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Abstract—A modular robot has a distributed mechanical 
composition which can make various configurations and also 
make locomotion in a wide variety of configurations. 
Modular robots are thought to be useful in extreme or 
unknown environments by adaptively changing their shape 
and locomotion patterns. As for locomotion, two types can be 
used; one is whole-body fixed-configuration locomotion and 
the other is locomotion by self-reconfiguration. In this paper 
we deal with the former type of locomotion which is realized 
by coordinated joint actuation. So far, proposed control 
methods for whole-body locomotion by modular robots have 
been based on predefined locomotion sequences. However, 
locomotion based on predefined sequences cannot adapt to 
changing terrain conditions such as uphill, downhill, slippery 
and sticky grounds. To solve such problems, we propose a 
distributed control mechanism using a CPG controller which 
enables adaptive locomotion by modular robots. Besides the 
real-time CPG control we introduce a decentralized control 
mechanism for detecting the situation that the robot is stuck 
and initiating transformation to another shape for recovering 
the situation. The results of various hardware experiments by 
4-legged structure prove the feasibility of the method for 
adaptive locomotion and transformation by our M-TRAN II 
modules. 

Keywords-Self-reconfiguralble modular robotic system; 
locomotion; Central Pattern Generator (CPG); adaptation; 

I.  INTRODUCTION 
In recent years, many hardware and software 

investigations on feasibility of self-reconfigurable robotic 
systems have been carried out [1–13]. Existing self-
reconfigurable modular robots comprise homogeneous or 
heterogeneous robotic modules and can be connected in a 
variety of configurations according to given tasks. Most 
modules have an actuator for driving a joint, an automatic 
inter-module connection mechanism, an inter-module 
communication system, and a microprocessor as a 
controller. Modular robots, which we address in this paper, 
can change their configuration by releasing connections 
between modules and changing positions of the modules 
using the actuator. This capability is effective for 
adaptation to the external environment or self-repair 

through replacement of disabled parts with spare modules. 
The module actuator is used not only for self-
reconfiguration, but also for producing a whole-body 
motion such as walking and crawling. Self-reconfigurable 
modular robots are applicable to extreme or unknown 
environments such as on distant planets, in deep seas, 
inside nuclear plants, and in disaster area for exploration or 
search-and-rescue operations where human access is 
difficult.  

In software research of the self-reconfigurable modular 
robotic systems, 2-D and 3-D structural formation and 
locomotion by modules have been the main topics. Most 
studies have focused on a distributed algorithm or a 
planning method for structural formation [14–20]. As for 
locomotion, two types of locomotion have been considered 
so far. One type is realized by repeating self-
reconfiguration, e.g. sending a module from tail of the 
module structure to head one by one [7][18–20]. The other 
is whole-body locomotion realized by controlling joint 
motors coordinately without any configuration change [21-
24]. The former locomotion requires much time compared 
to the latter locomotion, but is useful to surmount high 
obstacles that are difficult by a specific module structure. 
The latter type is suitable for faster motion in case of a 
small scale of configuration such as a 4-legged robot or a 
snake-like robot.  

For practical application of modular robots we consider 
a scenario in which a robot searches for injured humans in 
a disaster area. In this case, locomotion by self-
reconfiguration might not be desirable, since speed is of 
vital importance and self-reconfiguration on rough terrains 
is difficult for current modular robots. Therefore, we 
investigate locomotion for several smaller, faster moving 
structures that can self-assemble to a larger structure or 
disassemble to small pieces when needed.      

