
536 日本ロボット学会誌 Vol. 32 No. 6, pp.536～541, 2014

解 説

Software Tools for Nonlinear Optimization
—Modern Solvers and Toolboxes for Robotics—

Thomas Moulard∗1 Benjamin Chrétien∗2 Eiichi Yoshida∗1
∗1CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/CRT ∗2CNRS-UM2 LIRMM UMR 5506, Interactive Digital Human group

This article reviews the state-of-the-art of nonlinear

solvers as well as frameworks for numerical optimiza-

tion, which is more and more utilized for robotics appli-

cations. We will discuss the features and project status

for each solver and detail how one can use a numeri-

cal optimization framework to avoid being limited to a

particular solver. The comparison allows to choose the

appropriate strategy in robotics where trajectory gener-

ation, posture generation, control can be implemented

as different types of optimization problems.

1. Introduction

Various problems in robotics are heavily relying on

numerical optimization. However, implementing these

algorithms requires a high level of expertise and also is

error-prone and time consuming. Both the required the-

oretical background and the implementation issues such

as numerical precision and parameter tuning makes the

task of writing a new solver challenging. Therefore,

this paper will introduce various libraries implementing

solvers for constrained nonlinear optimization problems

in C/C++ or Python. Linear and quadratic problems

are, of course, of interest but as they are easier to im-

plement, finding the right tool is nowadays straightfor-

ward. C and C++ languages have been chosen due to

their popularity in intensive computation tasks such as

numerical optimization. On the other hand, Python is

gaining in popularity due to its flexible syntax and its

ease of use.

Once the decision of using a third-party solver is

made, it is sometimes difficult to find the right toolbox.

Robustness of the algorithm as well as the license and

原稿受付 2014 年 4 月 16 日
キーワード：Numerical Optimization, Software

∗1〒 305–8568 つくば市梅園 1–1–1
∗2Université Montpellier 2, LIRMM UMR 5506, 161 rue Ada,

34095 Montpellier, FRANCE
∗1Tsukuba–shi, Ibaraki

the activity of the project should be considered when

one chooses an algorithm from available ones (e.g. In-

terior Point or Sequential Quadratic Problems).

This paper is reviewing various nonlinear solvers in

2 as well as numerical optimization frameworks in 3.

Solvers are implementing one algorithm or one family

of algorithms whereas frameworks are designed as tool-

boxes with which many solvers can be used. The 4

provides a benchmark of various solvers based on the

result obtained in the RobOptim framework. Finally, 5

discusses the benchmark results and concludes.

2. State-of-the-Art Nonlinear Optimization Tool-

boxes

2. 1 COIN IPOPT

The COIN-OR (COmputation INfrastructure for Op-

erational Research) is releasing an open-source, non-

linear solver based on the interior point method called

IPOPT [1].

This solver is written in C++, provides a full object-

oriented interface and the website provides up-to-date

documentation. The solver can solve nonlinear prob-

lems and ask the user to compute the functions values,

gradients and optionally hessian. If Hessian computa-

tion is not provided, the solver will approximate it using

a limited quasi-Newton algorithm (L-BFGS). The Jaco-

bian and Hessian matrices are passed as sparse matrices,

hence this solver is particularly suitable for large prob-

lems such as trajectory optimization. IPOPT relies on

linear solvers for its interior-point method. It supports

different linear solvers that can have a strong impact on

the convergence and the optimization result. One could

for instance use MUMPS [2] (open-source), or HSL’s

proprietary solvers (e.g. MA27, MA57, HSL MA97) [3].

For large-scale problems, MUMPS can distribute com-

putation over a cluster of machines using MPI, and some

of the HSL solvers also support parallel computation.

JRSJ Vol. 32 No. 6 —46— July, 2014

Software Tools for Nonlinear Optimization 537

Finally, IPOPT includes a limited support for warm

start.

2. 2 CFSQP

CFSQP [4] is a nonlinear solver written in C. Its inter-

face is limited to a single C function requesting pointers

to function to evaluate functions as well as Jacobians.

