
Distributed Adaptive Locomotion by a Modular
Robotic System, M-TRAN II

From Local Adaptation to Global Coodinated Motion Using CPG Controllers

Akiya Kamimura, Haruhisa Kurokawa, Eiichi
Yoshida, Kohji Tomita and Shigeru Kokaji

National Institute of Advanced Industrial Science and
Technology (AIST)

Namiki 1-2-1, Tsukuba, Ibaraki, 305-8654 Japan
{kamimura.a, kurokawa-h, e.yoshida, k.tomita,

s.kokaji}@aist.go.jp

Satoshi Murata
Tokyo Institute of Technology

4259 Nagatsuta-cho, Midori-ku, Yokohama,
226-8502 Japan

murata@dis.titech.ac.jp

Abstract—A modular robot has a distributed mechanical
composition which can make various configurations and also
make locomotion in a wide variety of configurations.
Modular robots are thought to be useful in extreme or
unknown environments by adaptively changing their shape
and locomotion patterns. As for locomotion, two types can be
used; one is whole-body fixed-configuration locomotion and
the other is locomotion by self-reconfiguration. In this paper
we deal with the former type of locomotion which is realized
by coordinated joint actuation. So far, proposed control
methods for whole-body locomotion by modular robots have
been based on predefined locomotion sequences. However,
locomotion based on predefined sequences cannot adapt to
changing terrain conditions such as uphill, downhill, slippery
and sticky grounds. To solve such problems, we propose a
distributed control mechanism using a CPG controller which
enables adaptive locomotion by modular robots. Besides the
real-time CPG control we introduce a decentralized control
mechanism for detecting the situation that the robot is stuck
and initiating transformation to another shape for recovering
the situation. The results of various hardware experiments by
4-legged structure prove the feasibility of the method for
adaptive locomotion and transformation by our M-TRAN II
modules.

Keywords-Self-reconfiguralble modular robotic system;
locomotion; Central Pattern Generator (CPG); adaptation;

I. INTRODUCTION
In recent years, many hardware and software

investigations on feasibility of self-reconfigurable robotic
systems have been carried out [1–13]. Existing self-
reconfigurable modular robots comprise homogeneous or
heterogeneous robotic modules and can be connected in a
variety of configurations according to given tasks. Most
modules have an actuator for driving a joint, an automatic
inter-module connection mechanism, an inter-module
communication system, and a microprocessor as a
controller. Modular robots, which we address in this paper,
can change their configuration by releasing connections
between modules and changing positions of the modules
using the actuator. This capability is effective for
adaptation to the external environment or self-repair

through replacement of disabled parts with spare modules.
The module actuator is used not only for self-
reconfiguration, but also for producing a whole-body
motion such as walking and crawling. Self-reconfigurable
modular robots are applicable to extreme or unknown
environments such as on distant planets, in deep seas,
inside nuclear plants, and in disaster area for exploration or
search-and-rescue operations where human access is
difficult.

In software research of the self-reconfigurable modular
robotic systems, 2-D and 3-D structural formation and
locomotion by modules have been the main topics. Most
studies have focused on a distributed algorithm or a
planning method for structural formation [14–20]. As for
locomotion, two types of locomotion have been considered
so far. One type is realized by repeating self-
reconfiguration, e.g. sending a module from tail of the
module structure to head one by one [7][18–20]. The other
is whole-body locomotion realized by controlling joint
motors coordinately without any configuration change [21-
24]. The former locomotion requires much time compared
to the latter locomotion, but is useful to surmount high
obstacles that are difficult by a specific module structure.
The latter type is suitable for faster motion in case of a
small scale of configuration such as a 4-legged robot or a
snake-like robot.

For practical application of modular robots we consider
a scenario in which a robot searches for injured humans in
a disaster area. In this case, locomotion by self-
reconfiguration might not be desirable, since speed is of
vital importance and self-reconfiguration on rough terrains
is difficult for current modular robots. Therefore, we
investigate locomotion for several smaller, faster moving
structures that can self-assemble to a larger structure or
disassemble to small pieces when needed.

To realize the above scenario the following aspects
should be studied. First is the design of efficient
locomotion patterns for a given module configuration.
Since there are many possible configurations made by
modules, it is difficult to design locomotion patterns

0-7803-8463-6/04/$20.00 ©2004 IEEE

manually one by one. Second is the control method for
stable locomotion by many connected modules which has
many degrees of freedom. Decentralized control is
desirable to reduce calculation cost on each module. Third
is the adaptation mechanism such as changing locomotive
motions according to the conditions of the terrains or
changing to another shape when it is difficult to proceed
with the original shape. For the first, in our recent work
[25], we proposed an Automatic Locomotion Pattern
Generation (ALPG) method for modular robots which
produces an efficient locomotion pattern for any given
configurations automatically. We demonstrated through
hardware experiments that module structures could make
locomotion successfully on the flat ground using the results
made by the ALPG method, but adaptive locomotion was
not realized. As a next step, in this paper we deal with the
second and the third topics above and propose a distributed
control method using a Central Pattern Generator (CPG)
controller to realize stable whole-body locomotion and
adaptation to various terrains. A decentralized control
method for detecting a situation that the robot is being
stuck is also proposed.

