
Reactive Robot Motion using Path Replanning and Deformation

Eiichi Yoshida and Fumio Kanehiro.

Abstract— We present a reactive method for online robot
motion replanning in dynamically changing environments by
combining path replanning and deformation. Path deformation
is newly integrated in our replanning method featured by
efficient roadmap reuse and parallel planning and execution.
This enhancement allows the planner to deal with more dy-
namic environments including continuously moving obstacles,
by smoothly deforming the path during execution. Simulation
results are shown to validate the effectiveness of the proposed
method.

I. INTRODUCTION

Thanks to recent progress, probabilistic sampling-based
motion planning methods have gained strong attention in
many application areas. These methods are designed to
build a graph called a roadmap composed of nodes and
edges that represent collision-free configurations and local
paths, which expresses the network of free local paths in
the given environment. Based on this roadmap, a collision-
free path that connects the initial and goal configurations
is computed using graph search. Two roadmap building
mechanisms are identified as mainstream of sampling-based
method: diffusion (e.g. Rapidly-exploring random tree, RRT)
and sampling (e.g. Probabilistic RoadMap, PRM) [1], [2].

Those sampling-based planners were originally developed
as off-line planning methods in static environments. In
accordance with the increasing computational power, now
there have been many research efforts on reactive motion
planning in dynamic environments where the positions of
obstacle changes over time.

The improvement of reactiveness of sampling-based mo-
tion planner has been addressed over the last decade. The
first approach is the “replanning” of the path when the
environment changes. In [3], an obstacle-free roadmap en-
coded to cell-decomposed workspace is modified according
to the environmental changes. Ferguson et al. proposed a
replanning method based on RRT for dynamic environments
by updating the tree when certain parts become invalid due
to the changes [4] and an “anytime” RRT that provides
a solution with guaranteed improvement to queries at an
arbitrary moment [5]. Online replanning based on RRT has
also been applied to urban vehicle driving by improving the
efficiency by introducing biased sampling, special heuristics
for distance computation and lazy check [6]. Jaillet and
Simeon proposed a method for computing several alternative

Eiichi Yoshida and Fumio Kanehiro are with CNRS-AIST JRL (Joint
Robotics Laboratory), UMI3218/CRT, and F. Kanehiro is also with Hu-
manoid Research Group, both belonging to Intelligent Systems Re-
search Institute, National Institute of Advanced Industrial Science and
Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
(e.yoshida@aist.go.jp)

paths to be switched when one path becomes impossible
due to environmental changes like door-closing or moving
obstacles [7]. Roadmap update based on voxel information of
the environment acquired based on vision system is presented
in [8]. We have also proposed a practical online replanning
method based on roadmap reuse and parallel planning and
execution [9]. Those “replanning” methods update the global
path and switch between alternative paths by running search
in the updated roadmap. Typically, these methods can cope
with sudden emergence or discrete or slow displacement
of obstacles. Even though the planning efficiency has been
improved, the robot should stop frequently if the planning
does not finish before the obstacles enters the safety zone.
For this reason, it is generally difficult for those “replanning”
methods to handle continuously moving obstacles due to
repeated queries that are computationally expensive.

In contrast, “deformation” (or “reshaping”) method aims
at real-time path adaptation by modifying it locally without
further queries on the roadmaps. For vehicle navigation,
Fraichard et al. proposed a reactive navigation method for
car-like vehicles [10] and navigation with guaranteed con-
vergence in dynamic environments [11], [12] have also been
reported. The “elastic band” [13], [14] is also categorized in
this type that allows the planned path to be adapted to moving
obstacles through energy minimization. We have also intro-
duced “path reshaping” for dynamic robot motion [15] but it
remains off-line planning. Since drastic changes of the path
topology in the roadmap are not assumed while deforming,
these are suitable for navigation path adaptation of a vehicle
for instance. If the path being executed gets infeasible due
to the obstacles come into its way, the “reshaping” method
cannot be applied any more.

