

A Self-Reconfigurable Modular Robot (MTRAN)
– Hardware and Motion Generation Software –

Akiya KAMIMURA†, Eiichi YOSHIDA†, Satoshi MURATA‡, Haruhisa
KUROKAWA†, Kohji TOMITA† and Shigeru KOKAJI†

†National Institute of Advanced Industrial Science and Technology (AIST):
Namiki 1-2-1, Tsukuba, Ibaraki, 305-8564 Japan, kamimura.a@aist.go.jp
‡Tokyo Institute of Technology: 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-
8502 Japan, murata@dis.titech.ac.jp

Abstract. In this paper we present our latest modular robot “MTRAN”(Modular
Transformer) and its motion generation algorithm based on a four-module block
method. The developed module is composed of two semi-cylindrical parts con-
nected by a link. Each part has three connection surfaces where another module
can be connected by magnetic force. Each module has only two degrees of free-
dom, but a group of modules can not only configure static 2-D or 3-D structures
but also generate robotic motions. We realized several robotic motions and trans-
formation by hardware experiments. Block motions made by proposed motion
generator are also verified by experiments.

Key Words. Modular Robot, Self-Reconfiguration, Robotic Motion Generation,
Motion Planning

1 Introduction

In recent years, the feasibility of reconfigurable robotic systems has been exam-
ined through hardware and software experiments [1]–[8]. Self-reconfigurable ro-
bots, especially homogeneous ones, can adapt themselves to the external environ-
ment by changing their configuration and repair themselves by using spare
modules. This type of robot is useful in harsh environments where adaptability
and self-maintainability are significant factors.

Reconfigurable modular robots are classified into two types, lattice type [2,4,8]
and thread type [6,7]. While the former can transform itself into various static
structures like jungle-gym, it is difficult to generate dynamic robotic motions. On
the other hand, the latter has snake-like shape that can generate various dynamic
motions though it has difficulty in self-reconfiguration.

We have developed a new type of modular robot, called Modular Transformer
or MTRAN [9], which can realize both static structure and dynamic motion. This

has been achieved by simplified design of a module and lightweight and firm con-
necting mechanism. The paper outlines the hardware and control system of
MTRAN and demonstrates experiments of many-unit motions. We succeeded in
making the modular robot change its locomotion mode through self-
reconfiguration. To our knowledge, these are the world heading results.

As to a motion generation method, there have been studies on distributed
[10,11] and centralized [4,8] methods. However, these methods cannot directly be
applied to MTRAN due to its restricted degrees of freedom. The latter half of this
paper describes a motion generation method to enable a class of MTRAN clusters
to move along a desired trajectory in a series of reconfiguration. The motion gen-
erator consists of a planner and a scheduler and generates an efficient module mo-
tion plan where several modules are driven in parallel.

Active Passive

Permanent
magnet (S)

Link

Electrode (GND)

Electrode (VCC)
Electrode (Serial)

Permanent
magnet (N)

SMA coil

Non-linear
spring

FET for
driving SMA

Control circuit

Connecting
plate

Fig. 1. Photos of appearance and inner structure of the developed module

2 Hardware

We have developed a module hardware that has a simple structure shown in Fig.1.
The module is composed of two semi-cylindrical parts connected by a link. Each
semi-cylindrical part can rotate about its axis by 180 degrees with a servomotor
embedded in the link. Each semi-cylindrical part has three connecting surfaces
with four permanent magnets and can connect to other modules’ surfaces that have
the opposite polarity of the magnets. The two semi-cylindrical parts have surfaces
of different polarity. If we call these as an A-type (for ‘active’) part and P-type
(for ‘passive’, see Fig.1) part, A and P-type parts occupy disjoint positions in 3-D
space. A-type subspace and P-type subspace form 3-D checkerboard-like struc-
ture. Reconfiguration is achieved by repeating basic operations such as detaching,
rotating and reconnecting.

