Distributed Formation Control for a Modular Mechanical System

Eiichi YOSHIDA

Haruhisa KUROKAWA

Satoshi MURATA

Kohji TOMITA
Shigeru KOKAJI

Mechanical Engineering Laboratory, AIST, MITI

1-2 Namiki, Tsukuba-shi, Ibaraki 305 Japan

Abstract

A distributed formation control method is proposed
for a modular mechanical system. We have developed a
totally decentralized system composed of many homoge-
neous mechanical units which are designed to change
their connective configuration using only local infor-
mation. The control method proposed in this paper
enables the system to re-organize themselves so that
various configurations can be formed in a robust way.
Computer simulations and experiments are carried out
to show its effectiveness.

1 Introduction

Mechanical systems inspired by biological organisms
are studied more and more intensively in the engineer-
ing field. One of challenging subjects is the develop-
ment of a distributed mechanical or robotic system
consisting of many modules.

This idea comes from the fact that a collection of
cells composing living beings can show a variety of
complex functions like self-assembly and self-repair.

Can we construct a system composed of many simple
mechanical units that can realize various functions by
reconfiguration? Is it possible to let the mechanical
system repair itself?

The following are the key requirements to build such
a system.

Homogeneity. Each mechanical unit had better be
homogeneous in terms of both hardware and soft-
ware because:
any unit can play any part of the overall system
and can replace any defective unit.

Local information. The behavior of unit is deter-
mined only by local information:
this enables the entire system to act in a dis-
tributed manner without central coordinator.

e-mail: eiichi@mel.go.jp

Dynamic reconfigurability. Units should be able
to change their connective configuration by them-
selves:
this is necessary for self-assembling and self-re-
pairing capacity.

Over the past few years a considerable number of
studies have been made on reconfigurable mechanical
or robotic systems. Polypod [1] and Tetrobot [2] are
reconfigurable mobile robots. Other work [3] [4] has
developed robots capable of reconfiguring dynamically.
These systems, however, do not necessarily satisfy all
of the requirements above.

From this viewpoint, we have been developing a
distributed mechanical system which is composed of
many units called “fracta” [5]. We consider that dif-
ferent functions are realized if the units can form var-
ious shapes by self-assembly like living things. The
system can also repair itself if some part is removed,
by replacing it with spare units.

This system can be a self-maintainable versatile ma-
chine which works as a mobile robot or a manipulator,
as well as a static structure in hazardous environments.
Since the units are homogeneous, distributed imple-
mentation of formation is an essential issue. Although
there are studies on formation by cellular robots [3] [4]
and by multi-agents [6]-[8], we need to consider further
constraints of strict homogeneity and physical connec-
tion to realize distributed algorithms which allow those
units to achieve self-assembly and self-repair.

Thus, we have been developing distributed forma-
tion algorithms together with hardware. Twenty pro-
totype units have been made for experiments so far.
That is a sufficient number to examine the features of
our system. We have investigated a distributed for-
mation control algorithm [5], but it lacks robustness
and self-repairing ability. Our another algorithm [9] is

rather dedicated to hundreds of units, which does not
suit the current stage of hardware development.

This paper, therefore, focuses on improving the dis-
tributed formation algorithm and demonstrating its ef-
fectiveness by applying it to the hardware setup. After
introducing the hardware implementation in section 2,
we will give a detailed account of the distributed for-
mation control algorithm in sections 3 and 4. The
effectiveness of the control algorithm is evaluated in
section 5 by computer simulations. Section 6 presents
the experimental results.

2 Hardware implementation

The overview of the developed hardware of dis-
tributed mechanical system is described here. The
hardware system is mainly composed of motion gener-
ation part using electro- and permanent magnets and
communication devices as shown in Fig. 1. The hard-
ware specification is shown in Table 1.

2.1 Basic functions

We adopted three layered structure to meet both
homogeneity and dynamic reconfigurability. The three
permanent magnets are arranged with 120 degrees in
each of the top and the bottom layer. The middle layer
contains three solenoids and is rotated by 60 degrees
from the outer layers.