As a result, its use is more complicated than other

solvers from a technical point of view, but is largely

compensated by a very thorough documentation. The

main drawback of this solver is that it is a closed-source

solver distributed by AEM Design Inc. This company’s

website is not available anymore and it is unknown if the

distribution of this software will continue. This software

supports multi-objective minimization and requires the

developer to provide a mean to evaluate functions as

well as Jacobians. Sparse problems as well as warm

start are not supported.

2. 3 NAG

NAG [5] is a commercial library including a large

number of numerical algorithms, including numerical

optimization algorithms. In particular, two nonlinear

solvers are provided for both dense and sparse prob-

lems. It provides a C API and is a closed-source soft-

ware which makes it more difficult to use. The docu-

mentation is good from a technical point of view, but

it does not cover the full details of the underlying al-

gorithms. The nonlinear solver is using the Sequen-

tial Quadratic Programming strategy (SQP). The solver

supports warm start.

2. 4 NLopt

NLopt is an open-source library dedicated to non-

linear optimization [6]. It includes several well-known

optimization algorithms, either global (e.g. MLSL,

StoGO), local derivative-free (e.g. BOBYQA) or local

gradient-based (e.g. MMA [7], SLSQP) algorithms, as

well as the Augmented Lagrangian algorithm [8].

This library aims at supporting different types

of large-scale optimization problems: unconstrained,

bound-constrained, or the general equality/inequality-

constrained problem. Nonetheless, support for sparse

matrices has not been added yet. NLopt can be inter-

faced with multiple languages: C/C++, Fortran, Mat-

lab, Python, Julia etc.

2. 5 PaGMO

PaGMO, which stands for Parallel Global Multiobjec-

tive Optimizer, is an open-source optimization toolbox

developed by the ESA [9]. Even though this library

was made with interplanetary trajectory optimization

in mind, the methods can still be applied to robotics

problems. Indeed, PaGMO provides an implementa-

tion of the Generalized Island Model [10], which allows

the solver to distribute genetic algorithms over multi-

ple processors. PaGMO can parallelize the workload on

multiple local threads as well as on multiple machines

thanks to MPI support. A Python interface, PyGMO,

is also available.

Contrary to the other solvers presented here, PaGMO

relies mostly on evolutionary algorithms to solve op-

timization problems, but it also supports nonlinear

solvers such as GSL, IPOPT, NLopt or SNOPT. One

of the advantages of its method is that it is less prone

to entrapment by local minima. PaGMO offers a wide

range of evolutionary or stochastic algorithms: Differ-

ential Evolution, Particle Swarm Optimization, Mono-

tonic Basin Hopping, Ant Colony Optimization, Monte

Carlo, etc.

2. 6 Summary

Open-source software for numerical optimization is

becoming increasingly common. However, nonlinear

solvers remain a niche where using proprietary tools can

remain a necessity. Open-source projects like NLopt or

PaGMO are younger, yet promising projects, but even

nowadays the older, proprietary solvers such as CFSQP

keep the lead when it comes to small problems. IPOPT

achieves intermediate results but it has been designed

more for larger problems and thus is penalized when

one has to deal with smaller, dense, problems. NAG is

also a possible alternative with medium performances.

Moreover, when dealing with a specific problem, the

theoretical best off-the-shelf solver may not be the one

providing the best results. For instance, some prob-

lems may be easily solvable with SQP-based solvers

while interior-point solvers will take more time to con-

verge. These problem-specific considerations can be

easily evaluated if the library used to implement the

problems can handle multiple solvers. Frameworks as

the one which will be introduced in the 3 try to answer

this problem.

Nonlinear solvers still rely heavily on parameter tun-

ing (tolerances, scaling, etc.), and the users may need

to set these parameters according to their goal: quality

of the solution, computation speed etc. Yet, the more

complex the problem, the more unclear the influence of

these parameters on the convergence.

日本ロボット学会誌 32 巻 6 号 —47— 2014 年 7 月

538 Thomas Moulard Benjamin Chrétien Eiichi Yoshida

Table 1 Nonlinear solver comparison

Solver Project Status License Strategy Features

IPOPT active open-source (EPL) Interior Point Warm Start, Sparse
CFSQP inactive closed-source SQP none
NAG active closed-source SQP Warm Start, Sparse
NLopt active open-source (LGPL) Multiple Global/Local
PaGMO active open-source (GPLv3) Evolutionary Global, Multithreading, MPI

The Table 1 will summarize the advantages and

drawbacks of every solver.