The advantages of this module over our previous modules [1,2,3] are as fol-
lows.

1. Both 3-D static structures and dynamic motions are available.
2. Wires for power supply and communication are decreased.

3. Downsizing is realized by adopting the simple structure.
4. The connecting mechanism using permanent magnets is simple, lightweight and
reliable, which also has a capability of self-alignment.

Table 1. Specification of the module

 2.1 Mechanical and Electrical Design

The specification of the module is summarized in Table 1.
The link part includes two sets of geared motors and servo circuits. The maxi-

mum torque of each servo is enough to lift up one module as shown in Fig.2.
On all the connection surfaces, there are electrodes for power supply and serial

communication. Therefore it is enough to connect wires to a single module to sup-
ply power and to communicate with all the modules.

There are two parts, called active and passive part as shown in Fig.1. Inside the
active part, there is a connection mechanism that is composed of non-linear
springs, SMA (Shape Memory Alloy) coils and four permanent magnets (N poles
on the surface), which are fixed on the connecting plate. This mechanism is based
on the technique of IBMU (Internally Balanced Magnet Unit [12].) The connect-
ing plate moves automatically to connect to the other modules’ surface by attrac-
tive force of magnets. It is detached by heating SMA coils by electric current.
When detaching, the springs help SMA coils [9].

Inside the passive part, there are control circuits including an onboard micro-
computer BASIC STAMP II (BS II, Parallax, Inc.) It controls motor rotation and
heating of SMA coils. Control commands corresponding to these operations are
issued by the host computer through the serial communication line as shown in
Fig.3.

2.2 Control System Architecture

The system consists of host PC, relay BS II (the same one as the onboard micro-
computer) and modules, and they are connected as shown in Fig.3. Communica-
tion is asynchronous (RS-232C) and based on token passing.

Item Value
Dimension
Weight
CPU
Power supply
Maximum torque of each axis
Connecting force
Elapsed time for detachment
Power consumption for detachment
Electrical resistance of module

66x132x66 mm
0.44 kg
BASIC STAMP II
DC 12V
23 kg·cm
25 N
5 seconds
180 J
1.3 Ω

The host PC broadcasts a control command with a module’s ID number. Only
one module of this ID executes the task and sends back a validation signal to the
host.

PC (Simulator)

Relay BS II

send receive

Serial Communication
Module

ID=1 ID=2 ID=3

Servo Driver

BS II BS II BS II

A BA BA B

bi-directional

Fig. 2. Lifting up motion with two Fig. 3. Schematic of control system

modules architecture

2.3 Motion Planning Simulator / Controller

We developed a simulator for motion planning (Fig.4). The process of motion
planning is as follows [13]: First, initial configuration of modules is created by us-
ing a configuration editor control panel (not shown). Next, the module motion se-
quence is programmed manually by using the motion control panel in Fig.4. The
generated motions are recorded and displayed in motion language. Collisions be-
tween modules and connectivity of the whole configuration are automatically
checked. In the current simulator, quasi-static motion is implemented by taking
gravity and sliding friction into account. Finally, the sequence is translated into a
series of hardware control commands, which are sent to the module hardware via
the serial line.

Configuration
Design

Motion
Planning

Motion
Playback Check Routine

Simulator on PC

Relay BS II

Modules

Hardware
Control

Fig. 4. Diagram of simulator (left) and screen capture (right)

3 Motion Planning Method

The motion generator was developed for a particular class of module clusters
(Fig.5). The cluster is a variable-length chain composed of four-module blocks

that look like large cubes. In addition, a couple of modules called a converter that
have different direction of rotation axes are attached to change the direction of ro-
tation axes of modules in the chain cluster.

The goal of this motion generator is to let the cluster move along a certain
given three-dimensional trajectory in the lattice grid (Fig.6). The generator outputs
a series of reconfigurations, in each of which one block is transferred to another
place.