 In the next section we introduce our latest M-TRAN II
module hardware. A CPG model for making globally
coordinated motion in a distributed manner is described in
section III and the ALPG method for designing locomotion
patterns is briefly introduced here. Section IV describes
hardware implementation of the CPG model and the drift
detection mechanism for adaptive locomotion. Results of
hardware experiments are provided in section V.

II. M-TRAN II MODULE HARDWARE

A. Overview of the M-TRAN Module
We study whole-body locomotion of modular robots

using our M-TRAN (Modular Transformer) module shown

in Fig. 1. This module comprises three components: two
semi-cylindrical parts and a link part. Each semi-
cylindrical part can rotate from –90° to 90° independently
by use of a geared motor embedded in the link part. Each
semi-cylindrical part has three connecting surfaces with
permanent magnets. The modules can connect with each
other by magnetic force because the polarity of the magnets
between the two parts differs. Each connecting surface can
be connected to another connecting surface in every
orthogonal relation; thereby various lattice structures are
formed easily, as illustrated in Fig. 2. The lattice structure
can be reconfigured by changing positions of the semi-
cylindrical parts, through repetition of simple procedures
such as detaching the connection, rotating the semi-
cylindrical part, and reconnecting.

In addition to self-reconfiguration, this modular robot
system can generate various robotic motions, such as a
crawler-like locomotion and quadrupedal walking [7], by
utilizing many degrees of freedom. The following method
deals with this motion.

B. M-TRAN II Module Hardware
As the detailed explanation on M-TRAN II module are

described in our previous paper [25], here we present
improved parts compared to the previous version.

We developed twenty M-TRAN II modules shown in
Figs. 3 and 4. Figure 3 shows two semi-cylindrical parts: a
passive part and an active part. As shown in Fig. 4, a CPU
circuit is inside the passive part. We have developed a new
CPU circuit board using SH7047 by RENESUS (Main-
CPU) to improve calculation and communication capability
for implementation of the CPG model. We applied
CANBUS system for global inter-module communication.
The communication speed is improved up to 1Mbps which
is much faster than the previous version, 39kbps. By

 Link

Permanent magnets
(S pole outside)

Permanent magnets
(N pole outside)

180º

180º
Figure 1. Schematic view of an M-TRAN module.

 3-D lattice structure

Robotic
configuration

Figure 2. Example of possible configurations, a 3-D lattice structure
above and a robotic configuration below. Each semi-cylindrical part of
the module is shown in a different color and checkerboard-like
structures can be seen.

 Active Passive

Link

Global communication
electrodes

Permanent
magnets (S)

Inftra-red LED

Geared motor

Disconnection
mechanism
inside

Inftra-red detector
Figure 3. Appearance of the M-TRAN II module.

Power supply
circuit Main-CPU

Connecting
plate

Infra-red LEDs and
detectors

Li-ion battery

PIC-A

Light
bulbs

Permanent
magnets (N)

SMA coils

Non-linear
springs

Figure 4. Inner structure of the M-TRAN II module.

applying the new CPU chip, real-time CPG calculation
(described later) in each module can be realized. We also
added infra-red LEDs and detectors on passive connection
surfaces and both sides of the CPU board as a proximity
sensor. They are for future application and currently not
used. Table I summarizes M-TRAN II module
specifications. More details regarding the mechanical and

electrical design of the M-TRAN II module are available in
ref. [26, 27].

III. CENTRAL PATTERN GENERATOR (CPG) MODEL
AND AUTOMATIC LOCOMOTION PATTERN GENERATION

METHOD (ALPG)
We describe details of the CPG model first and then

introduce Automatic Locomotion Pattern Generation
(ALPG) Method [25] for our M-TRAN II module which is
based on the CPG model.