In this research, therefore, we propose a reactive motion
method that combines the replanning and deformation meth-
ods. Once a collision-free path is planned and starts being
executed, the planner attempts to apply the deformation first
when obstacles approach to the robot. The robot can keep
executing the path as long as the path remains feasible with
necessary deformation according to the motion of obstacles.
If the executed path becomes infeasible even after deforma-
tion, the replanning is activated to find an alternative path
through queries on the updated roadmap. The contribution
of the paper is efficient unification of the replanning and
deformation by benefiting from the advantages of both the
reactivity of deformation and the replanning capacity of
globally feasible paths. The computation of path deformation
is fast enough because it is done without using inverse of Ja-
cobian. In addition, since the roadmap-based planning is not
called unless it is necessary, the roadmap remains compact to

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-380-3/11/$26.00 ©2011 IEEE 5456

maintain the efficiency of the planning framework in terms
of computational time. Reactive motion planning taking into
account global connectivity has been proposed as “elastic
roadmap” where the global roadmap whose nodes are moved
according to environmental changes in order to derive a path
that achieves task-level goal [16]. Vannoy and Xiao proposed
a framework called “Real-Time Adaptive Motion Planning
(RAMP)” that preserves population of feasible paths that
are ranked by fitness and switched according to the situation
[17]. Since longer control cycle time is set than planning
cycle here, drastic path switches may occur. In our research,
the path deformation is applied locally to the executed path,
and the global connectivity is efficiently managed by learning
and working roadmaps for the robot to replan alternative
collision-free paths quickly when necessary.

The proposed method is developed based on the online
replanning method we have proposed [9] to take advan-
tage of the efficient roadmap reuse and parallel planning
and execution. In this paper, after introducing the planning
framework in Section II, the deformation method is presented
in Section III. Several simulation results are presented in
Section IV before concluding the paper.

II. REPLANNING FRAMEWORK

In this section we present briefly our reactive planning
framework composed of parallel execution and planning [9]
and also describe how the deformation is integrated in the
framework.

A. Planning framework with parallel planning and execution

Figure 1 illustrates how the reactive planner works with
different states. It has the feature of having two “threads”,
Execution and Planning, running simultaneously. In Fig. 1,
the texts in box correspond to the “states” of the planner.
State transition occurs when a “signal” is received by the
thread solid arrows in Fig. 1) or when the internal status of
the thread changes (dotted arrows in Fig. 1). The signals and
internal status changes causing state transition are indicated
by italic and underlined texts in Fig. 1. There are two
types of signal: the one is the signal exchanged between the
threads, and the other is that received from the outside. The
former includes those signals such as “Query”, “Finished”,
“Canceled”, “Path found”. The signals of the latter type from
outside are “Start”, “Stop” and “Geo. change” (Detection
of environment changes). We assume that the environmental
changes can be detected by sensing mechanisms in Fig. 2 in
an appropriate manner, to send “Geo. change” signals to the
threads as soon as those changes are observed.

The Execution thread is at “Execute” state during path
execution, and if “Geo. Change” signal is received, it goes to
“Update Problem” without stopping and verifies if replanning
is necessary. If no collisions are anticipated, it goes back im-
mediately to “Execute” state and keep executing the path. To
avoid repetitive activation of replanning each time changes
occur that do not affect the path execution, “Geo. Change”
signal is ignored as long as the executed path is collision-free.
If collisions are expected, the Execution thread checks the

���������	
��������	����	
���

�������	�
	�����

��������

�������
���������

������

��������	����

�	�������������

�����

��	
�	�

����������
����� ���������

���������

�������
	�������

 ��	�������

�
	������

�
	������

!�	"

�
������

��������������#�

$����#�

��������

��#������
�����
��
���

�
������

%���

%���

�	��������
���������

������
��
����

��#�������

Fig. 1. State transition diagram of replanning. The replanning is performed
by parallel threads of Execution and Planning that exchange signals. The
states are shown in the boxes and the signal emissions are indicated by
shadowed boxes. The italic and underlined texts depict the signals and
internal status changes that bring about state transitions respectively.

remaining portion of the path executed to compute a safely
stopping path that decelerates and stops at the safety distance
away from the obstacle. This trajectory is continuous path
execution followed by a safely stopping trajectory, which
can be regarded as a contingency plan [18]. Then Execution
thread sends “Query” signal to the Planning thread to start
the replanning.