In our previous paper [14], the motion of a cluster was generated by a two-
layered motion planner. The upper layer decomposes the planning problem into
subproblems solvable by the lower layer. The lower layer is designed to solve
simplified planning problems based on a database of rules for each local recon-
figuration.

As the generated motion allows only one module to move at a single step we
introduce motion parallelism by a motion scheduler. It processes the planned se-
quence into a motion plan including motion steps that can be executed in parallel.
This makes use of the concurrent feature of the modular robot and increases the
efficiency by reducing the total time required for the plan.

A four-module block

A converter

A cluster composed of four-module
blocks with a converter

Fig. 5. A four-module block and a cluster

Fig. 6. Planning of cluster motion

3.1 Motion Planner Architecture

This section briefly outlines the motion planner [14]. The upper and lower layers
of the motion planner are called the global flow planner and the local motion
scheme selector respectively. As shown in Fig.7, the global flow planner searches
possible module paths and motion orders to provide the global cluster movement,

called flow, according to the desired trajectory. This is realized as a motion of a
block such that the tail block is transferred toward the given heading direction via
the side of the cluster. We adopt simple motion schemes sending modules one by
one towards the head.

The local motion scheme selector checks if the paths generated by the global
planner are valid for each member module of the block. If a given path turns out to
be valid, the selector chooses the motion plan by adding a set of locally coordi-
nated motion sequences called motion schemes from a rule database. Otherwise it
tries another possible path. Note that this is a centralized planning method assum-
ing that all the information of modules in the cluster is available.

Fig. 7. Motion planner architecture

Fig. 8. Parallelization of plan by motion scheduler

3.2 Motion Scheduler

The output of the planner described so far is a sequence of motion schemes to
achieve the desired trajectory. However, only one motion scheme is allowed at a

time. The motion scheduler is devised to improve the efficiency through parallel
execution of multiple motion schemes.

3.2.1 Parallelizing a motion plan

The output plan by the motion planner is a series of motion sequences each of
which corresponds to a single path of a module from tail to head. The motion
scheduler tries to parallelize the plan by interleaving a motion sequence with fol-
lowing ones (Fig.8). During this process, collisions and total connectivity are
checked. Also, it is checked whether the parallelized motion plan end up with the
same configuration as the original plan. Those motion steps executable in parallel
are unified into one motion step. By repeating these procedures throughout the
original plan, a parallelized motion sequence is derived.

Fig. 9. Desired trajectory of module cluster

 step 25 step 80 step 123

 step 146 step 170 step 199 (finished)

Fig. 10. Generated plan for desired motion in Fig.9

3.2.2 Generated motion

The motion generation framework described so far is applied to a module cluster
composed of 22 modules. The desired trajectory includes horizontal and vertical
direction changes of cluster flow as shown in Fig.9. Fig.10 shows some snapshots
taken from the generated motion.

The raw plan generated by the motion planner takes 354 motion steps, where
only one motion scheme is allowed at one step. After rescheduling, the length was
reduced down to 199 steps.

4 Hardware Experiments

To verify the module hardware and the motion planning method, we carried out
several experiments.

4.1 Experiment of Robotic Motion and Transformation

Fig.11 (a) shows locomotion of quadruped type robot using 8 modules. This robot
can walk by using two of the leg parts, and turn about its vertical center axis by
folding two leg parts in opposite directions. Arrows in photos indicate robot’s
moving direction.

Fig.11 (b) shows the transformation and locomotion experiment using 9 mod-
ules. This robot is transformed from 2-D structure into a crawler, and then to a
quadruped robot by releasing the closed module rings to configure legs.

1 2 3 4

5 6 7 8
(a) Locomotion of quadruped type robot (8 modules)

1 2 3 4

5 6 7 8
(b) Transformation from 2-D static structure to crawler robot

and then to quadruped robot (9 modules)

Fig. 11. Robotic motion and transformation experiments

4.2 Experiment of Block Motion

Fig.12 shows the experiment of eight-module cluster flow motion. The output plan
by the generator was slightly modified to avoid the current hardware problem.