A. CPG Model
We applied the following CPG model as a CPG

controller for each joint represented by the 4th order non-
linear differential equation. The CPG model is based on the
well-known model by Matsuoka [28], which is widely used
for making stable locomotion [29-31]. We extended the
model to be applicable to a multi-degree of freedom system
of any configurations with an arbitrary number of modules:

,)1,2(,)2,1(),(,1,,0

,'

,0

=−=

+−=

⋅+++−−−=

⎪⎩

⎪
⎨
⎧

ppnumi

piypivpiv

pisapifeupivipywpiupiu

L

&

&

　

τ

βτ

 (1)

,2211 iymiymiOutput +−= (2)

,),0max(　piupiy = (3)

⎩
⎨
⎧

−=

−=

,12

,)_)((1

ifif

iangleinitialitanglekif
 (4)

{ }
,

,0.1
1

)/exp(10.2

pjuj ijweightpifeed

numpifeedpis

∑=

−
−

−+⋅=

　

 (5)

where upi and vpi are the inner state of the ith neuron. The
variable ypi is the output of the ith neuron, ue is an external

input with a constant value, and τ and τ’ are time constants
of upi and vpi, which determine the frequency of the
oscillation. In addition, fpi and spi represent feedback
signals from each joint and other neurons respectively. The
variable fpi works as a spring tension around the
initial_angle for making a rhythm. The variable spi is a
normalized value from –1.0 to 1.0 calculated by sigmoid
function in which feedpi is divided by the number of
modules, num, to maintain the balance of the amplitude
between feedback signals. The variable feedpi represents an
accumulated value of feedback signals from connected
neurons, and weightij is a connecting weight between the
ith and jth neurons (each neuron in a CPG is connected to
the same type of neuron in other CPGs with the same
weight). The implemented GA (described later) in the
ALPG software optimizes the initial value of the state
variable, (upi, vpi) and the connection matrix, weightij for
efficient locomotion.

 The parameters τ, τ’, β, a, m1, m2, k, w0, and ue were
determined by trial and error considering mechanical
properties such as maximum motor torque, maximum
motor speed and weight of the real hardware. They are
summarized in Table II. Each CPG outputs a periodical
pattern by itself. It oscillates coordinately with other CPGs
when connected. Such behavior is widely known as a
locking phenomenon or entrainment among connected non-
linear oscillators. We applied the model to realize
coordinated motion with several modules. As shown in Fig.
5, each CPG is placed at a joint; then, joint actuation is
controlled directly by the CPG output, y, which is a voltage
value for a joint motor. In each module, dynamics of two

TABLE II. FIXED PARAMETERS FOR CPG

Parameters Value

τ 0.05

τ’ 0.6

β 1.5

a 4.0

m1, m2 0.125

k 8

w0 2.5

ue 8.0

u1i v1iβ

τ τ’
Extensor Neuron

u2i v2iβ

τ τ’

Flexor Neuron

),0max(11 ii uy =

),0max(22 ii uy =

m1

ue

w0

ue

f1i

f2i

Outputi

CPGi

CPGi+1

CPGi

fpi

fpi+1

–

+

Excitatory Connection
Inhibitive Connection

up

Extensor

Flexor
m2

up
u2j

u1j

Σ

Σ

s1i

s2i

Figure 5. Schematics of the neural oscillator (CPG). Each module has
two CPGs; each CPG controls rotation of a joint.

TABLE I. SPECIFICATIONS OF THE M-TRAN II MODULE

Item Value
Dimension

Weight
CPU

Global communication
Power supply (battery)

Max. torque of each axis
Max. rotation speed

Connecting force
Battery

Total power dissipation
Proximity sensor

RF module

60x120x60mm
0.4kg (including battery)

SH7407 (Renesus) and two PICs
CANBUS, 1Mbps

DC 3.8V
1.9 Nm (rating)

0.5π rad/s
83 N

Li-ion (3.8V, 900mAh)
0.4W (8V)

Infra-red LEDs and detectors
RF Solutions, Inc. Receiver 315MHz

CPGs are calculated by eq. (1).

Oscillations of connected CPGs are mutually entrained
corresponding to feedback signals fpi and spi, which are
expressed by eq. (4) and eq. (5). The spi is determined by
the CPG network. For stable locomotive motions, not only
entrainment between CPGs but also entrainment between
dynamics of the whole body and CPGs is important: they
are called global entrainment. In other words, when the
swing of the mechanical structure as a pendulum does not
match the rhythm made by CPGs, locomotive motion
becomes neither periodic nor stable. In this model, the
rhythm made by the mechanical structure is fed back to
each CPG by eq. (4).

B. CPG Behaviors in Various Connection
We show basic behaviors of CPGs in Fig. 6 when they

are connected by 1: excitatory connection, –1: inhibitive
connection and connected in a loop by –1. The fixed
parameters of the CPG shown in Table II were used in the
simulation.