If the replanning is successful, the Execution thread goes
to the state “Update Traj.” to update and execute the re-
planned path without stopping. If the replanning does not
finish before the robot reaches the end of the safely stopping
path, the robot stops along this path by decelerating and
wait for the planner to return another collision-free path.
The planning fails if a feasible path is not found within the
specified time. Note that this framework allows Execution
thread to go back to the originally planned path by can-
celing replanning if the obstacles with which collisions are
anticipated are removed meanwhile.

Planning thread starts replanning by receiving the “Query”
signal from the execution thread at the idle state “Wait
for Problem”. The planning ends when the planning thread
receives “Canceled” or “Geo. change” signal, or when the
replanning succeeds.

The replanning is performed based on an incrementally
updated roadmap to benefit from the knowledge acquired
during the previous exploration of the environment. Two
kinds of roadmap, working and learning roadmaps are uti-
lized for this replanning. The learning roadmap stores the
information about the environment over the whole planning

5457

time, whereas the working roadmap is continuously updated
so that it includes only the valid part involved in the current
replanning problem [9]. As a result, the working roadmap
remains compact but reflects the most recent changes in
the environment. With this replanning framework, the ap-
propriate alternative path can be replanned in case of sudden
emergence or discrete displacement of obstacles.

B. Integrating path deformation

Path deformation can be easily integrated in this scheme.
Since it does not imply replanning, it is included in Exe-
cution thread. When “Geo. change” signal is received with
a environmental change, if the robot is executing a path,
Execution thread goes to “Update Problem” state and checks
whether the path can be improved by applying deformation
(Fig. 1). If deformation succeeds without inducing collisions,
the path being executed is replaced by the deformed one
and goes to “Execution” state to continue the execution as
if it was executing the same path. As stated later in III-
C, the improvement of the path is evaluated by reduction
rate of the path length within a fixed computation timeout.
If deformation fails with persistent collisions, replanning is
launched by using the updated working roadmap.

C. Interface with motion controller

Since the proposed planning scheme is designed to be used
for motion planning and execution online, it is important to
think about the interface with robot controllers. We define a

Motion planner

Path execution

•Replanning
•Roadmap building

Robot controller

Motion
command

Robot hardware

External / internal
sensors

Detecting changes
getGeoChange()

execute(Path)
stop()

getCrntConfig()
getCrntDist()
isMoving()

Current
status

Robot status
•Trajectory generation
•Motion control

Fig. 2. The functionality of the interface defined in Table I in the robotic
systems including motion controller.

TABLE I
THE INTERFACE OF REPLANNING METHOD WITH MOTION CONTROLLER

bool execute(Path) Execute the path
void stop() Stop the execution

safely with deceleration
bool isMoving() Return true if moving
config getCrntConfig() Get the current config.
double getCrntDist() Get the traveled distance

on the path
bool getGeoChange() Return true in case of

environmental changes

general interface in Table I so that the proposed replanning
method can be generally applied to various robots. Their
corresponding functionalities in the robotic system are illus-
trated in Fig. 2. The interface includes fundamental functions
of robot controller, like starting and stopping path execution,
getting the current execution state and configuration. Trav-
eled distance computation based on the sensor information
such as localization and odometry is used to estimate the
anticipated colliding point. The interface for the detection of
environmental changes is also defined for internal or external
perception systems.

III. REPLANNING WITH PATH DEFORMATION

A. Continuous path deformation

In our previous work [9], a new path search is always
performed when replanning is necessary. However, if the
interference of the obstacle in the robot motion is not
significant, repetitive update of the roadmap and new graph
search leads to inefficiency in terms of computational cost.