To realize the above scenario the following aspects 
should be studied. First is the design of efficient 
locomotion patterns for a given module configuration. 
Since there are many possible configurations made by 
modules, it is difficult to design locomotion patterns 
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manually one by one. Second is the control method for 
stable locomotion by many connected modules which has 
many degrees of freedom. Decentralized control is 
desirable to reduce calculation cost on each module. Third 
is the adaptation mechanism such as changing locomotive 
motions according to the conditions of the terrains or 
changing to another shape when it is difficult to proceed 
with the original shape. For the first, in our recent work 
[25], we proposed an Automatic Locomotion Pattern 
Generation (ALPG) method for modular robots which 
produces an efficient locomotion pattern for any given 
configurations automatically. We demonstrated through 
hardware experiments that module structures could make 
locomotion successfully on the flat ground using the results 
made by the ALPG method, but adaptive locomotion was 
not realized. As a next step, in this paper we deal with the 
second and the third topics above and propose a distributed 
control method using a Central Pattern Generator (CPG) 
controller to realize stable whole-body locomotion and 
adaptation to various terrains. A decentralized control 
method for detecting a situation that the robot is being 
stuck is also proposed.  

 In the next section we introduce our latest M-TRAN II 
module hardware. A CPG model for making globally 
coordinated motion in a distributed manner is described in 
section III and the ALPG method for designing locomotion 
patterns is briefly introduced here. Section IV describes 
hardware implementation of the CPG model and the drift 
detection mechanism for adaptive locomotion. Results of 
hardware experiments are provided in section V.  

II. M-TRAN II MODULE HARDWARE 

A. Overview of the M-TRAN Module 
We study whole-body locomotion of modular robots 

using our M-TRAN (Modular Transformer) module shown 

in Fig. 1. This module comprises three components: two 
semi-cylindrical parts and a link part. Each semi-
cylindrical part can rotate from –90° to 90° independently 
by use of a geared motor embedded in the link part. Each 
semi-cylindrical part has three connecting surfaces with 
permanent magnets. The modules can connect with each 
other by magnetic force because the polarity of the magnets 
between the two parts differs. Each connecting surface can 
be connected to another connecting surface in every 
orthogonal relation; thereby various lattice structures are 
formed easily, as illustrated in Fig. 2. The lattice structure 
can be reconfigured by changing positions of the semi-
cylindrical parts, through repetition of simple procedures 
such as detaching the connection, rotating the semi-
cylindrical part, and reconnecting.  

In addition to self-reconfiguration, this modular robot 
system can generate various robotic motions, such as a 
crawler-like locomotion and quadrupedal walking [7], by 
utilizing many degrees of freedom. The following method 
deals with this motion. 

B. M-TRAN II Module Hardware 
As the detailed explanation on M-TRAN II module are 

described in our previous paper [25], here we present 
improved parts compared to the previous version.  

We developed twenty M-TRAN II modules shown in 
Figs. 3 and 4. Figure 3 shows two semi-cylindrical parts: a 
passive part and an active part. As shown in Fig. 4, a CPU 
circuit is inside the passive part. We have developed a new 
CPU circuit board using SH7047 by RENESUS (Main-
CPU) to improve calculation and communication capability 
for implementation of the CPG model. We applied 
CANBUS system for global inter-module communication. 
The communication speed is improved up to 1Mbps which 
is much faster than the previous version, 39kbps. By 
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Figure 1.  Schematic view of an M-TRAN module. 
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Figure 2.  Example of possible configurations, a 3-D lattice structure 
above and a robotic configuration below. Each semi-cylindrical part of 
the module is shown in a different color and checkerboard-like 
structures can be seen. 
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Figure 3.  Appearance of the M-TRAN II module. 
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Figure 4.  Inner structure of the M-TRAN II module. 



applying the new CPU chip, real-time CPG calculation 
(described later) in each module can be realized. We also 
added infra-red LEDs and detectors on passive connection 
surfaces and both sides of the CPU board as a proximity 
sensor. They are for future application and currently not 
used. Table I summarizes M-TRAN II module 
specifications. More details regarding the mechanical and 

electrical design of the M-TRAN II module are available in 
ref. [26, 27]. 

