
Reconfiguration Planning for a Self-Assembling Modular Robot

Eiichi Yoshida, Satoshi Murata, Akiya Kamimura,
Kohji Tomita, Haruhisa Kurokawa and Shigeru Kokaji

National Institute of Advanced Industrial Science and Technology,
1-2 Namiki, Tsukuba-shi, Ibaraki 305-8564 Japan

eiichi@mel.go.jp

Abstract

This paper addresses motion planning of a homoge-
neous modular robotic system. The modules have self-
reconfiguration capability so that a group of the modules
can construct various robotic structures. Motion planning
for self-reconfiguration is a kind of computationally diffi-
cult problem because of many combinatorial possibilities
of modular configuration against the restricted degrees of
freedom of the module; only two rotation axes per mod-
ule. We will show a motion planning method for a class
of a multi-module structure, based on global planning and
local motion scheme selection that is effective to solve the
complicated planning problem. The fundamental motion
will also be demonstrated through hardware experiments.

1 Introduction

Reconfigurable robotic systems have been attracting
more interest, as their feasibility has been examined
through hardware and software experiments in recent years
[1]–[8]. This paper focuses on self-reconfigurable and ho-
mogeneous modular robotic systems that can adapt them-
selves to the external environment by changing their con-
figuration. They can also repair themselves by using
spare modules without external help owing to homoge-
neous modular structure. They have various potential ap-
plications, especially for structures or robots that should
operate in extreme environments inaccessible to humans,
for instance, in space or deep sea, or in nuclear plants.

Hardware of reconfigurable modular robotic system is
classified into two types, lattice type [1]–[3] and linear type
[4]–[8]. The former corresponds to a system where each
module has several fixed connection directions, and a group
of them can construct various static structures like jungle-
gym. However, it is difficult for such a system to gener-
ate some dynamic robotic motions. In contrast, the latter
has snake-like shape that can generate various dynamic mo-
tions, nevertheless self-reconfiguration is difficult.

As to software of reconfigurable modular robots, there
have been a number of studies on lattice-type modular
robots. We have developed a series of distributed self-
reconfiguration methods for two-dimensional and three-
dimensional homogeneous modular robots [9, 10]. These
methods enabled homogeneous modular robots to self-

assemble and self-repair in a distributed manner based on
local inter-module interactions. In contrast, most of other
methods are based on centralized planning. Kotay et. al
[11] developed robotic modules described a global motion
synthesis method for a class of module group to move in
arbitrary directions. Ünsal et. al [12] reported two-level
motion planners for a bipartite module composed of cubes
and links, based on heuristic graph search between module
configurations. These methods are dedicated to modules
that have sufficient degrees of freedom to move to desired
neighboring lattice position.

We have recently developed a new type of modular
robotic system that can realize both static structure and dy-
namic robotic motion [13]. Although this recent module
can form various shapes such as a legged walking robot or
a crawler-type robot, its motion planning is not straight-
forward because of restricted degrees of freedom and non-
isotropic spatial property of movability of a module unlike
lattice-type modules in other previous research. When a
module moves from one position to another, some com-
bined motions of other modules are usually required. The
necessary motion combination should be duly planned for
each particular local configuration.

We propose a two-layered motion planning method, a
global and local planners to transfer a class of module clus-
ter along a desired trajectory. The former part of the plan-
ner provides the flow of the cluster, which corresponds to
a global movement. The latter generates local coordinated
motions called motion schemes based on a rule database.
The rules consider the non-isotropic spatial property of
module movability modules by associating appropriate pre-
planned motion schemes with various local configurations.
This method is classified into a centralized method. In the
experiment section of the paper, fundamental reconfigura-
tion motions are demonstrated.

2 Hardware Design and Module Model

2.1 Hardware Overview

The developed module consists of two semi-cylindrical
parts connected by a link (Fig. 1). Servomotors are em-
bedded in the link so that each of parts can rotate by 180◦.
Figure 2a shows a hardware prototype of the module. Each
module has six connecting surfaces (three for each part)

θ 1

p1

p2

θ 2

pm

Connecting
faces

C1z+

C1z -

C1y

C2z+

C2z -

C2y

Direction of
link

ym

zm

Σm

xm

Σo

y

z

x
O

1 unit length

Fig. 1: A robotic module.