1) Case I: Two CPGs are connected by 1
As shown in the top graph in Fig. 6, two CPGs

synchronize together. In this case, the phase difference
between CPGs always converges to 0 in any initial states of
CPGs.

2) Case II: Two CPGs are conneted by –1
In this case shown in the middle graph in Fig. 6, the

phase difference between two CPGs always converges to π.

3) Case III: Three CPGs are connected in a loop by –
1 and one of them is connected to other CPG by –1

In the case that several CPGs are connected in a loop by
–1, phase differences between CPGs converge to 2π
divided by the number of CPGs in a loop. In the bottom of
Fig. 6, phase differences converge to 2π/3 and π
respectively and this makes the two module structure move
forward or back by a caterpillar-like motion according to
the initial states of the CPGs. That is, two attractors exist in
this case (shown only one of them). When there are many
CPGs and they are connected in various ways, a wide

variety of phase differences can be expressed. The GA
implemented in ALPG software seeks one of the efficient
locomotive motions moving straight by optimizing both
initial states of CPGs and connection matrix represented by
–1, 1, or 0.

As described above, CPGs can produce various phase
differences autonomously in accordance with connection
matrix without any explicit synchronization signals. They
also can keep phase differences against disturbances to
some extent. It makes locomotion by modules robust. It is
very suited to implement the model as a joint controller
into the module hardware because CPGs are equal with
each other and they work in a distributed manner. Even if
the configuration has changed, changing locomotion
patterns can be easily performed only by replacing the
connection matrix.

C. An Outline of ALPG Software
We developed ALPG software to seek efficient

locomotion patterns automatically for a given module
configuration [25]. The ALPG software is realized by
combining Vortex (CM Labs Simulations, Inc.) as a three-
dimensional dynamic simulation library, a dynamics model
of the M-TRAN II module, the CPG model described
before, and an optimization method for a CPG network
using a genetic algorithm (GA). The ALPG software
outputs an efficient locomotion pattern to move for any
given robotic configuration.

Figure 7 shows a flow chart of the ALPG software. The
module configuration and the initial posture are determined
first. Here, “configuration” means a connecting
relationship between modules and “posture” means a set of
joint angles for a specific configuration. In the dynamics
simulation, a robot with certain configuration and posture
is placed on a flat ground shown in Fig. 8. Then each
module’s joints begin to oscillate periodically with its
phase, frequency, and amplitude determined by the CPG
network. Performance of the locomotion is evaluated using
a fitness function expressed by eq. (6) and the GA

Inhibitive connection

–1

–1

–1 –1 –1

loop

Excitatory connection

1

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.
24

0.
48

0.
72

0.
96 1.
2

1.
44

1.
68

1.
92

2.
16 2.
4

2.
64

2.
88

3.
12

3.
36 3.
6

3.
84

4.
08

4.
32

4.
56 4.
8

5.
04

5.
28

5.
52

5.
76 6

Phase difference = 2/3 π rad and π rad

Phase difference = 0 rad

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6

Phase difference = π rad

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6

Figure 6. CPG behaviors in various connections. Graphs show CPG
output vs. time.

Module configuration and initial posture
are determined

Initial population for GA is randomly
determined

Evaluate each individual by dynamics
simulation and calculating fitnesses

Sort the individuals by their fitness and
perform selection, crossover and mutation
procedures

Download the obtained locomotion pattern
into the hardware and execute locomotion

Simulation space (ALPG software)

Real world (module hardware)

Generation reaches to max?
or fitnesses converge? Yes

Genaration+=1

Figure 7. A flow chart for making a locomotion pattern in ALPG
software.

optimizes the CPG network.

,/ numlosscwidthblengthafitness ⋅−⋅−⋅= (6)

where length is the moving distance, width is a drift from
the objective path, and loss is the energy loss. Figure 9
shows two example results. The ALPG software can
automatically produce an efficient locomotion pattern
depending on the initial configuration and posture.

Two types of results can be used after simulation. One
is time series data for every joint angle and the other is a
connection matrix representing the CPG network for an
efficient locomotion. In our previous work, as the
calculation power of the Main-CPU was limited, we used
the former, time series data, as a sequence and confirmed
that locomotion is effective on a flat ground [25]. However
such a method was not applicable to various terrain
conditions because the sequence was optimized for the flat
ground with specific friction. To solve the above problem,
in the following, we utilize the CPG model also on the real
hardware and evaluate performance through hardware
experiments.

IV. HARDWARE IMPLEMENTATION OF THE CPG MODEL
AND THE DRIFT DETECTION MECHANISM

In this section we describe the CPG model
implementation into hardware and the drift detection
mechanism for adaptive locomotion. The drift detection
mechanism is added to the CPG controller shown in Fig.
10 to compensate a drift error of joint rotation and also to
detect the situation that the joint is stuck when a heavy load
is put on the joint successively.