III. CENTRAL  PATTERN GENERATOR (CPG) MODEL 
AND AUTOMATIC LOCOMOTION PATTERN GENERATION 

METHOD (ALPG) 
We describe details of the CPG model first and then 

introduce Automatic Locomotion Pattern Generation 
(ALPG) Method [25] for our M-TRAN II module which is 
based on the CPG model.  

A. CPG Model 
We applied the following CPG model as a CPG 

controller for each joint represented by the 4th order non-
linear differential equation. The CPG model is based on the 
well-known model by Matsuoka [28], which is widely used 
for making stable locomotion [29-31]. We extended the 
model to be applicable to a multi-degree of freedom system 
of any configurations with an arbitrary number of modules: 
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where upi and vpi are the inner state of the ith neuron. The 
variable ypi is the output of the ith neuron, ue is an external 

input with a constant value, and τ and τ’ are time constants 
of upi and vpi, which determine the frequency of the 
oscillation. In addition, fpi and spi represent feedback 
signals from each joint and other neurons respectively. The 
variable fpi works as a spring tension around the 
initial_angle for making a rhythm. The variable spi is a 
normalized value from –1.0 to 1.0 calculated by sigmoid 
function in which feedpi is divided by the number of 
modules, num, to maintain the balance of the amplitude 
between feedback signals. The variable feedpi represents an 
accumulated value of feedback signals from connected 
neurons, and weightij is a connecting weight between the 
ith and jth neurons (each neuron in a CPG is connected to 
the same type of neuron in other CPGs with the same 
weight). The implemented GA (described later) in the 
ALPG software optimizes the initial value of the state 
variable, (upi, vpi) and the connection matrix, weightij for 
efficient locomotion. 

 The parameters τ, τ’, β, a, m1, m2, k, w0, and ue were 
determined by trial and error considering mechanical 
properties such as maximum motor torque, maximum 
motor speed and weight of the real hardware. They are 
summarized in Table II. Each CPG outputs a periodical 
pattern by itself. It oscillates coordinately with other CPGs 
when connected. Such behavior is widely known as a 
locking phenomenon or entrainment among connected non-
linear oscillators. We applied the model to realize 
coordinated motion with several modules. As shown in Fig. 
5, each CPG is placed at a joint; then, joint actuation is 
controlled directly by the CPG output, y, which is a voltage 
value for a joint motor. In each module, dynamics of two 

TABLE II. FIXED PARAMETERS FOR CPG 

Parameters Value 

τ 0.05 

τ’ 0.6 

β 1.5 

a 4.0 

m1, m2 0.125 

k 8 

w0 2.5 

ue 8.0 
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Figure 5.  Schematics of the neural oscillator (CPG). Each module has 
two CPGs; each CPG controls rotation of a joint. 

TABLE I. SPECIFICATIONS OF THE M-TRAN II MODULE 

Item Value 
Dimension 

Weight 
CPU 

Global communication 
Power supply (battery) 

Max. torque of each axis 
Max. rotation speed 

Connecting force 
Battery 

Total power dissipation 
Proximity sensor 

RF module 

60x120x60mm 
0.4kg (including battery) 

SH7407 (Renesus) and two PICs 
CANBUS, 1Mbps 

DC 3.8V 
1.9 Nm (rating) 

0.5π rad/s 
83 N 

Li-ion (3.8V, 900mAh) 
0.4W (8V) 

Infra-red LEDs and detectors 
RF Solutions, Inc. Receiver 315MHz

 



CPGs are calculated by eq. (1). 

Oscillations of connected CPGs are mutually entrained 
corresponding to feedback signals fpi and spi, which are 
expressed by eq. (4) and eq. (5). The spi is determined by 
the CPG network. For stable locomotive motions, not only 
entrainment between CPGs but also entrainment between 
dynamics of the whole body and CPGs is important: they 
are called global entrainment. In other words, when the 
swing of the mechanical structure as a pendulum does not 
match the rhythm made by CPGs, locomotive motion 
becomes neither periodic nor stable. In this model, the 
rhythm made by the mechanical structure is fed back to 
each CPG by eq. (4). 

