optimization problem 

using the motion derived with the pre-processing. The 
same optimization variables, namely the set of marker 
positions, are used also with the cost function and the 
constraints introduced in the previous section. By 
keeping the previous constraints, one can make sure that 
the good properties ensured by the previous pre-
processing are kept during this optimization step. 
Moreover, the constraint matrix can be kept sparse by 
using the marker positions as optimization variables 
[17], which makes the optimization computation 
efficient, whereas the joint Jacobian matrix for the robot 
is dense. 

To ensure that the motion is feasible by the robot, 
two additional constraints are added in the main 
optimization process: 

� Dynamic balance constraint. 
� Joint angle, velocity and torque constraints. 
We here need robot configuration q from the marker 

positions to calculate the following constraints with 
dynamic property like mass and moment of inertia of 
each link. Since the output marker positions from the 
pre-processing are close enough to the feasible robot 
configuration, we can benefit from the joint angle fitting 
using damped least square method introduced in [18]. 
Figure 3 shows the kinematic structure of the humanoid 
HRP-4C [5] the proposed retargeting is applied to. Once 
the robot configurations are obtained, the following 
constraints are evaluated on the numerical basis, by using 
joint velocity and acceleration computed with finite 
difference. 

The first constraint constrains the ZMP (zero moment 
point) position so that it stays into the robot support 
polygon: 



 

)()(

)()(
'

'

gzmymzyy

gzmxmzxx

GGGxGZMP

GGGyGZMP

++−=

++−=





σ

σ  (7) 

 
where (xZ M P , yZ M P ) is the ZMP position on the ground 
with the coordinate system shown in Fig. 3, σ the 
variation of the angular momentum around the center of 
mass, and (xG , yG , zG ) the center of mass position. The 
gravitational constant is denoted by g. Here we assume 
that the robot is moving on a flat floor. The ZMP acts as 
a criterion that allows deciding whether a motion can be 
executed stably or not. As long as it stays inside the 
convex hull of the robot contact points with the floor, 
the motion is dynamically stable. Knowing which foot of 
the robot is in contact with the floor and the foot 
geometry, it is possible to insert this as an inequality 
constraint 

(xZ M P , yZ M P ) ⊂ S (xrf oot , ylf oot )  (8) 
 

to make sure that the ZMP is staying inside the current 
support polygon, denoted by S (xrfoot , ylfoot ) that is 
determined by the right and left positions (xrf oot , ylf oot ). 

The second robotic constraint we take into account in 
this problem is the joint limitations. Given (q, q̇ , q̈), the set 
of torques τ = (τ 1 , · · · , τ o ) applied to each robot joint 
can be computed using the classical equation of motion: 

M(q)q̈ + C(q, q̇ ) + G(q) = τ  (9) 

where M(q) is the system mass matrix, C(q, q̇ ) is the 
vector of Coriolis and centrifugal forces and G(q) the 
vector of gravitational forces. Other robotic constraints 
for limits of joint rotation, velocity and torque are 
expressed as: 

maxmin

maxmin

maxmin

τττ ≤≤

≤≤

≤≤

qqq
qqq
ddd   (10) 

   As mentioned earlier, the output of the main 
optimization process is the set of marker positions. As 
we have already applied the robotic constraints, the 
resultant motion can be easily converted to the joint 
trajectory to be executed by the robot through inverse 
kinematics. 

 
 

IV.  IMPLEMENTATION OF THE OPTIMIZATION 
PROBLEM USING ROBOPTIM 

RobOptim is a general framework to assist the 
development and resolution of optimization problems 
applied to robotics. The optimization is more and more 
applied to robotics field to solve complex problems of 
motion planning and generation with many constraints, 
as mentioned earlier. Although number of state-of-the-
art optimization solver tools and libraries are now 
available, they are not necessarily ready for immediate 
use for robotics. 

RobOptim has been developed to allow roboticists to 
prototype their optimization applications easily by 
providing necessary interfaces specific to robotic 
problems in the form of C++ libraries. It has a three-
layer architecture: the core, the solver and the application 
layers. The core layer provides a way to define 
mathematical function and their associated derivatives, 
while the solver layer encapsulates different state-of-
the-art solvers so that they can solve problems defined 
using the representation proposed by the core layer. The 
application layer contains dedicated mathematical 
functions which can be embedded into different 
optimization problems. An overview of the framework 
architecture is shown in Fig. 4. 