Especially when the obstacles are moving continuously,
in the worst case the replanning process is called every time
environmental changes are detected. The robot may stop too
frequently if the replanning process does not finish before
the obstacles approach within the specified safety distance.

To solve this problem and improve the planning efficiency
and robustness in those cases, we introduce a scheme that
reshapes continuously the path by moving its arbitrary way-
point instead of repeating roadmap-based path replanning.
For this purpose, we adopt the mechanism of path defor-
mation, whose representative method is known as “Elastic
Band” [13], [14]. As explained in the following, deformation
is performed after estimating deformation direction with
respect to the obstacle.

B. Computing deformation direction

As shown in Fig. 3, the distance di is defined as repulsion
distance. The deformation starts when the minimum distance
between the robot and the obstacle becomes smaller than di.
Let P and Q denote the closest points on the robot and the
obstacle. The vector

−−→
QP can be written as

−−→
QP = dn by

using the distance d between P and Q and the unit vector
n. In order to “push out” the point P towards the direction
that makes d greater than di, the displacement ∆P should
satisfy the following:

��

�
�

�

�������	

����

Δ�

�

Δ�

Fig. 3. Direction of path deformation through small displacement for
obstacle avoidance

5458

∆P · n ≥ di − d.

The relationship between the small motion in configuration
space ∆q and ∆P described by using the Jacobian matrix
JP at P as

∆P = JP ∆q.

Therefore, the following holds:

Algorighm 1. Path deformation procedure

Deform(path, timeLimit, improveThresh)

1: timeout ← false, changed ← false
2: while !timeout AND !changed do
3: lenOld ← path.length()
4: for i=1 to path.numConfigs() do
5: LP1 ← localPath(qi-1, qi)
6: LP2 ← localPath(qi, qi+1)

7: r ← LP1.length()
LP1.length() + LP2.length()

8: LP← localPath(qi-1, qi+1)
9: q0 ← LP.getConfigAt(r)

10: qnew ← tighten(qi, q0)
11: // local path is “tightened” towards q0
12: newSeg ← ∅
13: LPnew

1 ← localPath(qi-1, qnew)
14: LPnew

2 ← localPath(qnew, qi-1)
15: if LPnew

1 .valid() AND LPnew
2 .valid() then

16: newSeg ← makePath(qi-1, qnew, qi+1)
17: path.replace(i-1, i+1, newSeg)
18: changed ← true
19: else
20: if LP1.valid() then
21: newSeg.add(LP1)
22: else
23: // cut the local path into two
24: qhalf ← LP1.getConfigAt(0.5)
25: newSeg.newPath(qi-1, qhalf, qi)
26: end if
27: // do the same thing for LP2 and update newSeg
28: //...
29: path.replace(i-1, i+1, newSeg)
30: changed ← true
31: end if
32: timeout ← checkOutOfTime(timeLimit)
33: end for
34: if changed = true then

35: if
lenOld - path.length()

path.length()
< improveThresh then

36: changed ← false
37: end if
38: end if
39: end while

JP ∆q · n = ∆q · JT
Pn ≥ di − d

By using the lower bound of robot displacement di − d
the minimum-norm value of ∆q can be derived without
inversing JP as follows:

∆q = (di − d)
JT

Pn

||JT
Pn||2

(1)

If the robot makes a movement larger than ||∆q|| in the
direction of ∆q, it goes safely out of the bound area defined
by di.

C. Deformation algorithm

Algorithm 1 describes the deformation algorithm. The
executed path is composed of collision-free local paths con-
necting configurations by the specified steering method. The
procedure Deform(path, timeLimit, improveThresh) scans
the configurations in the path and applies the deformation
LP1 and LP2, which are before and after the i-th configu-
ration qi. This is done by the function tighten() that moves
qi toward the interpolated point q0 on the local path directly
connecting qi-1 and qi+1. If no obstacles are near the robot,
this operation results in simple shortcut and adds a new
interpolated configuration qnew in the path.