B. CPG Behaviors in Various Connection 
We show basic behaviors of CPGs in Fig. 6 when they 

are connected by 1: excitatory connection, –1: inhibitive 
connection and connected in a loop by –1. The fixed 
parameters of the CPG shown in Table II were used in the 
simulation. 

1) Case I: Two CPGs are connected by 1 
As shown in the top graph in Fig. 6, two CPGs 

synchronize together. In this case, the phase difference 
between CPGs always converges to 0 in any initial states of 
CPGs. 

2) Case II: Two CPGs are conneted by –1 
In this case shown in the middle graph in Fig. 6, the 

phase difference between two CPGs always converges to π. 

3) Case III: Three CPGs are connected in a loop by –
1 and one of them is connected to other CPG by –1 

In the case that several CPGs are connected in a loop by 
–1, phase differences between CPGs converge to 2π 
divided by the number of CPGs in a loop. In the bottom of 
Fig. 6, phase differences converge to 2π/3 and π 
respectively and this makes the two module structure move 
forward or back by a caterpillar-like motion according to 
the initial states of the CPGs. That is, two attractors exist in 
this case (shown only one of them). When there are many 
CPGs and they are connected in various ways, a wide 

variety of phase differences can be expressed. The GA 
implemented in ALPG software seeks one of the efficient 
locomotive motions moving straight by optimizing both 
initial states of CPGs and connection matrix represented by 
–1, 1, or 0. 

As described above, CPGs can produce various phase 
differences autonomously in accordance with connection 
matrix without any explicit synchronization signals. They 
also can keep phase differences against disturbances to 
some extent. It makes locomotion by modules robust. It is 
very suited to implement the model as a joint controller 
into the module hardware because CPGs are equal with 
each other and they work in a distributed manner. Even if 
the configuration has changed, changing locomotion 
patterns can be easily performed only by replacing the 
connection matrix. 

C. An Outline of ALPG Software 
We developed ALPG software to seek efficient 

locomotion patterns automatically for a given module 
configuration [25]. The ALPG software is realized by 
combining Vortex (CM Labs Simulations, Inc.) as a three-
dimensional dynamic simulation library, a dynamics model 
of the M-TRAN II module, the CPG model described 
before, and an optimization method for a CPG network 
using a genetic algorithm (GA). The ALPG software 
outputs an efficient locomotion pattern to move for any 
given robotic configuration. 

Figure 7 shows a flow chart of the ALPG software. The 
module configuration and the initial posture are determined 
first. Here, “configuration” means a connecting 
relationship between modules and “posture” means a set of 
joint angles for a specific configuration. In the dynamics 
simulation, a robot with certain configuration and posture 
is placed on a flat ground shown in Fig. 8. Then each 
module’s joints begin to oscillate periodically with its 
phase, frequency, and amplitude determined by the CPG 
network. Performance of the locomotion is evaluated using 
a fitness function expressed by eq. (6) and the GA 
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Figure 7. A flow chart for making a locomotion pattern in ALPG 
software. 



optimizes the CPG network. 

,/ numlosscwidthblengthafitness ⋅−⋅−⋅=                     (6) 

where length is the moving distance, width is a drift from 
the objective path, and loss is the energy loss. Figure 9 
shows two example results. The ALPG software can 
automatically produce an efficient locomotion pattern 
depending on the initial configuration and posture. 

Two types of results can be used after simulation. One 
is time series data for every joint angle and the other is a 
connection matrix representing the CPG network for an 
efficient locomotion. In our previous work, as the 
calculation power of the Main-CPU was limited, we used 
the former, time series data, as a sequence and confirmed 
that locomotion is effective on a flat ground [25]. However 
such a method was not applicable to various terrain 
conditions because the sequence was optimized for the flat 
ground with specific friction. To solve the above problem, 
in the following, we utilize the CPG model also on the real 
hardware and evaluate performance through hardware 
experiments.   