3. Numerical Optimization Frameworks

An efficient solver is the key to solve robotics prob-

lems in a timely manner. However, it is difficult to

choose the right solver, and even harder to determine

the required features or to formulate the optimization

problem in an appropriate manner. In these scenarii,

instead of relying on a particular solver, a more general

“optimization framework” is advantageous because it

allows us to change the resolution strategy after running

tests on the full problem. Moreover, this kind of frame-

work could offer a high abstraction level as well as an

easy way to implement the problems. For offline prob-

lems, advanced strategies using multiple solvers can also

be of interest. The numerical optimization frameworks

provide this level of abstraction. Furthermore, they of-

fer additional tools to ease the implementation of the

problems. Among them, two interesting techniques are

numerical differentiation and automatic differentiation.

Numerical differentiation is based on local linearization

to estimate the function gradient locally, while auto-

matic differentiation uses advanced techniques to over-

ride the function evaluation in order to compute trans-

parently the local gradient at the same time. Both of

these techniques are useful for fast prototyping, but may

result in slower code than manual implementations of

Jacobian computation.

Solutions such as Matlab [11] provide a fast way to de-

velop applications at the cost of efficiency. In constrast,

C++ frameworks aim at reconciling ease of definition

and efficiency.

3. 1 OpenOpt

OpenOpt [12] is an optimization framework devel-

oped in Python and using NumPy. It interfaces with

numerous state-of-the-art solvers such as IPOPT, Al-

gencan, GLPKG, CPLEX, KNITRO, etc. It is bundled

with FuncDesigner, allowing users to define their func-

tions while the associated Jacobian is computed by au-

tomatic differentiation. If the user wants to implement

the Jacobian manually, it can be checked by DerAp-

proximator which validates computation using numeri-

cal differentiation. The framework is open-source and is

distributed under the BSD licence. OpenOPT has been

designed with offline optimization of large problems in

mind, and thus supports sparse matrices.

3. 2 RobOptim

RobOptim [13] is a numerical optimization frame-

work written by the author of this paper and several

other contributors. It is a templated C++ library de-

signed to limit overhead as much as possible when solv-

ing problems, while providing various additional tools to

define optimization problems easily in C++. RobOp-

tim is organized in three layers: Core, Plug-Ins and

Toolboxes. The Core layer provides a computational

model for the problem: how to define a function, a

constraint, build a problem, etc. The plug-ins contain

the solver. IPOPT (dense and sparse), CFSQP, NAG

(dense and sparse), CMinPack, NLopt, PaGMO are cur-

rently binded. The last layer, the toolboxes, provide

useful functions for a particular problem. A toolbox for

trajectory optimization is currently available and sta-

ble. Another one provides a way to generate optimal

bounding capsules from polyhedrons. Future plans in-

clude the release of a toolbox for posture generation.

RobOptim Core also provides tools to combine func-

tions together (joining functions, splitting, binding one

or more variables as well as basic mathematical oper-

ations like addition, chaining, etc.). This can be used

to split the optimization problem into several smaller

subproblems, thus easing development.

4. Performance Comparison with RobOptim

One of the major advantage of using a framework

over using a particular solver directly is the ability to

switch from one solver to another transparently. In par-

ticular, this characteristic allows users to realize bench-

marks to choose the most appropriate solver in a par-

ticular case. This section compares the performances of

JRSJ Vol. 32 No. 6 —48— July, 2014

Software Tools for Nonlinear Optimization 539

Fig. 1 Benchmarks of different solvers using RobOptim† running on the Hock-
Shittkowski optimization test suite [14].

日本ロボット学会誌 32 巻 6 号 —49— 2014 年 7 月

540 Thomas Moulard Benjamin Chrétien Eiichi Yoshida

five solvers for a subset of the Hoch-Schittkowski test

suite [14]. This testsuite has been published to cover

a large panel of small nonlinear numerical optimization

problems. The problem id refers to the problem num-

ber in the original paper. Problems whose id is below

57 are theoretical problems while numbers over or equal

to 57 are matching practical problems. As the number

increases, the number of variables increases as well to

go from two variables (problem 1 to 24) to five variables

(from problem 77). The small number of parameters is a

limitation when compared to robotics problems usually

treating much more variables. However, it allows us to

implement gradients, Jacobian computations manually

and verify that a global optima is reached with success

at the end of the optimization process. Practical tests

also include analytical solutions describing all local min-

ima allowing us to compare even solvers which will not

converge toward the same solution.

