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Abstract— This paper presents a reaching motion planning
and execution framework tailored for exploration missions by
human-operated humanoid robots in hazardous environments
such as nuclear plants. This framework offers low-level but
practical autonomy that allows the robot to plan and execute
simple tasks, such as reaching a target object, within a rea-
sonable amount of time. The human operator benefits from
the efficiency of the framework to maneuver the robot without
waiting for the planning results for minutes. The efficiency
improvement is achieved in the following two phases. In the
first phase, a reaching motion is planned quickly through
approximation of mass distribution and kinematic structure to
apply analytical solutions of inverse kinematics. Supposing that
the robot is working in environments not completely known,
the proposed planner can use measured voxel maps. In the
second phase, the planned path is executed while compensating
the approximation error in real time without violating other
constraints. We confirm through simulations that a reaching
motion for the HRP-2 humanoid with 30 DOFs in a constrained
environment with pipes is planned in around one second. The
simulation results also validate the efficiency of execution with
real-time error compensation.

I. INTRODUCTION

The anthropomorphic structure of humanoid robots makes
humanoid robots suitable to work in the environment de-
signed for humans. One of many possible application which
takes advantage of this feature would be exploring hazardous
environments, such as the Fukushima nuclear plant, through
human teleoperation. Although mobile robots equipped with
manipulators have been already deployed, there are tasks
they can not accomplish. These tasks include accessing
valves placed beyond their reachable region, exploring places
that can be reached only by ladders. These limitations come
from the fact that the environment is designed for humans.

Since a humanoid robot has many degrees of freedom
(DOFs), it is difficult to fully teleoperate using ordinary input
devices, especially in a highly constrained environment as
shown in Fig. 1. Low-level autonomy is therefore required
for easy teleoperation: when an operator gives a walking
direction, the robot must be able to generate appropriate
walking motions not only on flat floors but also on slopes
and stairs, or when an operator indicates a target object in the
robot’s view, it must be able to plan and execute simple tasks
such as opening/closing valves, turning on/off switches, and
so on. In this paper, we focus on reaching motion planning
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Fig. 1. A humanoid robot HRP-2 reaching its right arm for a red valve in
an industrial plant

and execution as a representative basic functions for such
humanoids.

Concerning the planning in practical use, random sampling
based methods such as RRT[1] and PRM[2] are very good at
quickly finding a solution in high dimensional configuration
space including those of humanoid robots. But when applied
to humanoid robots, the following two issues become critical.

The first issue is that balance must be taken into account
in addition to joint limits and collision avoidance since a
humanoid robot is an underactuated robot. Kuffner et al.
proposed a dynamic motion planning method[3] which plans
a static motion first and then speeds it up using a dynamics
filter as long as it is collision-free. Yoshida et al. proposed a
walking motion planning method[4] which plans a collision-
free upper body motion first and then gives it to a walking
pattern generator and reshapes the path if collisions are
caused by swinging motion of the waist. Harada et al. also
proposed a walking motion planning method[5] which avoids
collisions using the upper body. Dalibard et al. proposed
a motion planning method[6] which grows a search tree
in a constrained manifold using an whole body inverse
kinematics.

The second issue is that the goal is not given in the joint
space, but in the workspace. The goal might not be a single
position and orientation but a manifold in 6D space. Several
methods have been already proposed for this issue. Weghe
et al. proposed JT-RRT[7] which interleaves growing a tree
randomly and growing a tree towards a goal using Jacobian
transpose. An advantage of the method is an analytical
solution of inverse kinematics is not required. Berenson et
al. proposed IKBiRRT[8] which interleaves sampling goals
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and growing a tree. Goal configurations are obtained by
computing a configuration which corresponds to a goal
sampled from a manifold called Workspace Goal Region
using inverse kinematics.

Although many general planning algorithms have been
already proposed in the literature, there are still two practical
and critical problems to be addressed. The first one is time
spent for the planning. Since the robot is teleoperated by
a human, it is a very important factor. The planning must
be done within a few seconds in order not to keep the
human operator waiting too long. The second is that a
polyhedral model of the environment is not given a priori.
The environment is measured by sensors on the robot and
its model is constructed while the robot is exploring.