IV. HARDWARE IMPLEMENTATION OF THE CPG MODEL 
AND THE DRIFT DETECTION MECHANISM 

In this section we describe the CPG model 
implementation into hardware and the drift detection 
mechanism for adaptive locomotion. The drift detection 
mechanism is added to the CPG controller shown in Fig. 
10 to compensate a drift error of joint rotation and also to 
detect the situation that the joint is stuck when a heavy load 
is put on the joint successively. 

A. CPG Model Implementation 
We implemented the CPG model (III-A) into the 

microprocessor in the Main-CPU of each module. We call 

it as a CPG controller (Fig. 10). Since each module has two 
joints, each CPG controller has only to calculate dynamics 
of own two CPGs locally. 

A calculation cycle for CPG dynamics is 15 msec, 
which is the same in the simulation. First, a CPG controller 
takes in feedback signals represented by upj from connected 
CPG controllers by using inter-module communication bus 
and then calculates dynamics of two CPGs by eq. (1) using 
Euler method. Then, CPG controller outputs the calculation 
results to the joint controller for driving two joints and gets 
feedback signals, fpi and fpi+1, as shown in Fig. 10. By 
repeating these processes locally in each module, phase 
differences among joints determined by connection matrix 
are autonomously made and globally coordinated 
locomotion is realized. There are no needs for 
synchronization between modules and a master as in 
conventional systems. The CPG method is considered 
suitable for such a modular robotic system, a multi-CPU 
system.   

B. Drift Detection Mechanism for Adaptive Locomotion 
As already described, to compensate a drift error and 

detect being stuck of a joint, we added the drift detection 
mechanism named drift detector to the CPG controller (Fig. 
10). In normal situation, each joint oscillates periodically 
around its initial angle (reference point) shown by the 
dotted line in Fig. 12 by the spring effect expressed by eq. 
(4). When a heavy load is put on the joint successively as 
in Fig. 11, center point of oscillation will drift from the 
reference point (shown by the continuous line in Fig. 12). 
The drift leads to unstable locomotion in several cases. In 
real situation such as going up a slope by 4-legged robot, 
the drift occurs at hip joints where mostly a heavy load is 
put and the robot can not go up. To avoid such situation, 
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Figure 8. Simulation space on ALPG software. The software 
implements a dynamic model of the M-TRAN II module with 
environmental features such as gravity acceleration, friction and 
hardness of the ground. 
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Figure 10.  Schematics of the CPG controller and the drift detection 
mechanism (Drift Detector). The drift detector is surrounded by the 
dotted line. The CPG controller implemented in each module calculates 
dyamics of two CPGs in a cycle. 
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Figure 9.  Obtained locomotion patterns, waking pattern (upper) and 
wave-like pattern (below), for configurations, (a) 4-legged and (b) 
H-shaped. Arrows in the figure show the moving direction. 
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Figure 11. Experimental setup that two modules are connected; the 
left module is controlled by the CPG and the right is just a load. In 
the experiment here, two CPGs are connected by –1. 



we introduced two thresholds, threshold1 and threshold2, 
in the mechanism (Fig. 10). One is to suppress the drift and 
the other is to detect the situation beyond recovery. The 
latter threshold (threshold2) is larger than the former 
(threshold1).  

The drift detector shown in Fig. 10 is described by the 
following C-like code and it is carried out in the dynamics 
calculation loop in each module locally. 