If a solenoid has the same polarity as the perma-

permanent magnet

electro-magnet

recelver optical .
transmitter
optical, .
transmitter optical
receiver
€l ectro-magnet ball castor

Fig. 1: Distributed mechanical unit “fractum”

Table 1: Specifications of hardware unit

CPU 780 (10MHz)
Diameter 8cm
Weight 0.4kg
Electri
ectric cur'rent 0.9A
consumption
. independent six channel I/0
Communication

serial 9600bps

nent magnets, then it is attracted into the gap between
outer layers of another unit, which makes connection
between two units. A unit can connect with maximum
six other units. Repulsion takes place with the inverse
polarity of the solenoids. Note that a unit cannot move
by itself but generate only the relative motion.
Figure 2 shows how two units change their connec-
tion based on the operation of the solenoids. In the
initial state, two units A, B are connected by single
bond and let unit B rotate by 60 degrees clockwise. It
is completed by the following operations.
e Unit B attracts the permanent magnet of unit A
by controlling the solenoid bg.
e Unit A repels the permanent magnet of B by con-
trolling a; to cut the former connecting bond.

2.2 Communication

When two units are connected, they can exchange
information via optical communication channel. As
shown in Fig. 1, a unit is equipped with a pair of opti-
cal transmitter and receiver at each of six bonds, which
allows it to communicate with up to six neighbors in-
dependently.

3 Distributed formation control

The purpose of the distributed formation control is
to achieve the goal formation from any initial config-
uration (where all the units are assumed to be con-

real movement

schematic expression

[transient]

Fig. 2: Basic motion of units

nected). As mentioned in section 1, each unit should
have the same software and decide its movement only
according to available local information. We have been
developing an algorithm for this function [5].

The algorithm consists of the following procedures.
Each unit

(i) calculates “difference” between the current and
goal configuration
(ii) obtains the average difference around the unit
using a diffusion process (inter-unit communi-
cation is used)
(iii) moves randomly if the unit has a relatively large
difference
We call this calculation cycle a “step”.
After introducing the notation of “connection type”
of units [5], we give a brief overview of the proposed
algorithm in our previous research [5].

3.1 Connection types

In the process of formation control, each unit decides
its motion according to its current local state. Thus
we need to describe how a unit is connected to others.
For this purpose, we classify connection types.

A unit can be formally described as a hexagon since
it has six possible bonds. The possible 12 connec-
tion types and their mutual relationship are shown in
Fig. 3. The link between two types denotes that one
type may be changed to the other by a single basic
motion like in Fig. 2.

The notation of “distance” between two types can be
defined as the numbers of links in the shortest path.
The larger this distance becomes, the longer time it
takes to transit from one type to another.

It is important to state here that some of these con-
nection types are not “movable”. In some cases, units
may be physically impossible to move, and in other
cases, the movement of units may divide the system
into two unconnected parts. We therefore define a
movable unit as one which:

Fig. 3: Connection types and their relationship

e can rotate without carrying other units
e keeps the whole system connected after the move-
ment.

According to criteria above, we define units with con-

nection types “e”, “o”, and “¢” as movable.

3.2 Overview of control algorithm

The formation control algorithm 1is basically
grounded on “difference” and diffusion process.

3.2.1 Goal description

First, we describe the goal formation using the types
defined in 3.1. As an example, let us introduce a goal
shape of a triangle composed of 10 units shown in
Fig. 4. The unit with the goal type “K” is connected
to 4 units whose types are {0, K, K, s}. We refer to
this as “statement” K{o, K, K, s}. The goal shape is
written as the collection of these statements:

o{K, K}
K{o, K, K, s} (1)
s{K, K, K, K, K, K}

Connection types of each statement in (1) are sorted
in order of the number of connection bonds.

We note here that this description has limitation.
Although the description like (1) can be determined
for a given goal shape, it is no unique; there can be
multiple goal forms corresponding to the same descrip-
tion. In such a case, some additional criteria must be
added, like priorities introduced later in section 4. But
the method above has adequate capability to describe
goal forms with up to twenty units as long as the goal
shape is not too much complicated.

Fig. 4: Description of triangle by 10 units

3.2.2 Calculation of difference

Each unit calculates the “difference” between its
current state and the goal in (1) as:

M
diff(i) = Ijnznll[d(typeg (4), type(i))

6 (2)
+ Z d(ntypeg (]v k)v ntype(ia k))]

k=1
where
i index of unit
M: number of goal types
d(a,b): distance between types “a” and “b”
type(?): current type of unit i
type? (j): j-th goal type
ntype(i, k): current k-th neighbor type of unit 4
ntyped(j, k): k-th neighbor type of j-th goal state-

ment

In (2), for each goal statement, a unit calculates the
sum of distances between types in each term of its
current connection state and the goal statement. The
difference is the minimum value of these sums. As
a result, each unit evaluates the difference from the
closest goal statement.

3.2.3 Diffusion process

It is preferable for units with relatively larger dif-
ference to move so that the group of units can form
the desired goal configuration. To allow units to know
the average difference in its neighborhood, we employ
a diffusion process.