 Initial state step 4 after step 8 step 14

after step 17 after step 18 after step 21 Final state

Fig. 12. Experiment of cluster motion of block structure using 8 modules

5 Future Works

The current hardware has following problems to be solved.

1. No sensors are installed for internal and external sensing.
2. Local communication between modules is not realized.
3. Large power is consumed at SMA coils while detaching process.
4. Cables for power supply and serial communication must be attached to one of

the modules.
5. Electrodes at the active part are protruded from the surface and they cause a

short circuit in some cases.

And also the following software algorithms are required.

1. A general algorithm that schedules each modules’ motion for a transformation
from one structure to another.

2. An algorithm that generates various module structures suited for locomotion or
tasks together with movement sequences of each module.

3. A distributed algorithm that enables each module to move autonomously to re-
alize robotic motions in cooperative manner. In order to realize this, each mod-
ule must recognize own state, states of neighbor modules and external states us-
ing sensor information.

6 Conclusions

In this paper, we described the hardware of the proposed module, the control sys-
tem architecture and the motion generation algorithm. With those modules, it is
possible to build a variety of configurations and to generate transformation among
the configurations. The motion generator is composed of planner and scheduler
and it improved parallelism of the modular system.

References

1. S. Murata, et al.: “Self-assembling machine, ” Proc. IEEE Int. Conf. on Robotics and
Automation, 441-448, 1994.

2. S. Murata, et al.: “A 3-D self-reconfigurable structure,” Proc. IEEE Int. Conf. on Robot-
ics and Automation, 432–439, 1998.

3. E. Yoshida, et al.: “Micro self-reconfigurable robotic system using shape memory alloy,”
Distributed Autonomous Robotic Systems 2000, 145-154, 2000.

4. K. Kotay and D. Rus: “Motion synthesis for the self-reconfigurable molecule,”
Proc.1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 843–851, 1998.

5. P. Will, et al. : “Robot modularity for self-reconfiguration,” Proc. SPIE, Sensor Fusion
and Decentralized Control in Robotic Systems II, 236–245, 1999.

6. A. Casal and M. Yim: “Self-reconfiguration planning for a class of modular robots,”
Proc. SPIE, Sensor Fusion and Decentralized Control in Robotic Systems II, 246–257,
1999.

7. A. Castano, et al.: “Autonomous and self-sufficient CONRO modules for reconfigurable
robots,” Distributed Autonomous Robotic Systems 4, Parker L E, et al. eds., Springer,
155–164.

8. C. Ünsal, et al.: “A modular self-reconfigurable bipartite robotic system: implementation
and motion planning,” Autonomous Robots, 10-1, 23–40, 2001.

9. A. Kamimura, et al.: “Self-reconfigurable Modular Robot – Experiment on reconfigura-
tion and locomotion,” Intelligent Robots and Systems (IROS2001) Proc. 2001
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2001), 606–612, 2001.

10. E. Yoshida, et al.: “A distributed method for reconfiguration of 3-D homogeneous
structure,” Advanced Robotics, 13-4, 363–380, 1999.

11. K. Tomita, et al.: “Self-assembly and self-repair method for distributed mechanical sys-
tem,” IEEE Trans. on Robotics and Automation, 15-6, 1035–1045, 1999.

12. S. Hirose, et al.: “Internally-Balanced Magnet Unit,” Advanced Robotics, 1-3, 225-242,
1986.

13. H. Kurokawa, et al.: “Motion Simulation of a Modular Robotic System,” Proc. IECON
2000, 6, 2000 (in CD-ROM).

14. E. Yoshida, et al.: “A Motion Planning Method for a Self-Reconfigurable Modular Ro-
bot,” Intelligent Robots and Systems (IROS2001) Proc. 2001 IEEE/RSJ Int. Conf. On
Intelligent Robots and Systems (IROS2001), 590–597, 2001.