On the other hand, if the closest obstacle is found within
the repulsion area, the function tighten() returns the con-
figuration qnew projected onto the hyperplane of repulsion
boundary with di in the direction n in Fig. 3 in configuration
space, as shown in Fig. 4. If the new local paths LPnew

1

connecting qi-1 and qnew and LPnew
2 connecting qnew and qi+1

are both valid without collision, then the function Deform()
replaces the local paths LP1 and LP2 by LPnew

1 and LPnew
2 .

Otherwise, at least one of the new local paths is not valid.

�
���

�

�������	

����������	

�
�

�
�

�
���

�
���

��������

�	������

���������

���������

��������������

Fig. 4. Local deformation of the path by the function Deform(). The local
paths connecting the configurations qi-1, qi, qi+1 is deformed using qnew
that is the projection of the shortcut configuration q0 onto the hyperplane
representing the boundary of repulsion area.

5459

In this case, if LPnew
n (n=1, 2) is not valid, the old local path

LPn is divided into two at the middlepoint so that this local
path is deformed in the next visit of for loop.

The function Deform(path, timeLimit, improveThresh)
repeats this procedure as long as the timeout and im-
provement conditions, respectively specified by the param-
eters “timeLimit” and “improveThresh”, are satisfied. The
improvement condition is evaluated by the length of the
deformed path. The deformation finishes if the deformation
procedure in Algorithm 1 does not improve the path length
any more than the threshold “improveThresh”.

As stated earlier, the deformation procedure is inserted in
Execution thread in Fig. 1. When environmental changes are
detected during path execution, the thread goes to “Update
Problem” state and the deformation is applied to the currently
executed path. If the deformation is successful, including the
obstacle-free case without any path improvement, then the

����� ����

��������	
�����

�������	
�����

��	�� 	�

	�

	�

�
�

�
�

�
�

(a) Simulation environment (b) Movement of obstacles

Fig. 5. Simulation environment with continuously moving obstacles

executed path is replaced by the deformed one. Otherwise,
the replanning process is started.

In this way, the deformation is naturally integrated in the
framework of parallel planning and execution.

IV. PLANNING EXAMPLES

In this section we show some results of the proposed
planning method. As a case that our previous method [9] has
difficulty in handling, we address planning with continuously
moving obstacles.

Figure 5 shows the environment where the robot moves
linearly on a plane with static and moving obstacles. The
robot is required to arrive the goal position avoiding the
three moving obstacles O1 ∼ O3 making continuous dis-
placement with different velocity. A simple robot controller
is implemented according to the general interface defined in
Table I. This controller follows the given command as much
as possible with a specified velocity limit. The motion of the
obstacles is set with velocities below this limit.

A planning result is shown in Fig. 6. Since the goal cannot
be directly reached from the start position, a collision-free
path is first planned on the left side of the environment
and the robot starts executing it. We can observe that the
path is kept deformed as O1 moves continuously towards
the robot. As long as the originally planned path can be
deformed to avoid obstacle, roadmap-based replanning is not
performed (Fig. 6b-c). Then another obstacle O3 gets in the
robot’s way to fill the passage the robot is supposed to pass
through. This situation cannot be resolved with deformation
and a path passing on the other side of the obstacle O2

should be replanned using the work roadmap continuously
updated during the execution (Fig. 6d). As can be seen

(a) Initial position (b) (c) (d)

(e) (f) (g) (h) Final position and resultant path

Fig. 6. Results of reactive motion with deformation and replanning. The initial path is deformed at (b-d). Alternative path is searched when obstacle fills
the gap (d) and the replanned path is executed (e-g) which is also deformed at (g). The resultant path is shown in (h). The lines in the figures represent
connective components of roadmaps used for the (re)planning. As the path is smoothed later and is also deformed, it does not necessarily correspond to
the consequent robot motions.

5460

in Fig. 6e-f, the robot changes the moving direction as
soon as the alternative path is replanned. This obstacle O3

keeps the motion by rotating and encounters the robot again
near the goal position. Here also, the path is deformed to
avoid the collision (Fig. 6g) before arriving at the goal. The
improvement threshold and timeout are set to 1% and 0.1s
respectively in this planning simulation. The deformation can
be observed more clearly in the accompanied movie.