A diffusion variable z(4,t) is introduced for unit 4,
whose dynamics at each step ¢ is described as follows:

z(i,t+1) = x(i,t)+ Kz(i,t) — L~
—_—————
Ax(i,t)
2(i) = Y w(t) - eiati,) G
jen(i)
x(3,0) = diff(¢,0) [initial state]

* L is applied only to movable units

where
x(i,t): diffusion variable of the unit ¢ at step ¢
Z(i,t): “fux” of z(i,t) of the unit i at step ¢

K: diffusion coefficient

n(i): set of indices of units neighboring the unit 4
¢(i): number of units connected to unit 4

L: leak const. (effective for movable units only)

diff(i, t): the value diff(¢) at step ¢ (redefined)

The diffusion variable z(i,t) represents the average
difference around the unit 7. Supposing that each unit

has a reservoir of the same size, equation (3) models
a diffusion process just like water level in connected
reservoirs. In this analogy, x:(i,t) represents the water
level which averages neighboring differences through
water flux between the reservoirs. Every time the con-
nection is changed by units’ movement, diff(4, ¢) is sub-
stituted for z(i,t). The leak constant L is to make the
diffusion variables approach to zero.

3.2.4 Moving strategy

Each unit determines whether it will make a motion
or not according to the following inequality:

Gz (i,t) < diff(i,) (4)

The coefficient G is an activation threshold. Using (4),
a unit with relatively larger difference is activated and
moves in a random direction. If the goal configuration
is accomplished, all the differences become zero and
no more motion will be made.

4 Improved distributed formation

Although the algorithm in the previous section can
realize distributed self-assembly formation, it is not
provided with self-repair function. It is also prone to
cause a deadlock state, that is, to converge to an unde-
sirable shape. Moreover, there is still another problem
that it takes quite a long time for units to achieve the
goal shape.

Even though we have designed another algorithm [9]
for many units (say, more than 30), this is not appro-
priate for the experimental environment with less than
20 units we are thinking about in this paper.

This section proposes a more refined algorithm to
overcome these shortcomings.

4.1 Deadlock avoidance

[P [1PNh)

The movable connection types “e”, “0”, and “c” are
activated by evaluating (4). This inequality implies
that units never move as long as the diff(i,¢) equals
zero. It can then happen that the formation will not
proceed any more when all the diff(i,¢) of movable
units are zero, even if non-movable units are not fit to
the goal shape.

Figure 5 explains some deadlock cases. Although
the goal shape is the triangle with 15 units, these dead-
lock shapes cannot be broken because all the movable
units with type “o” have the difference 0 because they
have proper neighbors {K, K}. This deadlock becomes
fixed as the diffusion variable converges to zero by the
leak mechanism.

To solve this problem, we add another variable
called “irritation”, which is augmented in situations
that are considered to be in deadlock. In the deadlock

deadlock

goal form

Fig. 5: Examples of deadlock

state, the non-movable units still have non-zero differ-
ence whereas the diffusion variable z(i,t) converges to
Z€ero.

The unit ¢ computes irritation irr(4, ¢) as follows:

if Az(i,t) < x4, then
if max(|z(i,t)|,|z(i,t)—diff(i,t)|) < x, then
irr(é,t4+1) = 0 (5)
else irr(z, t+1) = irr(i, t)
+ max(|z(7)|, |z (i, t)—diff(¢, t)])
else irr(i,t+1) = 0

In (5), the diffusion variable z(i,t) is regarded to con-
verge when the increment Axz(i,t) is smaller than a
threshold ;. The value irr(i,¢) then increases as
x(i,t) converges to zero with non-zero diff(¢, t).

The variable irr (i, t) is reset to zero if both the aver-
age Z (i) and |z-diff(¢, t)| become smaller than a certain
value z,. This is to prevent the units from breaking
the converge to the goal shape.

We add an activation condition for movable unit:

irr(i, t) > L, (6)

using a threshold value I;;. To break the undesirable
convergence of x(i,t), every time (6) is satisfied, x(4,t)
is replaced by |x(¢,t) — diff(, t)].

4.2 Motion toward smaller difference

In the previously developed formation algorithm [5],
a movable unit selects its moving direction randomly,
whether clockwise or counterclockwise.

In the new algorithm, the movable unit compares
differences in both directions before the movement and
moves in the direction of the smaller value. In addi-
tion, if a loop is detected from the local map, the di-
rection will not be selected (see Appendix). This helps
the system reduce the convergence time.