A. CPG Model Implementation
We implemented the CPG model (III-A) into the

microprocessor in the Main-CPU of each module. We call

it as a CPG controller (Fig. 10). Since each module has two
joints, each CPG controller has only to calculate dynamics
of own two CPGs locally.

A calculation cycle for CPG dynamics is 15 msec,
which is the same in the simulation. First, a CPG controller
takes in feedback signals represented by upj from connected
CPG controllers by using inter-module communication bus
and then calculates dynamics of two CPGs by eq. (1) using
Euler method. Then, CPG controller outputs the calculation
results to the joint controller for driving two joints and gets
feedback signals, fpi and fpi+1, as shown in Fig. 10. By
repeating these processes locally in each module, phase
differences among joints determined by connection matrix
are autonomously made and globally coordinated
locomotion is realized. There are no needs for
synchronization between modules and a master as in
conventional systems. The CPG method is considered
suitable for such a modular robotic system, a multi-CPU
system.

B. Drift Detection Mechanism for Adaptive Locomotion
As already described, to compensate a drift error and

detect being stuck of a joint, we added the drift detection
mechanism named drift detector to the CPG controller (Fig.
10). In normal situation, each joint oscillates periodically
around its initial angle (reference point) shown by the
dotted line in Fig. 12 by the spring effect expressed by eq.
(4). When a heavy load is put on the joint successively as
in Fig. 11, center point of oscillation will drift from the
reference point (shown by the continuous line in Fig. 12).
The drift leads to unstable locomotion in several cases. In
real situation such as going up a slope by 4-legged robot,
the drift occurs at hip joints where mostly a heavy load is
put and the robot can not go up. To avoid such situation,

X
Z

Y Gravity direction

Flat ground with friction
and hardness

Figure 8. Simulation space on ALPG software. The software
implements a dynamic model of the M-TRAN II module with
environmental features such as gravity acceleration, friction and
hardness of the ground.

fpi

upj

∫
Drift Detector

–
CPG Controller

∫
Drift Detector

–

if > Threshold2 Broadcast
detection signal

Broadcast
detection signal

Joint A

Joint B
output

if > Threshold2

Threshold1

fpi+1

Figure 10. Schematics of the CPG controller and the drift detection
mechanism (Drift Detector). The drift detector is surrounded by the
dotted line. The CPG controller implemented in each module calculates
dyamics of two CPGs in a cycle.

 (a)

(b)

Figure 9. Obtained locomotion patterns, waking pattern (upper) and
wave-like pattern (below), for configurations, (a) 4-legged and (b)
H-shaped. Arrows in the figure show the moving direction.

 Load Joint A Joint B

–1

Figure 11. Experimental setup that two modules are connected; the
left module is controlled by the CPG and the right is just a load. In
the experiment here, two CPGs are connected by –1.

we introduced two thresholds, threshold1 and threshold2,
in the mechanism (Fig. 10). One is to suppress the drift and
the other is to detect the situation beyond recovery. The
latter threshold (threshold2) is larger than the former
(threshold1).

The drift detector shown in Fig. 10 is described by the
following C-like code and it is carried out in the dynamics
calculation loop in each module locally.

;__ angleinitanglecurf −=

;0_;_)0_(==+>⋅ valaccumelsefvalaccumffoldif

;_ ffold =

);_()1_(valaccumnormalizeoutputthresholdvalaccumif =−>

;_)2_(messagebroadcastthresholdvalaccumif >

where an angle difference (f) of a joint calculated by
subtracting initial angle (init_angle) from current angle
(cur_angle) is checked in every cycle of the CPG
calculation. The value is accumulated while the angle
difference is the same sign. The accumulated value
(accum_val) will be cleared by zero when it crosses the
reference point. The absolute value of the accum_val is
compared with threshold1 and threshold2. If it is over
threshold1, output value of the CPG controller expressed
by eq. (2) is subtracted by normalized accum_val (–1.0 or
1.0) to suppress the drift.

Figure 13 shows the experimental results in the case in
Fig. 11 with the additional control. It is confirmed by
comparing the graphs in Fig. 12 that center point of
oscillation is forced back and the drift is removed. Phase
difference between two joints is also kept by CPG
interaction. In this case the drift error was compensated
successfully but in the case that the situation is not
recovered and the accum_val is over threshold2, the
module detects the situation as being stuck and broadcasts
a detection signal to all the connected modules for
initiating transformation to another shape. Then all the
modules start transformation to a predefined target shape
currently.