Active Passive

Magnets

Serial Comm. GND
12V

BasicStamp IIServomotors

Magnets

Nonliner
springs SMA

springs

(a) Hardware overview (b) Inside structure.

Fig. 2: The hardware module.

that can attach and detach other modules by using mag-
nets and shape memory alloy (SMA) actuator [13]. Fig-
ure 2b shows the inside structure of the module. The con-
necting surfaces have also electrodes for power supply and
serial communication. All the connected modules can be
supplied power from one module connecting to the power
source. This eliminates the tether entanglement that be-
comes significant in three-dimensional configuration.

Each module is equipped with a PIC microprocessor that
drives servomotors and SMA actuators. In the current de-
velopment, all the modules are controlled from a host PC
that provides motion commands through serial communi-
cation lines. The size of one semi-cylindrical part is 6cm
cube and a module weighs approximately 400g. The SMA
actuator is controlled by 200Hz PWM with 60% duty ratio,
12V voltage and average current 2A.

2.2 Model description

Each semi-cylindrical part of a module is distinguished
as p1 and p2 in the model description. The position and
orientation of the module m are uniquely determined by
specifying the position and orientation of one part and the
rotation angles of the servomotors. Let Σm be the local co-
ordinate system fixed on the part p1 of module m as shown
in Fig. 1, where zm is the rotation axis and ym is the di-
rection from the part center to the arc top. The axis xm is
uniquely determined by zm and ym. Let Σ0 be the abso-
lute coordinate system here. We describe the position and
orientation of module m as follows:

• the central position pm(x, y, z) of p1 in terms of Σ0,
• the orientation of basis vectors zm and ym of Σm in

terms of Σ0,
• the rotation angles of each part (θ1, θ2).

In the following, we assume that both parts of modules
move only on orthogonal-lattice grid and that the rotation
angles (θ1, θ2) are limited to 0◦ or ±90◦ for simplicity. A
unit length of the lattice grid is defined as the length be-
tween the two rotational axes of a module. A module there-
fore occupies two adjacent points in the grid.

We also denote the connection faces as Ciz+, Ciz− and
Ciy (i = 1, 2 for p1, p2) according to Σm. The state of a
connecting face, S(face), takes either of the following:

T(ID) Connecting to module ID
T(*) Connecting to a module but ID not specified
F No module connected

The connection state of a module is written as [S(C1z+),
S(C1z−), S(C1y)], [S(C2z+), S(C2z−), S(C2y)].

For example, Fig. 3 shows a configuration of two mod-
ules (initial state of two-module motion explained later in
Fig. 7) which is described as follows.

ID 1 pm(−1, 0, 0) zm(0, 1, 0) ym(0, 0, 1)
(θ1, θ2) = (−90◦, 0◦),
connection state: [F, F, T(*)], [T(2), F, F]

ID 2 pm(−2, 1, 0) zm(0, 0, 1) ym(0, 1, 0)
(θ1, θ2) = (0◦, 0◦)
connection state: [F, T(*), T(1)], [F, T(*), F]

2.3 Motion description

When a module makes a motion, one of the parts should
be attached to another module to keep the connectivity. We
call this fixed part a base part. Module motion is described
using module IDs, base parts, rotation angles and the num-
ber of carried modules and their IDs if any. A motion se-
quence is a series of these motions.

3 Reconfiguration Motion Planning

The goal of planning is to let a class of a module cluster
trace a certain given three-dimensional trajectory in the lat-
tice grid (Fig. 4). This allows the module cluster to move
into narrow space or to go over the obstacle. The planner
should generate appropriate motion sequence so that the
cluster motion can be guided along the desired trajectory.

p1
p1

 module 1 module 2

Σox y

z y1

z1

y1
z1

O

Fig. 3: Description of initial configuration in Fig.7.

Given trajectory

Module cluster
Planned motion

Fig. 4: Planning of cluster motion.

3.1 Planner architecture

The module’s non-isotropic geometrical property makes
it difficult to obtain the motion sequence straightforwardly.
Since a module has only two parallel rotation axes, its
three-dimensional motion usually requires a combined co-
ordinated motion sequence of other surrounding modules.
This kind of coordinated motion sequence must be care-
fully chosen in each case of particular local configuration.