The proposed framework takes those problems into ac-
count in two phases, planning and execution. In the planning
phase, a reaching motion is planned quickly using a “light”
configuration projector with approximated mass distribution
and kinematic structure. In the execution phase, the ap-
proximation error is compensated without breaking other
constraints by solving whole body inverse kinematics during
execution.

The rest of the paper is organized as follows. Section II
explains how to create collision models of the environment
from measured data which are used for collision detec-
tion and distance computation. A reaching motion planning
method which plans quickly utilizing analytical solutions of
inverse kinematics is presented in Section III. Section IV
presents a reaching motion execution method. Section V
shows some simulation results. Finally Section VI concludes
the paper.

II. COLLISION MODELS FOR THE ENVIRONMENT AND
THE ROBOT

We assume that the environment around the robot is
measured by sensors such as a stereo vision system or a
laser range finder while the robot is exploring and those
measurements are accumulated as a voxel map.

The simplest way to create a collision detection model
from the voxel map is assigning a small cube to each
voxels. But this method not only consumes large amount of
memory, but also cubes are not strictly convex, which is not
a suitable shape for the collision avoidance algorithm used in
the execution phase. We therefore represent the environment
by a sphere tree[11] instead. A sphere is assigned to each
voxels and a sphere tree is constructed from those spheres.
Diameters of those spheres are equivalent to the resolution
of the voxel map in this work. The safety margin of a
planned motion can be increased by using larger diameters.
The sphere tree is used to detect collisions in the planning
phase and to compute distances to reshape the path to avoid
collisions caused by balance compensation.

The sphere tree is constructed by a top down approach.
First, an axis aligned bounding box(AABB) of spheres is
computed. Spheres are split into two groups at center of
gravity of spheres along the longest axis of the AABB. This
procedure is repeated until every leaf nodes has only one

Fig. 2. Left:original polyhedral model of HRP-2, Right:approximation
model for collision detection and distance computation

sphere. A radius of a tree node is determined by comparing
two radii: for a sphere which bounds AABB and which
bounds two child bounding spheres. The smaller is chosen
after comparison.

The robot shape is also approximated to detect collisions
quickly and make it easy to compute distances. Fig. 2 shows
a polyhedral model of a humanoid robot HRP-2(left) and
its approximation model(right). The robot shape is approx-
imated by spheres and capped cylinders since it is easy to
compute distances. To make bounding volumes tighter, STP-
BV[12] will be used in the future.

III. REACHING MOTION PLANNING

A. Inverse Kinematics

In general, time consuming processes of the motion plan-
ning are (1) a collision detection between the robot and the
environment and (2) a projection of a sampled configuration
onto constrained manifolds. Since these processes are called
so many times to find an initial path and optimize it, they
should be done efficiently. Unfortunately, the configuration
projection tends to be computationally heavy because a hu-
manoid robot must respect many constraints while reaching
such as feet position/orientation and center of gravity (COG)
position. Due to high redundancy, the usual approach is to
solve whole-body inverse kinematics numerically through
iterative convergence computation. It is however obvious that
analytical solutions of inverse kinematics should be used for
quick planning.

B. Sampling Goals

One of features of a reaching motion planning problem
is that a goal is given in the workspace, not in the joint
space. Moreover, the goal is not necessarily given as a point
in 6D(position/orientation) space but as a manifold which is
called Workspace Goal Region(WGR)[8]. We define WGR as
a set of ranges of x,y, z components of position and ¢, 8, ¢
components of orientation. For example, when a target is
a cylindrical object, an end-effector can approach from any
direction around the axis and the grasping height needs not to
be fixed to a single point. In this case, upper and lower limits
for x,y, ¢ and 0 are the same with given specific values and
those for z and v have different values.
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6DOF

Fig. 3. The original kinematic chain(left) and the simplified kinematic chain
used to find goal postures(right). Some of joints are fixed and the original
kinematic chain is split into four 6-DOF chains connected through the trunk.
Yellow spheres show COG positions and masses of each link. Distributing
masses(left) are assumed to be concentrating on the trunk(right). v is a
vector from COGapproz to the origin of the trunk link.