The actual values of the two thresholds must be
determined according to its shape. In the following
experiments using a 4-legged robotic configuration, the
values are determined empirically and implemented.

V. HARDWARE EXPERIMENTS
We carried out several hardware experiments to show

the feasibility of the real-time CPG control and the drift
detection mechanism. In the following experiments, we
selected the 4-legged configuration as an example to test
the method. This is because locomotion by 4-legged
configuration is more critical to external disturbance than
any other configurations which we have tested in ref. [25].

A. Comparison with Previous Method and Real-Time
CPG Control
We examined a locomotion pattern when a heavy load,

two modules here, is put only on one side of the 4-legged
configuration. Since the 4-legged configuration is
composed of nine modules, two ninth of weight of the
whole body is put on one side in the experiment. In such
case, it is difficult to walk with the same walking pattern in
the previous method using a predefined locomotion
sequence. Figure 14 shows comparison with our previous
method and the real-time CPG control. The former could
not walk straight and finally was stuck because phase
differences among joints were disturbed by the heavy load
and not recovered at all. On the other hand, the latter could
walk straight by regulating walking steps cooperatively
with each other as shown in the figure. The results prove
robustness and adaptability of the CPG control method.

B. Adaptation to Various Ground Conditions
We evaluated locomotion by the 4-legged configuration

on normal, sticky and slippery ground. Although the
locomotion was optimized for the normal condition of the
ground by ALPG software, the 4-legged robot could
adaptively walk on them as shown in Fig. 15. Figure 16
shows angle changes of hip joints of the 4-legged robot. It
is confirmed that walking steps are automatically regulated
according to conditions of the ground and phase difference
is always kept by CPGs.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4

Time (sec)

A
ng

le
 d

iff
er

en
ce

 (r
ad

) Reference point

Motion of Joint A

Motion of Joint B

Figure 12. Angle changes of joint A (continuous line) and joint B
(dotted line) in the experiment without drift detector.

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4

Time (sec)A
ng

le
 d

iff
er

en
ce

 (r
ad

)

Motion of Joint A

Reference pointMotion of Joint B

Figure 13. Angle changes of joint A (continuous line) and joint B
(dotted line) in the experiment with drift detector

 Sticky ground Slippery ground Normal ground Normal ground

Figure 15. Adapatation to normal, sticky and slippery ground by 4-legged
robot.

(a) Trajectory control using locomotion sequence

(b) Real-time CPG control

Stuck

Extra two modules as a load

Figure 14. Comparison on locomotion between trajectory control and
the real-time CPG control when a heavy load is put on one side of the
whole body.

C. Comparison between CPG control and CPG control
with Drift Detector
We tested walking along the 10 degrees uphill slope.

As shown in Fig. 17 (b), the 4-legged robot using the CPG
with the drift detector could go over the slope successfully,
but the other was stuck on the way and could not go up as
in (a). In case of the 4-legged robot, it can go over the slope
up to 10 degrees currently.

D. Adaptation to Uphill and Configuration Change
We carried out an experiment that the 4-legged robot

walked on the 10 degrees uphill, flat ground and the 15
degrees uphill to confirm the feasibility the CPG control
and the drift detector. As shown in Fig. 18, the 4-legged
robot could go over the first hill and passed the flat ground.
Then one of the modules detected the situation of being
stuck of the joint as shown in the graph in Fig. 19 at the
start point of the 15 degrees uphill. The module
broadcasted a detection signal to all the modules and the 4-
legged robot transformed its shape into the H-shaped
configuration. The H-shaped robot could go up the 15
degrees uphill successfully. The H-shaped robot was also
controlled by CPGs. A series of motions were
automatically carried out without any human intervention.
It was confirmed that the detection mechanism works in
such real case.

VI. CONCLUSIONS AND FUTURE WORKS
We introduced a distributed control method for

locomotion by modular robots using a CPG controller and
a drift detection mechanism for adaptive locomotion. By
implementing the method into the module hardware,
robustness for locomotion and adaptability to various
ground conditions were shown through hardware
experiments using 4-legged configuration. We also carried
out several experiments on other configurations, e.g. thread
type, 6-legged and other 4-legged, by using the same
method. It was confirmed that the method was also
applicable to others. They are not included in the paper but
will soon be uploaded to our M-TRAN II web site [32].
The merits of the proposed CPG control for modular robots
are summarized as follows.

1. Very suited for a distributed system. CPGs work in
a distributed manner.

2. No explicit synchronization procedure is needed.
3. Phase differences among joints are autonomously

created and kept by real-time CPG interaction. It is
not needed for every joint’s time series angle data
for locomotion.