;__ angleinitanglecurf −=  

;0_;_)0_( ==+>⋅ valaccumelsefvalaccumffoldif  

;_ ffold =  

);_()1_( valaccumnormalizeoutputthresholdvalaccumif =−>  

;_)2_( messagebroadcastthresholdvalaccumif >  

where an angle difference ( f ) of a joint calculated by 
subtracting initial angle (init_angle) from current angle 
(cur_angle) is checked in every cycle of the CPG 
calculation. The value is accumulated while the angle 
difference is the same sign. The accumulated value 
(accum_val) will be cleared by zero when it crosses the 
reference point. The absolute value of the accum_val is 
compared with threshold1 and threshold2. If it is over 
threshold1, output value of the CPG controller expressed 
by eq. (2) is subtracted by normalized accum_val (–1.0 or 
1.0) to suppress the drift.  

Figure 13 shows the experimental results in the case in 
Fig. 11 with the additional control. It is confirmed by 
comparing the graphs in Fig. 12 that center point of 
oscillation is forced back and the drift is removed. Phase 
difference between two joints is also kept by CPG 
interaction. In this case the drift error was compensated 
successfully but in the case that the situation is not 
recovered and the accum_val is over threshold2, the 
module detects the situation as being stuck and broadcasts 
a detection signal to all the connected modules for 
initiating transformation to another shape. Then all the 
modules start transformation to a predefined target shape 
currently.  

The actual values of the two thresholds must be 
determined according to its shape. In the following 
experiments using a 4-legged robotic configuration, the 
values are determined empirically and implemented. 

V. HARDWARE EXPERIMENTS 
We carried out several hardware experiments to show 

the feasibility of the real-time CPG control and the drift 
detection mechanism. In the following experiments, we 
selected the 4-legged configuration as an example to test 
the method. This is because locomotion by 4-legged 
configuration is more critical to external disturbance than 
any other configurations which we have tested in ref. [25].  

A. Comparison with Previous Method and Real-Time 
CPG Control 
We examined a locomotion pattern when a heavy load, 

two modules here, is put only on one side of the 4-legged 
configuration. Since the 4-legged configuration is 
composed of nine modules, two ninth of weight of the 
whole body is put on one side in the experiment. In such 
case, it is difficult to walk with the same walking pattern in 
the previous method using a predefined locomotion 
sequence. Figure 14 shows comparison with our previous 
method and the real-time CPG control. The former could 
not walk straight and finally was stuck because phase 
differences among joints were disturbed by the heavy load 
and not recovered at all. On the other hand, the latter could 
walk straight by regulating walking steps cooperatively 
with each other as shown in the figure. The results prove 
robustness and adaptability of the CPG control method.  

B. Adaptation to Various Ground Conditions 
We evaluated locomotion by the 4-legged configuration 

on normal, sticky and slippery ground. Although the 
locomotion was optimized for the normal condition of the 
ground by ALPG software, the 4-legged robot could 
adaptively walk on them as shown in Fig. 15. Figure 16 
shows angle changes of hip joints of the 4-legged robot. It 
is confirmed that walking steps are automatically regulated 
according to conditions of the ground and phase difference 
is always kept by CPGs. 
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Figure 13.  Angle changes of joint A (continuous line) and joint B 
(dotted line) in the experiment with drift detector 

 Sticky ground Slippery ground Normal ground Normal ground

 
Figure 15.  Adapatation to normal, sticky and slippery ground by 4-legged 
robot.

 

(a) Trajectory control using locomotion sequence 

(b) Real-time CPG control

Stuck

Extra two modules as a load 

Figure 14.  Comparison on locomotion between trajectory control and 
the real-time CPG control when a heavy load is put on one side of the 
whole body. 



C. Comparison between CPG control and CPG control 
with Drift Detector 
We tested walking along the 10 degrees uphill slope. 

As shown in Fig. 17 (b), the 4-legged robot using the CPG 
with the drift detector could go over the slope successfully, 
but the other was stuck on the way and could not go up as 
in (a). In case of the 4-legged robot, it can go over the slope 
up to 10 degrees currently.  