We have also tested the planner without deformation in
the same environment and obstacle motions. As a result of
ten simulation runs with different random number seeds,
as much as 70% of execution failed by ending up with
collision, whereas the success ratio was 100% with the
proposed method with deformation. Since the roadmap-
based replanning is activated when the obstacle motions are
detected at every sampling time, the replanning sometimes
does not finish even though the replanning is efficient enough
with roadmap reuse. In this case the robot stops at the safety
distance while the obstacles are still moving. This often
results in collisions when the obstacles pass near the robot.

In addition to execution success ratio, the efficiency of
the search is also improved. Since many cases of continuous
obstacle movements can be handled by deformation without
replanning, we can expect that reduced replanning calls help
the planner keep the roadmaps compact during the planning
and execution. Figure 7 shows the size of learning roadmap
in successful cases of planning with and without deforma-
tion. We can observe that the size of roadmap becomes
approximately four times smaller by using deformation,
which leads to efficient planning with roadmaps.

Figure 8 shows the comparison of cumulative planning
time. As expected, the time consumed for replanning is
significantly reduced if deformation is applied. On the other
hand, cumulative computation time for deformation is com-
parable with the replanning time of “replanning only” case.
We can remark that deformation time is increasing during
replanning is not performed from around 20s to 60s. This
is because the deformation is integrated in Execution thread
and called every time obstacle motions are detected. In the
proposed planning framework in Fig 1, even if the moving
obstacles are not currently close to the robot, the deformation
procedure is called in a preventive manner to deal with
future collision in the remaining portion of the executed path.
Considering the great improvement of planning success ratio
with continuously moving obstacle, this extra computational
cost is reasonable since there is no significant loss of
performance.

Another planning result with a redundant manipulator
is shown in Fig. 9. The problem is to generate collision-
free motion of a 7-DOF manipulator arm from the initial
(Fig. 9a) to goal (Fig. 9h) configuration in an environment
populated with static and moving obstacles. First, when
a cubic obstacle approaches to the manipulator going out
of the gap between two further static plate obstacles, the
path is deformed towards the depth direction (Fig. 9b,
c). Then the manipulator keep moving towards the goal
configuration at a lower position between the two closer

��

����

����

����

����

�����

�� ��� ��� ��� ���

	

�
�

�
��

��
�
�
�
�

�������

�����������

�����
��������

Fig. 7. Development of learning roadmap size during execution with and
without deformation

��

��

��

��

��

���

���

���

�� ��� ��� ��� ���

	

�

�
�

�
�
��

�
��

��
�

�������

�������

���
���������������

���
��������
�

Fig. 8. Cumulative planning time with and without deformation. “Deform.”
and “Replanning in Deform.” mean computation time for deformation and
replanning with the proposed planner. “Replanning only” means the planner
without deformation.

plate obstacles (Fig. 9d). At this point, another box-shape
obstacle approaches and collision becomes inevitable even
after applying path deformation (Fig. 9e). An alternative path
passing outside of the plate outermost obstacle is replanned
based on the roadmap to achieve the goal (Fig. 9f-h).

In the simulation results, reactive path has been per-
formed in an adaptive manner by switching path replanning
and deformation according to the changes in the environ-
ment, which demonstrates the effectiveness of the proposed
method.

V. CONCLUSIONS

In this paper we have presented a method for reactive robot
motion planning including replanning and deformation. We
have introduced path deformation mechanism based on the
observed local distance to obstacles. This is integrated on
top of our previous replanning method featured by parallel
planning and execution. This enhancement allows the planner
to cope with the changing environment including continuous

5461

(a) Initial position (b) (c) (d)

(e) (f) (g) (h) Final position and
resultant path

Fig. 9. Planning of a redundant manipulator. The deformation is performed with the small moving obstacle (b-c). When the planned path is obstructed
(d-e), a new path is replanned (f-h). The resultant end-effector path is shown in (h).

obstacle movements through progressive deformation of the
executed path. The advantage of replanning capacity is
always maintained; when this deformation cannot remove
the anticipated collisions, an alternative path is efficiently
computed by the replanning framework based on the contin-
uously refreshed roadmap. We have shown the effectiveness
of the proposed method by planning simulation where there
are multiple moving obstacles. The planner handled correctly
each situation by applying deformation and replanning in a
timely manner.