We deal with the motion planning to a particular class of
module cluster as a basic case. To cope with the complexity
of the planning problem, we take a two-layered approach,
namely global flow planner and local motion scheme se-
lector. The global flow planner searches possible module
paths to provide the global cluster movement, called flow,
according to the desired trajectory. This is realized as a
motion of a module group, a block, such that the tail block
is transferred toward the given heading direction. The lo-
cal motion scheme selector verifies if the paths generated
by the global planner are valid for each member module of
the block based on rule database. If a given path from the
global planner turns out to be valid, the selector updates
the motion plan by adding a set of local motion sequences
called motion schemes. Otherwise it tries another possible
module path generated by the global planner. Note that this
is a centralized planning method assuming that all the in-
formation of modules in the cluster is available.

In the following, we suppose that only one motion
scheme is allowed during the cluster flow for simplicity.
Another assumption is that one module can lift only one
other module in the planning, which comes from the lim-
ited torque capacity of the hardware.

3.2 Atomic Motion

There are mainly three types of atomic motion, pivot
mode, forward-roll mode and mode conversion. Figures 5
and 6 show two different atomic motions on a plane,
forward-roll and pivot, whose orientation of rotational axes
are in different direction. Mode conversion is a two-module
motion to convert from one mode to the other, where a
helper module is required as illustrated in Fig. 7. By com-
bining modules in both forward-roll mode and pivot mode,
a variety of three-dimensional structures are possible.

3.3 Cluster Flow and Global Planner

As a basic case of motion planning, we consider a class
of module cluster mainly composed of two layer of pivot

Fig. 5: Forward-roll mode.

Fig. 6: Pivot mode.

Fig. 7: Mode conversion from pivot to forward-roll.

mode modules (Fig. 8). The cluster also includes a couple
of forward-roll mode modules called converters to change
the orientation of the rotation axes of the pivot mode mod-
ules. The connectivity condition of the whole cluster is
satisfied by placing the modules so that the directions of
y-axis are different in each layer.

The input to the global planner is the desired trajectory of

Fig. 8: A cluster composed of two layers of pivot mode
modules with two converter modules.

the cluster. The cluster flow is defined as the trace of block
motion, where the tail block is removed and put at the other
end as the new head (Fig. 9). A path denotes a rough rout-
ing of a member module of a block to move from the head
position to the tail. The global flow planner is in charge of
generating possible paths of modules to realize the desired
flow. While there are several ways of generating reconfig-
uration motion of this kind of cluster, we adopt a simple
conveyer-like motion to realize the desired flow. The tail
modules move toward the heads by using forward-roll and
some coordinated atomic motions on the side of the clus-
ter (Fig. 9). They become new heads when they reach the
other end of the cluster. The next tails will be sent to the
heads, and so forth. The paths are derived by tracing lattice
positions on the side of the cluster, starting from the initial
position until the module reaches one of target positions
next to the current head block.

3.4 Motion Scheme Selector

After the global planner outputs possible module paths,
appropriate motion schemes should be selected to achieve
the paths, considering connectivity condition and collision
avoidance. The motion scheme selector does this job based
on a database of rules for local coordinated motion.

The selector verifies the validity of possible paths given
by the global planner for each member module by applying
the rules in the database. This verification is done in in-
creasing order of traveling distance. Namely, the path with
the shortest length is first tried, next the second shortest,
and so on. Each rule includes a motion scheme associated
with an initial configuration that is described as a connec-
tivity graph (Fig. 10a).

More precisely, a rule in the database is composed of a
if-condition part and a then-action part. The former is a
connectivity graph that describes a local connection state to

Tail

Flow direction

New head

<Initial state> <Final state>

<Transient state>

Head

Modules moving on the side of cluster

Block

Target
position

Fig. 9: Example of block motion.