D. Adaptation to Uphill and Configuration Change 
We carried out an experiment that the 4-legged robot 

walked on the 10 degrees uphill, flat ground and the 15 
degrees uphill to confirm the feasibility the CPG control 
and the drift detector. As shown in Fig. 18, the 4-legged 
robot could go over the first hill and passed the flat ground. 
Then one of the modules detected the situation of being 
stuck of the joint as shown in the graph in Fig. 19 at the 
start point of the 15 degrees uphill. The module 
broadcasted a detection signal to all the modules and the 4-
legged robot transformed its shape into the H-shaped 
configuration. The H-shaped robot could go up the 15 
degrees uphill successfully. The H-shaped robot was also 
controlled by CPGs. A series of motions were 
automatically carried out without any human intervention. 
It was confirmed that the detection mechanism works in 
such real case. 

VI. CONCLUSIONS AND FUTURE WORKS 
We introduced a distributed control method for 

locomotion by modular robots using a CPG controller and 
a drift detection mechanism for adaptive locomotion. By 
implementing the method into the module hardware, 
robustness for locomotion and adaptability to various 
ground conditions were shown through hardware 
experiments using 4-legged configuration. We also carried 
out several experiments on other configurations, e.g. thread 
type, 6-legged and other 4-legged, by using the same 
method. It was confirmed that the method was also 
applicable to others. They are not included in the paper but 
will soon be uploaded to our M-TRAN II web site [32]. 
The merits of the proposed CPG control for modular robots 
are summarized as follows. 

1. Very suited for a distributed system. CPGs work in 
a distributed manner. 

2. No explicit synchronization procedure is needed. 
3. Phase differences among joints are autonomously 

created and kept by real-time CPG interaction. It is 
not needed for every joint’s time series angle data 
for locomotion. 

4. Adaptive locomotion on various terrains can be 
realized. 

5. Applicable to any configurations only by changing 
connecting weights among CPGs (connection 
matrix).  

6. As CPG interaction is represented by three discrete 
values, –1, 1, or 0, it is easy to implement on any 
optimization methods such as GA to search for 
efficient locomotion patterns. 

  
 In this paper we demonstrated a simple adaptation to 

the terrains and transformation when one of the modules 
was stuck only by using internal information of each 
module. Through hardware experiments we noticed the 
followings. Changing configuration on the steep slope or 
rough terrains is difficult in several cases. Detecting the 
environment and making a decision in a distributed manner 
of what configuration is desirable to the situation is still a 
challenging issue. To solve the problems, any other 
detection mechanisms and decision making algorithms 
using external sensors must be necessary. In parallel with 
the work in this paper, a software research on planning for 
making a moving path by a whole body using information 
of distributed external sensors is now in progress.  
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Figure 19.  Angle changes of hip joints. It is confirmed that steps of the 4-
legged robot becomes small to adapt the slope. At the start point of the 15 
degrees slope the situation of being stuck is detected by the drift detector 
successfully. Angle changes while transformation are not shown in the 
graph. 

 10 degrees slope Flat ground 

Stuck 

15 degrees slope

Transformation H-shaped configuration 

Figure 18.  Experiment on adaptation to uphill including transformation 
when the robot is stuck. In the experiment, 10 degrees slope, flat ground 
and 15 degrees slope were provided. 

 
(a) CPG control 

(b) CPG control with the drift detector 

Stuck 
10°

Figure 17.  Comparison between (a) CPG control and (b) CPG control 
with the drift detector. 

0

0.2

0.4

0.6

0.8

1

1.2
0

1.
2

2.
4

3.
6

4.
8 6

7.
2

8.
4

9.
6

10
.8 12

13
.2

14
.4

Time (sec)

A
ng

le
 (r

ad
)

Normal NormalSticky Slippery

 
Figure 16.  Angle changes of hip joints. The range between red curves 
shows double of amplitude. It is confirmed that the amplitude while 
walking on the sticky ground is smaller than others. This means waking 
steps are automatically changed according to conditions of the ground. It 
also can be seen that phase difference is always kept. 
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