There is still room for improvement in the proposed
method. The path deformation procedure can be made even
more efficient by pruning unnecessary computation when
there is little risk of anticipated collisions, whereas it is
currently preventively called every time obstacle motions are
detected. Validation of the proposed method with complex
robots through dynamic simulations or hardware experiments
is also an issue to be addressed in future work.

ACKNOWLEDGMENTS

This work has partially been supported by Japan Society
for the Promotion of Science (JSPS) Grant-in-Aid for Sci-
entific Research (B), 21300078, 2009. The authors thank to
Etienne Ferré and Ambroise Confetti of Kineo CAM for their
precious support for the software developments.

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementation. MIT Press, 2006.

[2] S. LaValle, Planning Algorithm. Cambridge University Press, 2006.
[3] P. Leven and S. Hutchinson, “A framework for real-time path planning

in changing environments,” Int. J. of Robotics Research, vol. 21,
no. 12, pp. 999–1030, 2002.

[4] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
Proc. 2006 IEEE Int. Conf. on Robotics and Automation, 2006, pp.
1243 – 1248.

[5] D. Ferguson and A. Stent, “Anytime RRTs,” in Proc. 2006 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2006, pp. 5369 – 5375.

[6] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion
planning for urban driving using RRT,” in Proc. 2008 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2008, pp. 1681–1686.

[7] L. Jaillet and T. Simeon, “Path deformation roadmaps: Compact graphs
with useful cycles for motion planning,” Int. J. of Robotics Research,
vol. 27, no. 11-12, pp. 1175–1188, 2008.

[8] A. Nakhaei and F. Lamiraux, “Motion planning for humanoid robots
in environments modeled by vision,” in Proc. 8th IEEE-RAS Int. Conf.
on Humanoid Robots, 2008, pp. 197–204.

[9] E. Yoshida, K. Yokoi, and P. Gergondet, “Online replanning for
reactive robot motion: Practical aspects,” in Proc. 2010 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2010, pp. 5927–5933.

[10] T. Fraichard, M. Hassoun, and C. Laugier, “Reactive motion planning
in a dynamic world,” in Proc. of the IEEE Int. Conf. on Advanced
Robotics. IEEE, 1991, pp. 1028–1032.

[11] J. M. andand Luis Montano, “Nearness diagram (nd) navigation: Col-
lision avoidance in troublesome scenarios,” IEEE Trans. on Robotics,
vol. 20, no. 1, pp. 45–59, 2004.

[12] P. gren and N. E. Leonard, “A convergent dynamic window approach
to obstacle avoidance,” IEEE Trans. on Robotics, vol. 21, no. 2, pp.
188–195, 2005.

[13] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Proc. 1993 IEEE Int. Conf. on Robotics and Automa-
tion, 1993, pp. 802–807.

[14] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” Int. J. of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, 2002.

[15] E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi,
and K. Yokoi, “Planning 3D collision-free dynamic robotic motion
through iterative reshaping,” IEEE Trans. on Robotics, vol. 24, no. 5,
pp. 1186–1198, 2008.

[16] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proc. Robotics: Science and Systems,, 2007.

[17] J. Vannoy and J. Xiao, “Real-time adaptive motion planning (RAMP)
of mobile manipulators in dynamic environments with unforeseen
changes,” IEEE Trans. on Robotics, vol. 24, pp. 1199–1212, 2008.

[18] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in Proc. 2007 IEEE Int. Conf. on Robotics
and Automation, 2007, pp. 704–710.

5462