The core layer offers some useful higher-level tools 
that help users define the functions such as costs and 
constraints introduced in the previous section. By 
implementing those functions inherited from the basic 
mathematical functions of the core layer, RobOptim 
ensures the compatibility with a number of state-of-the-
art solvers whose plug-ins are provided in the solver 
layer. Those tools include function definition itself and 
also differentiation of the functions that can be computed 
analytically, or numerically when no analytical gradient 
is provided by the user. Even if the gradient is 
provided, numerical differentiation can be used to ensure 
the computation correctness. The user can benefit from 
the transparency of those higher level tools to prototype 
their problem without thinking about individual solvers 
used for optimization. 

Fig. 3. Humanoid robot HRP-4C and its structure. 

Fig. 4. RobOptim architecture. 



 

Although not really utilized in our problem of 
retargeting, the application layer is convenient especially 
for planning purpose. One of the practical tools is the 
trajectory toolbox, which allows representation of robot 
motion using B-spline. Since these are associated with 
mathematical functions of the core layer and others like 
of minimal-time optimization.  

RobOptim is distributed as an open-source library 
(LGPL-3) through its website: http://www.roboptim.net/ 

 

V.  RETARGETING RESULTS 
The proposed algorithm has been applied to a whole-

body motion taken from CMU motion capture database 
[26]. We have integrated a RobOptim plug-in for 
nonlinear optimization tools of NAG optimization library 
[27] to solve the problem while using sparse matrices 
computation. This is particularly useful for trajectory 
optimization where large matrices are involved as some 
constraints are only considering one frame and thus 
associated Jacobian are containing a large proportion of 
null values. 

 
 

 
 

Fig. 5. The marker set before (purple markers) and after (white 
markers) the initial preprocessing phase. 

 

   In order to validate its basic capacity of dynamic 
constraint consideration, we have applied the proposed 
method to a sequence of several human postures to be 
converted into stable humanoid configurations. In this 
validation we use the Laplacian Deformation Energy EL 

in Eq. (2) only with α = 0 in Eq. (4), with dynamic 
balance constraint with ZMP of Eq. (7). The support 
polygon S (xrf oot , ylf oot ) for the stability is the square of 
15 cm around the center of feet. The result after the 
optimization process is illustrated by Fig. 5 (pre-
processing) and Fig. 6 (final result). In Fig. 5 we can 
observe that the markers positions are displaces to fit to 
the robot whose size is much smaller than the digital 
character. In the optimized posture in Fig. 6(b), the 
configuration is modified so that robotic constraints such 
as joint limits or link length can be satisfied. We also 
verified the dynamic balance during the motion sequence 
by computing the resultant ZMP as shown in Fig. 7. 
As can be seen, the ZMP stays inside the support 
polygon of the area ±7.5 cm along each x and y axis as 
specified in the constraints. Although the profile in Fig.7 
is a bit shaky as we have not yet integrated Acceleration 
Energy EA in Eq. (3), the balance constraint itself is 
satisfied. We therefore believe that smoother trajectory 
will be obtained as the optimized trajectory by taking 
account Acceleration Energy. 
 

VI.  CONCLUSION 
   This paper presented a unified approach combining 
retargeting and robotics constraints into one single 
nonlinear optimization problem. For efficient 
computation, a three-step approach is adopted including 
pre- and post-processing of the motion. After obtaining 
pre-processed marker positions approximately fitted to 
the robot structure, the main optimization process 
generates also marker motions that respect the original 
spatial relationship of body parts as much as possible 
based on interaction mesh, by satisfying the robotic 
dynamic constraints throughout the motion. The 
optimization output motion can be converted to the robot 
trajectory in a straightforward manner by the last step. 

Fig. 6.  Optimized posture for HRP-4C before (a) 
and after (b) the optimization. 

(a)             (b)  

Fig. 7. ZMP values during the motion sequence of 10 frames. 



 

 The fundamental effectiveness of the proposed method 
has been validated by converting a sequence of human 
postures into humanoid configurations by minimizing the 
cost of spatial relationship with robotic constraints. 
Future work includes extensions to take into account 
different cost functions such as human-likeliness, or 
additional constraints such as collision avoidance or 
others depending on the task of the humanoid. 
Application to walking motion retargeting will also be 
addressed in future work. 
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