4.3 Self-repair function

The algorithm in the previous sections does not in-
clude a self-repair mechanism. Embedding this func-

tion into the algorithm has a great significance to make
use of the fault-tolerant feature of a modular mechan-
ical system. We therefore use a goal shape description
(1) with priorities explained below.

Suppose a group of 6 units is going to form a tri-
angle expressed by the description shown in Fig. 6(a).
In adding a spare unit, we introduce descriptions with
priorities as shown in Fig. 6(b). We give the first pri-
ority to the original triangle shape and the second to
the shape with the spare unit. These descriptions are
applied to the calculation of difference (2) in order of
these priorities.

This simple method allows units first to build the
structure with the spare unit, and to rebuild the goal
shape even if one of units is removed.

Prority 1
o (g f)
o (K,f) .
K (0,0, K, f) Prority 2
K (o, ¢, K,)
f (0,0 ¢K,K)

(a) (b)

Fig. 6: Description with priorities for self-repair

5 Computer simulations

We will demonstrate the effectiveness of the dis-
tributed formation control we have developed in this
paper. The improvement of convergence to the goal
shape is examined first, and next, self-repair capacity.

5.1 Performance improvement

We simulated the formation of triangle by 15 units
in Fig. 5 from initial straight line configuration. The
parameters in the simulations are listed in Table 2.

Each unit repeats the calculation described in sec-
tions 3 and 4 at each step. In the simulations, only
one unit is assumed to move at one step.

Figure 7 is the time-development of the average dif-
ference per unit until 2000 steps. The averages are
calculated from 1000 simulation trials with both the
improved formation algorithm and the case before im-
provement. The average difference becomes zero when
the units accomplish the goal form.

Without improvement, the difference from the goal

Table 2: Parameters of simulations

diffusion constant K 0.02
activation threshold G 1.25 (types “e”, “0”)
ratio 2.5 (type “€”)
.1 t [{P%)) 1PN}

leak constant L 0.15 (types “e”, o7

0.02 (type “€”)
irritation increase - 0.01
threshold
irritati set
irritation rese z 0.2
threshold
acti.va.tion. threshold I, 200
for irritation

shape still remains at a relatively large value after 2000
steps because of deadlock, loop or slow convergence.
On the other hand, the formation is almost completed
as the difference is nearly equal to zero by the new
algorithm. The statistics shows that the completion
ratios of both the algorithms are 38.7% and 97.2% re-
spectively. This result clearly demonstrates the effec-
tiveness of the improved algorithm.

5.2 Self-repair

The newly added self-repair capacity is also verified.
A simulation is conducted in the case of triangle of 10
units with a spare unit. Parameters are the same as
Table 2. The difference and diffusion variable per unit
in a typical trial case are plotted in Fig. 8.

By the goal description with priorities, the group
of units converges to the configuration drawn at the
bottom right of Fig. 8 at approximately 100 steps. The
diffusion variable also becomes zero after the difference
falls to zero owing to the leak coefficient.

To see the self-repair function, an arbitrary unit (ex-
cept for type “s”) is removed at around 200 steps.
Even if the difference and diffusion variable rises to

6.0 : :

50 Beforeimproved __
—— Improved

4.0 \

3.0 \ f-
i SR SO

1ol N

0.0
0

difference
[average of 1000 simulations]

—

500 1000 1500

2000 Step

Fig. 7: Average difference by two algorithms

Difference
Diffusion variable |

Difference/ Diffusion variable

200 T 300 Step

removal
of aunit

Fig. 8: Difference/diffusion variable during self-repair

non-zero for certain moment, they converge to zero
and the goal triangle shape is formed again. This sim-
ulation result shows the validity of the self-repairing
function.

6 Experiments

We integrated the algorithms in the previous sec-
tions and the low-level hardware control (see Ap-
pendix) into distributed formation control software,
which is implemented in the hardware setup.

We carried out experiments of self-assembly control
using 6 units. Each unit is programmed to achieve the
goal shape of a triangle from any initial configuration.
In the experiments, we start with the initial state of
line configuration like the computer simulations.

Figure 9 is a series of snapshots taken from a suc-
cessful formation process. We can observe that dis-
tributed formation control is brought into real motion
through low-level algorithm. The goal configuration
was completed without stopping in “e” type in Fig. 9
as planned in low-level control. The implementation of
self-repair function is under development for the mo-
ment.

Fig. 9: Self-assembly process by 6 units

7 Conclusion

We developed a distributed formation control algo-
rithm for a modular mechanical system and verified its
effectiveness by self-assembly experiments. A robust
distributed formation method is proposed based on
previously developed algorithm in order to solve dead-
lock and to realize self-repair as well as self-assembling
capacity. Computer simulations revealed that the pro-
posed method made significant performance improve-
ment of formation process. A low-level hardware con-
trol is also elaborated to put the formation algorithm
to hardware units.