The goal posture can be obtained by sampling WGR first
and then computing the corresponding humanoid posture as
follows:

1) Sample an end-effector position/orientation in the
given WGR and joint angles in the joint space

2) Move an end-effector to the sampled goal, move feet
to positions/orientations to keep given stance and move
COG above the support polygon using whole body
inverse kinematics

The second step of the procedure is computationally expen-
sive as mentioned earlier. We fix some of the joints and split
the robot’s kinematic chain into sub-chains in order to apply
analytical solutions of inverse kinematics, as shown in Fig. 3.
Neck, waist and finger joints are fixed and 6-DOF kinematic
chains are connected to the trunk. In this section, we assume
that arms and legs are composed of six DOFs. This is the
case of our humanoid robot, HRP-2[9]. If a robot has more
degrees of freedom, this method can be used by fixing some
of the joints or adding those joints as new dimensions of the
configuration space.

Yellow spheres in Fig. 3 show COG positions and masses
of each link. We assume that the whole mass concentrates
on a point fixed to the trunk link. Hereafter, we call the
COG position computed using distributed masses the exact
COG position and a concentrated mass the approximated
COG position. The latter is denoted by COG gppror- Based
on this assumption, we can determine the trunk horizontal
position easily so that COGppror does not move. And
then joint angles of arms and legs are computed by solving
analytical solutions of inverse kinematics using the trunk
position/orientation and end-effector positions/orientations.

Using this simplified kinematic chain and the approxi-
mated COG position, the configuration space to find goal
postures is defined as follows.

qgoal = (PZ pr;[ 2t rpy?)T (1)

This is a concatenation of an end-effector position
Pe = (Te,Ye,2.)T, an end-effector orientation rpy. =

(¢e,0c, )T, the height of the trunk z; and an orientation
of the trunk rpy; = (¢, 0:,%:)”. A sampled configuration
is projected by Algorithm 1. All positions, orientations
and vector in Algorithm 1 are expressed in the world
coordinates. First, the trunk position p; is determined so
that the horizontal position of COG gppro, does not move
(from line 2 and 4). v is a vector from COGpprox t0
the origin of the trunk link. And then arms and legs are
checked if they can reach specified positions/orientations.
Solve{RightArm,LeftArm,RightLeg,LeftLeg}IK() are func-
tions to solve inverse kinematics of a kinematic chain analyt-
ically. p,¢, R,¢, piy and Ry are feet positions and orienta-
tions. When Algorithm 1 returns True and it is collision-free,
a goal posture is obtained.

Algorithm 1 ProjectConfig([pl, rpyl, z:, rpy!])
1: R, < RollPitchYaw(rpy.)

R; <+ RollPitchYaw(rpy;)

Dt < Rtv + COGapprow

pi[2] < 2

if SolveRightArmIK(p;, R;, pe,R.) # True then
if SolveLeftArmIK(p;, R;,p.,R.) # True then

return False

end if

end if

10: if SolveRightLegIK(p:, R:, p,s.R. ) # True then

return False

12: end if

13: if SolveLefLeglK(p;, R, pis,R;5) # True then

14:  return False

15: end if

16: return True

D A

—
—_

Following this procedure, 100 goal postures to reach
the red valve HRP-2 is reaching in Fig. 1 are generated
to confirm that difference between the approximated COG
position and the exact one is small enough. Fig. 4 shows
exact COG positions relative to approximated COG positions
in the horizontal plane for those goal postures. The exact
COG positions move a few centimeters forward(direction+
X) since the robot must stretch its arm forward to reach the
target valve. Differences are within a few centimeters and
they are small enough compared to the size of the support
polygon(23x34[cm]).

C. Planning a Motion

A reaching motion is planned using RRT-connect[10]. The
initial configuration and goals obtained in III-B are used as
seeds for search trees. For the reaching motion planning as
well, only analytical solution of inverse kinematics is used to
find solutions quickly. The configuration space for reaching
motions is defined as follows:

Qpian = (Qopm 2t TPYL )" )

where g, is a vector of joint angles of an arm used to
reach. While RRT-connect grows a tree, the trunk horizontal
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Fig. 4. Differences between the approximated COG positions and the exact
ones for sampled goal postures

position is determined in the same way with Algorithm 1 to
keep balance. And leg joint angles are computed by solving
analytical solutions of inverse kinematics.