4. Adaptive locomotion on various terrains can be
realized.

5. Applicable to any configurations only by changing
connecting weights among CPGs (connection
matrix).

6. As CPG interaction is represented by three discrete
values, –1, 1, or 0, it is easy to implement on any
optimization methods such as GA to search for
efficient locomotion patterns.

 In this paper we demonstrated a simple adaptation to

the terrains and transformation when one of the modules
was stuck only by using internal information of each
module. Through hardware experiments we noticed the
followings. Changing configuration on the steep slope or
rough terrains is difficult in several cases. Detecting the
environment and making a decision in a distributed manner
of what configuration is desirable to the situation is still a
challenging issue. To solve the problems, any other
detection mechanisms and decision making algorithms
using external sensors must be necessary. In parallel with
the work in this paper, a software research on planning for
making a moving path by a whole body using information
of distributed external sensors is now in progress.

-0.4
-0.2

0
0.2
0.4

0.6
0.8

1
1.2

0

1 .
2

2.
4

3.
6

4 .
8 6

7.
2

8 .
4

9.
6

10
. 8 1 2

13
. 2

14
. 4

Time (sec)

A
ng

le
 (r

ad
)

10 degrees slope Flat

Detected the situation
of being stuck.

15 degrees slope

4-legged configuration

H-shaped configuration

Figure 19. Angle changes of hip joints. It is confirmed that steps of the 4-
legged robot becomes small to adapt the slope. At the start point of the 15
degrees slope the situation of being stuck is detected by the drift detector
successfully. Angle changes while transformation are not shown in the
graph.

 10 degrees slope Flat ground

Stuck

15 degrees slope

Transformation H-shaped configuration

Figure 18. Experiment on adaptation to uphill including transformation
when the robot is stuck. In the experiment, 10 degrees slope, flat ground
and 15 degrees slope were provided.

(a) CPG control

(b) CPG control with the drift detector

Stuck
10°

Figure 17. Comparison between (a) CPG control and (b) CPG control
with the drift detector.

0

0.2

0.4

0.6

0.8

1

1.2
0

1.
2

2.
4

3.
6

4.
8 6

7.
2

8.
4

9.
6

10
.8 12

13
.2

14
.4

Time (sec)

A
ng

le
 (r

ad
)

Normal NormalSticky Slippery

Figure 16. Angle changes of hip joints. The range between red curves
shows double of amplitude. It is confirmed that the amplitude while
walking on the sticky ground is smaller than others. This means waking
steps are automatically changed according to conditions of the ground. It
also can be seen that phase difference is always kept.

ACKNOWLEDGMENT
This study was supported by the Science and

Technology Research Grant Program for Young
Researchers with a Term from Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of Japan.

REFERENCES
[1] T. Fukuda and S. Nakagawa, “Dynamically Reconfigurable Robotic

System,” Proc. of the IEEE Int. Conf. on Robotics and Automation,
pp. 1581–1586, 1998.

[2] G. S. Chirikjian, A. Pamecha, and I. Ebert-Uphoff, “Evaluating
Efficiency of Self-Reconfiguration in a Class of Modular Robots,”
J. Robotic Systems, 12-5, pp. 317–338, 1995.

[3] S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji,
“Self-repairing mechanical systems,” Autonomous Robots 10, pp.
7–21, 2001.

[4] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, “A
3-D self-reconfigurable structure,” Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA1998), pp. 432–439, 1998.

[5] E. Yoshida, S. Murata, S. Kokaji, K. Tomita, and H. Kurokawa,
“Micro self-reconfigurable robotic system using shape memory
alloy,” Distributed Autonomous Robotic Systems 4, pp. 145–154,
2000.

[6] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura,
and S. Kokaji, “Hardware Design of Modular Robotic System,”
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS2000), pp. 2210–2217, 2000.

[7] A. Kamimura, E. Yoshida, S. Murata, H. Kurokawa, K. Tomita,
and S. Kokaji, “A Self-Reconfigurable Modular Robot (MTRAN) –
Hardware and Motion Planning Software –,” Distributed
Autonomous Robotic Systems 5, pp. 17–26, 2002.

[8] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y.
Koruda, and I. Endo, “Self-Organizing Collective Robots with
Morphogenesis in a Vertical Place,” Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA1998), pp. 2858–2863, 1998.

[9] D. Rus and M. Vona, “A basis for self-reconfigurable robots using
crystal modules,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS2000), pp. 2194–2202, 2000.

[10] K. Kotay, D. Rus, M. Vona, and C. McGray, “The self-
reconfigurable robotic molecule,” Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA1998), pp. 424–431, 1998.