1 2

3
4

< Initial config. >

Graph of initial config
of connected modules

\

 Rule

if: then: Motion scheme

step 1:
 ID 1 base p2
 rot (90, -90) carry 0
step 2:
 ID 1 base p1
 rot (-90, 90) carry 0

p1 p2

1
2

3
4

step 1 step 2

motion sequence

< Motion scheme applied >

Moving module:

z

1

ID 1
rot (θ 1 = 0, θ 2 = 0)
connection state
p1[*, *, F]
p2[*, *, T(ID:2)]}

node
ID 2
rot (θ 1 = 0, θ 2 = 0)
connection state
p1[T(ID:4), *, T(ID:1)]
p2[*, *, *]

node

arc z(ID:2)=z(ID:1)
y(ID:2)=y(ID:1)

(b) Detailed graph description

(a) Rule description

y

Fig. 10: Example of a rule for a rolling motion scheme

be matched to the current local configuration of the moving
module. The latter corresponds to a motion scheme writ-
ten in the form of motion sequence. Figure 10b illustrates
the graph description of local configuration. In the connec-
tivity graph a node is assigned to each module. The node
includes such data as a temporary ID number, rotation an-
gles and the states of the six connecting faces. To make the
rules applicable to various cases, we introduce a wild card
state “*” (don’t care) that matches all the states. An arc
in the connectivity graph denotes the connection to other
modules and specifies the relative direction of z and y axes
of connecting module m, such as [(z(m), y(m)].

Among the rules that matches the current local configu-
ration, a motion scheme that is valid and gives the largest
forward movement is selected. The validity check is per-
formed from two aspects, collision avoidance and connec-
tivity of total cluster. By applying the motion scheme to
the moving module, collision can be detected by calculat-
ing the sweeping area of its motions. Similarly, the connec-
tivity is examined during the motion by tracing the current
connectivity graph from the moving module down to con-
nected modules. The motion scheme of the selected rule
is stored in a temporary motion sequence. If all the mo-
tions of the member modules are correctly determined, the
planner updates the motion plan by appending the tempo-
rary output sequence to it. Otherwise, the selector tries next
possibilities of paths.

In order to implement the motion scheme selector, we

Moving

x y

Module path

 Flow direction

Helper module

Fig. 11: Direction change of cluster on a plane.

Moving

x y

Module path

 Flow direction

Converter
Module

Fig. 12: Direction change to vertical direction on a plane.

extracted several fundamental motion schemes as follows.

(1) rolling on a side of the cluster (Fig. 10)
(2) carrying a module by right-angle on a plane (Fig. 11)
(3) converting the rotational axis of a module (Fig. 12)

Figure 10 shows a rule corresponding to a simple mo-
tion scheme of the rolling on the side of the cluster. Fig-
ures 11 and 12 illustrate how module configuration changes
in the latter two motion schemes. Supposing that the ini-
tial module cluster are located on x-y plane, the direction
change between x-y axis is done by alternating the layers
(Fig. 11). The converter modules are used when the de-
sired cluster flow requires change of rotational axis of the
module (Fig. 12). The number of converter modules can be
augmented if necessary.

3.5 Planning Results

The motion planner can generate simple three-
dimensional paths for various sizes of clusters. There are
approximately thirty rules in the current development.

Figure 13 show some snapshots taken from planned mo-
tion of a cluster of 22 modules starting from a configuration
on a plane. The cluster first changes its flow direction on
the horizontal plane, then moves in a vertical direction.

Although the currently developed method applies to only
a particular class, We believe that the basic framework of
the two-layered approach is generally effective for other
classes. For the global planner, we need to devise a method
to narrow the search space according to the problem. On
the other hand, the motion scheme selector is less problem-
dependent owing to its locality. However, the rule database
should be refined to be more complete by adding more rules
since classes for the database are currently limited. We are
thinking of extending the database based on some evolu-
tionary methods, and also generating more complex rules
including rule hierarchy.

x y

z

Desired flow
direction

Current direction

90 horizontal

90 vertical

Fig. 13: Simulated plan of motions in different flow direc-
tions from initial configuration on a plane.

Simultaneous motion of several modules is another issue
to be addressed. We intend to reduce the time required for
reconfiguration by merging multiple module paths.

4 Hardware Experiments

We are building hardware prototype of robotic modules.
Although the planned motion have not been fully imple-
mented yet in the hardware, we will verify the fundamental
motion capacity of hardware module.