IV. EXECUTION WITH REAL-TIME
COMPENSATION

The planned path is a sequence of postures which are
collision-free and roughly statically stable. Although the
approximation error of COG position is small enough as
shown in Fig. 4, it is preferred to maintain the horizontal
position of the exact COG to maximize stability margin.
The planned path is thus executed while compensating the
approximation error in real time without breaking other
constraints such as collisions and end-effector positions.

As the path is a sequence of discrete configurations, it
should be transformed into an executable trajectory first.
Durations to move between neighboring postures in the path
are computed as the maximum difference of joint angles
divided by a given joint velocity. An initial trajectory is
then obtained by interpolating postures using clamped cubic
spline.

In order to compensate the approximation error of COG
without breaking other constraints, all joints(except fingers)
are taken into account. Although required modification is
expected to be small, it might be impossible to respect all
constraints at the same time. In order to continue execution of
the trajectory even in such cases, constraints are prioritized
and a feasible motion is obtained by solving whole-body
inverse kinematics. Since some of constraints such as joint
limits and collision avoidance are inequality constraints, a
prioritized inverse kinematics solver which is able to consider
both of equality and inequality constraints[13] is used. As
shown later, the solver is efficient enough to generate the
executed posture within the low-level control loop (5[ms]
in case of HRP-2). We introduce the following four priority
levels.

1) Joint limits and collision avoidance constraints have
the highest priority since if they are not respected, the
robot will damage itself or the environment immedi-
ately. Environment spheres within a distance bound are
picked up first and velocity dampers[14] are inserted
between each pair of an environment sphere and a
robot geometry. These are inequality constraints.

TABLE I
PERFORMANCE OF GOAL SAMPLING

288[ms]

0.45[%] of total time
called 8125 times(0.016[ms/call])
1308226
16/84
arm: 1295881 (right)/1278559(left)
leg: 18617(right)/2925(left)

average total goal sampling time
collision detection

the number of samples
used arm(right/left)
IK failure

2) Maintaining feet position/orientation and the exact
COG position have the second priority since these
are important to keep balance. These are equality
constraints.

3) Maintaining a hand position/orientation constraint has
the third priority. Although moving a hand to the speci-
fied position is the main objective, it has lower priority
compared to above two levels since ensuring robot’s
safety is most important to continue exploration.

4) Residual redundancy is used to realize a posture given
by the initial trajectory.

V. SIMULATION RESULTS

In order to confirm efficiency of the proposed framework,
reaching motions in an industrial plants shown in Fig. 1 are
planned and executed on a simulator. In this example WGR
is given as follows.

™ 7T. ™ T .
227 22
The end-effector position is fixed but its Z axis can be any
direction in hemisphere. A sphere tree for the workspace
is created from 22,753 voxels. It takes 20[ms] to construct
the sphere tree on a modern computer (CPU:Intel Core i7
3.2[GHz)).

Table I shows performance indexes obtained when 100
goal postures are sampled using Algorithm 1. It takes
288[ms] to find a goal on average. Most of the time is
spent for solving inverse kinematics and rejecting invalid
configurations. More than one million configurations are
sampled to get 100 goal postures. It is expected that it takes
much more time if numerical solution of inverse kinematics
is used.

Table II shows performance indexes obtained when 100
paths are planned for each goals obtained above. Most of
the processing time is used by collision detection. Duration
of the planning is 429[ms] on average and 707[ms] in the
worst case. The total time an operator must wait before a
robot start to move is expected to be around 1[s].

Fig. 5 shows snapshots of the executed reaching motion.
The right arm passes through narrow passage between a
pipe and its lower body and reaches the target position. The
planned path consists of nine configurations. Snapshots in
Fig. 6 show a reaching motion by the left arm. As can be
seen, the robot lowers its body to avoid collisions between

[0.71 0.71;0.03 0.03;0.9 0.9; — w7 (3)
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Fig. 5.