[11] C. Ünsal, H. Kiliççöte, and P. K. Khosla, I(CES)-cubes; a modular
self-reconfigurable bipartite robotic system, Proc. SPIE, vol. 3839,
pp. 258–269, 1999.

[12] A. Castano and P. Will, “Mechanical design of a module for
reconfigurable robots,” Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS2000), pp. 2203–2209, 2000.

[13] A. Casal and M. Yim, “Self-reconfigurable planning for a class of
modular robot,” Proc. SPIE, vol. 3839, pp. 246–257, 1999.

[14] E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji, “A
distributed method for reconfiguration of 3-D homogeneous
structure,” Advanced Robotics, Vol.13, No.4, pp. 363–379, 1999.

[15] K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and S. Kokaji,
“Self-assembly and self-repair method for distributed mechanical

system,” IEEE Trans. on Robotics and Automation, 15-6, pp. 1035–
1045, 1999.

[16] K. Kotay and D. Rus, “Motion synthesis for the self-reconfigurable
molecule,” Proc.1998 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 843–851, 1998.

[17] C. Ünsal, H. Kiliççöte, and P. K. Khosla, “A modular self-
reconfigurable bipartite robotic system: implementation and motion
planning,” Autonomous Robots, 10-1, pp. 23–40, 2001.

[18] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic Decentralized
Control for a Class of Self-Reconfigurable Robots,” Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA2002), pp. 809–816, 2002.

[19] K. C. Prevas, C. Ünsal, M. Ö. Efe, and P. K. Khosla, “A
Hierarchical Motion Planning Strategy for a Uniform Self-
Reconfigurable Modular Robotic System,” Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA2002), pp. 787–792, 2002.

[20] H. H. Lund, R. L. Larsen, and E. H. Østergaard, “Distributed
Control in Self-Reconfigurable Robots,” Proc. of the 5th
International Conference on Evolvable Systems: From Biology to
Hardware (ICES2003), pp. 296-307, 2003.

[21] M. Yim, “New Locomotion Gaits,” Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA1994), pp. 2508–2514, 1994.

[22] M. Yim, Y. Zhang, and D. Duff, “Modular Robots,” Cover Story on
February 2002 issue of IEEE Spectrum Magazine, pp. 30–34, 2002.

[23] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: A modular
reconfigurable robot,” Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA2000), pp. 514–520, 2000.

[24] W. M. Shen, B. Salemi, and P. Will, “Hormone-Inspired Adaptive
Communication and Distributed Control for CONRO Self-
Reconfigurable Robots,” IEEE Transactions on Robotics and
Automation, vol.18, issue 5, pp. 700–712, October, 2002.

[25] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita and
S. Kokaji, “Automatic Locomotion Pattern Generation for Modular
Robots,” Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA2003), pp. 714–720, 2003.

[26] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-TRAN: Self-Reconfigurable Modular Robotic
System,” IEEE/ASME Transactions on Mechatronics, Vol.7, No. 4,
pp. 431-441, 2002.

[27] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Murata,
and S. Kokaji, “M-TRAN II: Metamorphosis from a Four-Legged
Walker to a Caterpillar,” Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS2003), pp.2454-2459, 2003.

[28] K. Matsuoka, “Mechanisms of frequency and pattern control in the
neural rhythm generators,” Biolog. Cybern., 56, pp. 345–353, 1987.

[29] G. Taga, “A model of the neuro-musculo-skeletal system for human
locomotion II – real-time adaptability under various constraints,”
Biolog. Cybern., 73, pp. 113-121, 1995.

[30] H. Kimura, S. Akiyama, and K. Sakurama, “Realization of dynamic
walking and running of the quadruped using neural oscillator,”
Autonomous Robots, 7-3, pp. 247-258, 1999.

[31] K. Hase, et al., “Development of three-dimensional whole-body
musculoskeletal model for various motion analyses,” JSME Int.
Journal C 40, pp. 25-32, 1997.

[32] M-TRAN II web site in AIST,
http://unit.aist.go.jp/is/dsysd/mtran/English/index.html.

	Previous Document
	Print
	Search this CD-ROM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 180
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 180
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 700
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

	TL1:
	0:
	11445149094583151: Proceedings of 2004 IEEE/RSJ International Conference on

	TL2:
	0:
	5919201718487594: Intelligent Robots and Systems

	TL3:
	0:
	15143538701448367: September 28 - October 2, 2004, Sendai, Japan

	FileNameBL:
	0:
	8231577981427909:

	IROS04PageNumber:
	0:
	022866647324120748: 2370
	9109778500783547: 2371
	9689113332781867: 2372
	41432427360517854: 2373
	4177583768232525: 2374
	5505409009224979: 2375
	5125950902133631: 2376
	22064114062139029: 2377