As shown on Fig. 1, the problem size, complexity, the

parameter tuning may impact the resolution efficiency

and even lead a solver to fail or succeed. It is rec-

ommended to benchmark specifically the problem that

should be solved to choose the best solver.

In this benchmark, the parameters used by each solver

are described below:

CFSQP the FSQP-AL algorithm is used (mode is set

to 100)

IPOPT HSL’s MA57 linear solver is used.

NAG the nag nlp opt routine is used

NLopt Augmented Lagrangian [8] with MMA [7] as

local algorithm. NLopt plug-in is still in alpha

phase. Only dense matrices are supported.

PaGMO MDE pBX (Differential Evolution variant)

algorithm [15]. PaGMO plug-in is still in alpha

phase. Computation is done on just one thread.

Weighted death penalty method is used for con-

strained problems. Dense matrices are used. Indi-

vidual times vary between runs, but the total time

remains consistent.

If a parameter value is unspecified in this list, the

default one set by the solver is used.

Many solvers have been developed to solve efficiently

nonlinear problems. However, roboticists are usually

not expert in numerical optimization and choosing the

†This benchmark will be regularly updated on the RobOptim
website at http://roboptim.net/benchmark.html.

right tool is a difficult task. Also, changing the robot

structure or the robot task may change the problem

complexity and the best set of parameters. Therefore,

one can benefit a lot from choosing a versatile, flexible

platform which can solve a wide variety of problems.

Such frameworks exist and can also provide interesting

additional tools as detailed in this paper. Testing and

benchmarking robotics problems could lead to a better

understanding of the best strategy to solve these prob-

lems.

From the results obtained while realizing RobOptim

benchmarks and implementing robotics applications, a

trend can be determined: solvers such as CFSQP tend

to be often efficient. However, after tuning optimiza-

tion parameters, it is common for solvers which were

not particularly fast to get a significant performance

improvement. Also, the number of function evaluations

with respect to the number of gradient evaluations plays

an important role when mechanisms such as automatic

differentiation is used. Studying solvers can also help

to choose between relying on automatic tools or go-

ing through the burden of implementing exact gradient

computations.

5. Conclusion

This paper has presented various nonlinear solvers,

numerical optimization frameworks as well as bench-

marks of small nonlinear problems resolution. Given the

fact that the solvers present very different efficiencies,

may fail in some cases while other will succeed and pro-

vide different advantages and drawbacks (warm start,

parallel function evaluation, etc.), it appears clearly

that the best solver is tightly coupled to the problem

one is dealing with. The use of an intermediate layer to

decouple the problem from the solver can prove to be

rewarding by allowing to try different approaches. The

review of state-of-the-art solvers demonstrates that nu-

merous solvers are available freely and be used for fast

development and resolution of robotics problem.

Acknowledgements This research was partially

supported by the Japan Society for the Promo-

tion of Science (JSPS; Grant-in-Aid for JSPS Fel-

lows P12803) and the FP7 IP RoboHow.Cog project

(www.robohow.eu). FP7-ICT-2011-7 Contract No

288533.

JRSJ Vol. 32 No. 6 —50— July, 2014

Software Tools for Nonlinear Optimization 541

References

[1] A. Wächter and L.T. Biegler: “On the implementation of an

interior-point filter line-search algorithm for large-scale non-

linear programming,” Mathematical Programming, vol.106,

pp.25–57, 2006.

[2] P. Amestoy, I. Duff and J.-Y. L’Excellent: “Multifrontal paral-

lel distributed symmetric and unsymmetric solvers,” Computer

Methods in Applied Mechanics and Engineering, vol.184, no.2,

pp.501–520, 2000.

[3] HSL (2013). A collection of Fortran codes for large scale scien-

tific computation, http://www.hsl.rl.ac.uk, 2013.