Fig. 6.

TABLE II
PERFORMANCE OF PATH PLANNING

Execution of a reaching motion by the right arm

total:429[ms]
right:549[ms/goal], left:406[ms]

average total path planning time

max time right:692[ms], left:707[ms]

77[%] of total time
called 1019794times(0.032[ms/call])

collision detection

0.035 e §
X(initial trajectory) ——
0.03 X (executed trgjectory) ---------
Y (initial trajectory)
0.025 i

Y (executed trajector

E oot ]
3
g o0t ]
001 f
O i L L L L L L

Time[s]

Fig. 7. Comparison of exact COG trajectories. When the COG constraint
is enabled, the horizontal position of the exact COG doesn’t move.

its left shoulder and a pipe. The planned path consists of 14
configurations.

Fig. 7 shows exact COG trajectories for the reaching
motion by the right arm. If the initial trajectory is executed
without compensation, the exact COG moves a few centime-
ters. We can confirm that the horizontal position of the exact
COG is maintained after the compensation. In Fig. 8, min-
imum distances between the robot and the environment are
plotted. Negative distances mean that the robot is colliding
with the environment. Even though the planner finds a set
of collision-free postures, there are collisions in the initial
trajectory around 2[s] and 6[s]. There are two causes of
these collisions. First, it is due to discrete collision detection.
Since collisions are tested for discrete configurations on the
planned path, some of collisions occurring between tested
configurations might be overlooked. The other cause is
the difference of interpolation method. During the planning

Execution of a reaching motion by the left arm. The robot lowers its body to avoid its left shoulder colliding with a pipe.

0.02 —————— -
initial trajectory
= 0015 executed traectory
g
é 0.01
a
€ 0005
£
=
s 0
-0.005 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Time[s]

Fig. 8. Minimum distance between the robot and the environment. There
are collisions in the initial trajectory around 2[s] and 6[s]. Those collisions
are resolved by enabling a collision avoidance constraint.
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.
£ 40t
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Time[s]
Fig. 9. the number of spheres in a distance bound

phase, configurations are connected by straight lines in the
configuration space. But the initial trajectory is generated by
interpolating those configurations using clamped cubic spline
in order to make the trajectory smooth. These collisions are
resolved by enabling a collision avoidance constraint.

Red lines in the red circles of Fig. 11 connect closest
points between spheres in a distance bound and robot shapes.
Constraints are preventing right shoulder, right elbow and
right wrist from colliding with pipes.

Fig. 9 shows the number of spheres in a distance bound
and Fig. 10 shows processing time used for finding spheres
in a distance bound, solving prioritized inverse kinematics
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Fig. 10. Processing time used for finding spheres in a distance bound,

solving prioritized inverse kinematics and sum of them. The total time is
enough short to execute online.

Fig. 11. Collision avoidance constraints generated at 5.62[s]. Right
shoulder, elbow and wrist are avoiding collisions.

and sum of them. The processing time is proportional to the
number of spheres in a distance bound. Most of the time is
used to solve prioritized inverse kinematics. The processing
time is enough short to execute online since the control cycle
of HRP-2 is 5[ms].

VI. CONCLUSIONS

We presented an efficient framework for reaching motion
planning and execution for humanoid robots on exploration
missions. Assuming the robot is teleoperated by a human
operator, we focused on making planning time short con-
sidering a human patience. The framework consists of a
planning phase and an execution phase. The former plans
a reaching motion quickly utilizing analytical solution of
inverse kinematics and the latter executes the planned path by
compensating approximation error in real-time while main-
taining other constraints. The effectiveness of the framework
was confirmed by generating reaching motions in a simulated
industrial plant.

Future work includes the following issues. In this work,
we did not deal with manipulation of the target object. In
the worst case, the robot in the presented example might
not be able to open/close the valve if the reached position
and orientation are not appropriate. Reaching and object
manipulation must be considered in an unified framework
in the future work. Another issue concerns how to select
a standing position and its stance that are assumed to be
given in this work. It is often difficult for a operator to
choose appropriate standing position and stance. In the future

development we will also investigate automatic decision of
standing posture that maximizes the workable range for the
robot.
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