We demonstrated the sufficient feasibility of our
control algorithm in real hardware systems by self-
assembly experiments.

As future work, we intend to realize self-repair op-
eration with the hardware setup and to build three-
dimensional hardware units.

References
[1] M. Yim: “New Locomotion Gaits,” Proc. of Int. Conf.
on Robotics and Automation, pp.2508-1524, 1994.

[2] G. J. Hamlin, et al.: “Tetrobot Modular Robotics:
Prototype and Experiments,” Proc. of Int. Conf. on
Intelligent Robots and Systems, pp.390-395, 1996.

[3] T. Fukuda, et al: “Dynamically Reconfigurable

Robotic Systems,” Proc. of Int. Conf. on Robotics and
Automation, pp.1581-1586, 1988.

[4] G. Chirikjian, et al.: “Evaluating Efficiency of Self-

Reconfiguration in a Class of Modular Robots,” J. of
Robotic Systems, Vol.12, No.5, pp.317-338, 1996.

[6] S. Murata, et al.: “Self-assembling Machine,” Proc.
IEEEFE Int. Conf. on Robotics and Automation, pp.441-

448, 1994.
[6] C. Reynolds: “Flocks, herds and schools: A dis-
tributed behavioral model,” Computer Graphics,

Vol.21, No.4, pp.25-34, 1987.

[7] P. Wang, “Navigation strategies form multiple au-

tonomous robots moving in formation,” J. of Robotic
Systems, Vol.8, No.2, pp.177-195, 1991.

[8] Q. Chen, J.Y.S. Lus, “Coordination and control of a

group of small mobile robots,” Proc. IEEE Int. Conf.
on Robotics and Automation, pp.2315-2320, 1994.

[9] K. Tomita, et al.: “Reconfiguration Method for

a Distributed Mechanical System,” Distributed Au-
tonomous Robotic System 2, H. Asama, et al., eds.,
pp.17-25, Springer, 1996.

[10] S. Kokaji, et al.: “Clock Synchronization algorithm

for a Distributed Autonomous System,” J. of Robotics
and Mechatronics, Vol.8, No.5, pp427-434. 1996.

Appendix: Low-level hardware control

The formation algorithm explained in this paper
provides the decision whether the units should move or
not. To implement this algorithm into the hardware,
we need low-level control such as solenoid driving and
communication synchronization. This appendix out-
lines how hardware units are actually controlled.

We assume the followings for simplicity:

e All units have a common synchronized clock.

e Unit moves so that it avoids resulting in “e” type.

The first assumption can be satisfied using a dis-
tributed synchronization algorithm [10]. The second
is introduced since a unit often has difficulty in start-
ing movement once it stops in “e” type, which lies in
an equilibrium point of overlapping magnetic fields of
the neighboring magnets.

If a unit determines to move by the algorithm, the
following low-level control procedure that consists of
three phases is executed in a synchronous fashion.

(a) Local map generation:
Each unit generates a local map of its neighbors
within 7 connection distance.

(b) Negotiation:
We should guarantee that at most one unit moves
in each r connection distance to prevent a conflict
caused by simultaneous movement of units. For
example, this can be realized using mutual voting
process.

(¢) Movement by local cooperation:
When a unit moves, it requires other units’ coop-
eration. Figure 10 (a)~(c) illustrates units pos-
sibly involved in the counterclockwise movement
of unit M. First, unit L must repulse one of its
solenoids and unit A, B and C should pull in

turn.
&G
€

(@)

7/
(b)

XK=y
>

(©)

Fig. 10: Cooperation for unit M’s motion

As we noted earlier, units avoid resulting in “e”
type as shown in Fig. 11. If a unit moves clock-
wise for instance, it continues until the resultant
type is not “e” type. How many steps are needed
is computed as j in the procedure in Fig. 12.
A lookup table is used to see which solenoid is
pulled or repulsed by which unit.

etype

move CW

N %7

L d

~

=

not etype
Fig. 11: Movement avoiding type “e”

procedure:difference_after move()

for j <5
if [type != ‘e’ after movement]
calculate_difference();
detect_loop();
if [type of remainder unit r
after movement == ‘e’]
difference_after move() for unit r;
break;
else j++;
end;

3

Compare the sum of difference
decide direction to move

(Not move to direction

where there will be a loop)

Fig. 12: The procedure of avoiding “e” type