[4] C. Lawrence, J.L. Zhou and A.L. Tits: User’s guide for CF-

SQP version 2.5: A C code for solving (large scale) constrained

nonlinear (minimax) optimization problems, generating iterates

satisfying all inequality constraints, 1997.

[5] The Numerical Algorithms Group (NAG), Oxford: The NAG

library (2013).

[6] S.G. Johnson: The NLopt nonlinear-optimization package,

http://ab-initio.mit.edu/nlopt.

[7] K. Svanberg: “A class of globally convergent optimization

methods based on conservative convex separable approxima-

tions,” SIAM Journal on Optimization, vol.12, no.2, pp.555–

573, 2002.

[8] A.R. Conn, N.I.M. Gould and P.L. Toint: “A globally con-

vergent augmented lagrangian algorithm for optimization with

general constraints and simple bounds,” SIAM J. Numer. Anal.,

vol.28, no.2, pp.545–572, 1991.

[9] F. Biscani, D. Izzo and C.H. Yam: “A global optimisation tool-

box for massively parallel engineering optimisation,” CoRR,

vol. abs/1004.3824, 2010.

[10] D. Izzo, M. Ruciski and F. Biscani: ‘The generalized is-

land model,’ Parallel Architectures and Bioinspired Algorithms.

pp.151–169, Springer, 2012.

[11] The MathWorks: Matlab Optimization Toolbox User’s Guide.

[12] D. Kroshko: “OpenOpt: Free scientific-engineering software

for mathematical modeling and optimization,” 2007. [Online].

Available, http://www.openopt.org/

[13] T. Moulard, F. Lamiraux, K. Bouyarmane and E. Yoshida:

“RobOptim: an Optimization Framework for Robotics,” The

Robotics and Mechatronics Conference (ROBOMEC), 2013.

[14] W. Hock and K. Schittkowski: “Test examples for nonlinear

programming codes,” Journal of Optimization Theory and Ap-

plications, vol.30, no.1, pp.127–129, 1980.

[15] S. Islam, S. Das, S. Ghosh, S. Roy and P. Suganthan: “An adap-

tive differential evolution algorithm with novel mutation and

crossover strategies for global numerical optimization,” Sys-

tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-

actions on, vol.42, no.2, pp.482–500, 2012.

Thomas Moulard

Thomas Moulard is JSPS fellowship at
CNRS-AIST JRL since November 2012.
He graduated from the EPITA engineer-
ing school in 2008. He prepared his the-
sis under the supervision of Florent Lami-
raux and obtained his Ph.D. in 2012 from

the INP Toulouse (Institut National Polytechnique). His
research interests are: humanoid robotics, numerical opti-
mization, robotics architecture and system integration.

Eiichi Yoshida

Eiichi Yoshida received M.E and Ph.D de-
grees on Precision Machinery Engineer-
ing from Graduate School of Engineer-
ing, the University of Tokyo in 1993 and
1996 respectively. From 1990 to 1991,
he was visiting research associate at Swiss

Federal Institute of Technology at Lausanne (EPFL). In
1996 he joined former Mechanical Engineering Laboratory,
later reorganized as National Institute of Advanced In-
dustrial Science and Technology (AIST), Tsukuba, Japan.
He served as Co-Director of AIST/IS-CNRS/ST2I Joint
French-Japanese Robotics Laboratory (JRL) at LAAS-
CNRS, Toulouse, France, from 2004 to 2008. Since 2009,
he is Co-Director of CNRS-AIST JRL (Joint Robotics Lab-
oratory), UMI3218/CRT, Tsukuba, Japan. His research in-
terests include robot task and motion planning, modular
robotic systems, and humanoid robots.

Benjamin Chrétien

Benjamin Chrétien is a Doctoral stu-
dent at CNRS-UM2 LIRMM since Octo-
ber 2012. He received his M.S. degree
in Aerospace Engineering from ISAE SU-
PAERO, Toulouse, France, in 2012, and
currently prepares his thesis under the su-

pervision of Abderrahmane Kheddar. His research interests
are: humanoid robotics, GPGPU algorithms, numerical op-
timization and motion planning.

日本ロボット学会誌 32 巻 6 号 —51— 2014 年 7 月