Figure 14 and 15 show the experiment of forward-roll
motion (Fig. 5) and mode conversion (Fig. 7). In these ex-
periments, the connecting mechanism showed reliable per-
formance; it has enough strength to hold the module against

Fig. 14: Experiment of forward-roll motion.

Fig. 15: Experiment of mode conversion.

gravity and the smooth detachment is realized as well. We
can also verify the module has sufficient torque to conduct
certain two-module motions from Fig. 15. By combining
these basic module motions, various motions are possible.

5 Conclusions

This paper discussed motion planning of a self-
reconfigurable modular robot. The module was designed to
generate both static structure and dynamic robotic motions.
This module can form various three-dimensional shapes
in spite of simple design. On the other hand, it has non-
isotropic property of module movability due to its limited
degrees of freedom, which imposes a stronger constraint
on motion planning compared to ordinary lattice-type mod-
ules. The motion planning should consider this constraint,
and we adopt a planning method based on global flow plan-
ner and motion scheme selector. The former outputs global
paths to realize overall cluster flow, and the latter selects
valid motion schemes as combined atomic motions based
on a rule database. The non-isotropic geometric property
of module movability was properly reflected in the rules
that associate appropriate pre-planned motions with corre-
sponding local configurations. We also verified the basic
functions of hardware modules through experiments.

The future work concerning the motion planner includes
building a general global path-finding algorithm applicable
to wider classes of configuration and investigating more
complete rule description. We are also aiming to imple-
ment the motion planner to the hardware modules. By
equipping modules with some external sensors, the mod-
ule cluster can move around in unknown environments with
bumps or walls, adapting its shape to the outside world.

References
[1] S. Murata, et al. : “A 3-D Self-Reconfigurable Structure,”

Proc. 1998 IEEE Int. Conf. on Robotics and Automation,

432–439, 1998.
[2] K. Kotay, et al. : “The Self-Reconfiguring Robotic

Molecule,” Proc. 1998 IEEE Int. Conf. on Robotics and Au-
tomation, 424–431, 1998.

[3] C. Ünsal, et al. : “I(CES)-cubes: a Modular Self-
Reconfigurable Bipartite Robotic System,” Proc. SPIE, Sen-
sor Fusion and Decentralized Control in Robotic Systems II,
246–257, 1999.

[4] T. Fukuda and S. Nakagawa: “Approach to the Dynamically
Reconfigurable Robotic System,” Journal of Intelligent and
Robot Systems, 1, 55–72, 1988.

[5] E. Yoshida, et al. : “Miniaturization of Self-Reconfigurable
Robotic System using Shape Memory Alloy,”, J. of Robotics
and Mechatronics, 12-2, 1579–1585, 2000.

[6] G. Hamlin and A. Sanderson: A Modular Approach to Re-
configurable Parallel Robotics, Kluwer Academic Publish-
ers, Boston, 1998.

[7] A. Casal and M. Yim: “Self-Reconfiguration Planning for
a Class of Modular Robots,” Proc. SPIE, Sensor Fusion
and Decentralized Control in Robotic Systems II, 246–257,
1999.

[8] A. Castano, et al. : “Autonomous and Self-Sufficient
CONRO Modules for Reconfigurable Robots,” Distributed
Autonomous Robotics 4, Springer, 155–164, 2000.

[9] E. Yoshida, et al. : “A Distributed Method for Reconfigu-
ration of 3-D homogeneous structure,” Advanced Robotics,
13-4, 363–380, 1999.

[10] K. Tomita, et al. : “Self-assembly and Self-Repair Method
for Distributed Mechanical System,” IEEE Trans. on
Robotics and Automation, 15-6, 1035–1045, 1999.

[11] K. Kotay and D. Rus: “Motion Synthesis for the Self-
Reconfigurable Molecule,” Proc. 1998 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 843–851, 1998.

[12] C. Ünsal, et al. : “Motion Planning for a Modular Self-
Reconfiguring Robotic System,” Distributed Autonomous
Robotics 4, Springer, 165–175, 1999.

[13] S. Murata, et al. : “Hardware Design of Modular Robotic
System,” Proc. 2000 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, F-AIII-3-5, 2000.

