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Abstract
In this paper we present a couple of evolutionary mo-

tion generation methods using genetic algorithms (GA) for
self-reconfigurable modular robot M-TRAN and demon-
strate their effectiveness through hardware experiments.
Using these methods, feasible solutions with sufficient per-
formance can be derived for a motion generation problem
with high complexity coming from huge configuration and
motion possibilities of the robot. The first method called
ERSS (Evolutionary Reconfiguration Sequence Synthesis)
applies GA (Genetic Algorithm) to evolution of motion se-
quence including configuration changes though natural ge-
netic representation. The effectiveness of the generated
full-body dynamic motions are verified through hardware
experiments. The second method called ALPG (Automatic
Locomotion Pattern Generation) Method seeks locomotion
pattern using a neural oscillator as a CPG (Central Pattern
Generator) model and GA to optimize the parameters for
locomotion. A number of efficient locomotion patterns has
been derived, which are also experimentally verified.
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1 Introduction
Self-reconfigurable robots composed of simple robotic

modules can reorganize their shape by changing their con-
nection and generate various motions as a combination
of each module’s movement. Thanks to their flexibility,
versatility and fault-tolerance, self-reconfigurable modular
robots are the most useful in situations where they should
move and work in hazardous, unstructured or unknown en-
vironments. This type of robots are also suitable in envi-
ronments where they are required to achieve different tasks,
which cannot be specified beforehand. The potential appli-
cations of self-reconfigurable modular robots range from
static structure to mobile robots, especially in extreme en-

vironments inaccessible to humans. They can be applied to
satellite antennas, space stations, or deep-sea structures.

Recently, many types of three-dimensional self-
reconfigurable modular robot have been proposed [1]–[11].
We have been developing a modular robot called M-TRAN
(Modular TRANsformer) [7]–[11] that can work as a ve-
hicle as well as a static structure. Especially, the mobility
of recently developed hardware M-TRAN II [11] is greatly
improved so that it can move as a legged robot, a snake, or
a crawler. To fully exploit this high mobility of modular
robot, the motion generation synthesis is as important as
the reconfiguration planning [10] developed so far.

However, due to many degrees of freedom of modular
robot, motion synthesis of modular robots also becomes a
computationally difficult problem. For these reasons, we
have been developing methods for evolutionary motion pat-
tern generation methods using genetic algorithms (GA).

In this paper we present two methods, ERSS (Evolution-
ary Reconfiguration Sequence Synthesis) [9] and ALPG
(Automatic Locomotion Pattern Generation) Method [11],
each of which have different features. In the first method
ERSS, the GA is utilized to evolve the motion sequence.
This method is characterized by its simplicity and ease of
extension to evolutionary synthesis of plans including con-
figuration changes. Interesting full-body dynamic motions
have been obtained using this method. The second method
ALPG is dedicated to evolve locomotion pattern for fixed
module configuration using a neural oscillator as a CPG
(Central Pattern Generator) model and GA to adjust the pa-
rameters for locomotion. A number of efficient locomotion
patterns has been derived. Their performance of output mo-
tion patterns generated by those methods have been verified
through hardware experiments.

2 M-TRAN II Hardware

Figure 1 shows the newest model “M-TRAN II.” Each
module has two semi-cylindrical parts, active and passive
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Fig. 1: A hardware module of M-TRAN II.
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Fig. 2: Internal structure of a M-TRAN II module.

parts, and two geared motors inside the link. The active part
has a movable plate with magnets that rises to the surface
by the attractive force of the magnets embedded in the pas-
sive part of another module, to connect electrically and me-
chanically. Two surfaces can be detached automatically by
heating the shape memory alloy coils by small light bulbs.

Figure 2 illustrates the internal structure of a module.
Electrodes are placed symmetrically on the same surface
for the power supply, global communication, and local
communication. A CPU circuit board is equipped inside
the passive part, including a microprocessor for global and
local inter-module communication. A power supply circuit
board and a battery are also embedded. Power for the mod-
ule can be supplied by an internal battery or by connecting
wires from outside to one of the modules.

3 ERSS – An Evolution of Motion Sequence
As mentioned earlier, development of motion synthe-

sis method is necessary that can generate feasible three-
dimensional motion with certain performance and is also
widely applicable to different modular configurations.
Nevertheless, high complexity of this motion synthesis
problem has been a major barrier to development of such a
method 1. It is difficult to apply frequently used schemes
that learn the policy of behavior decision as an action-
selection table “if-state then then-behavior” [12, 13] be-
cause of dynamic motion and huge combinations of pa-
rameters describing states and behaviors. Path planning
method often used for mobile robots [14, 15] has difficulty

1One M-TRAN module has 26 possible connection states and 72 pos-
sible angular states (30◦ step). Since the number of action is same, the
size of state-action table becomes approximately 107. This size grows
exponentially with the number of modules.

in handling both the complex configuration space and the
dynamic motion of modular robot either.

For the above reasons, we adopt GA in such a way that
a motion sequence can be represented in a natural way; we
devise a genetic representation that encodes both robots’
motion and self-reconfiguration by using a genotype that
describes a sequence of segmentsincluding both motor ac-
tuation and connection of each module. Previous research
[18, 19] has hardly addressed unified approaches includ-
ing both dynamic motions and reconfiguration. Genetic op-
erations like crossover and mutation are applicable to this
genotype. The original point of this method lies in this in-
tegration of the motion synthesis problem with high com-
plexity into a GA-solvable form through a simple and natu-
ral description and encoding. This integration of GA makes
it easier to obtain feasible solutions by searching a complex
problem space with certain sparseness.

4 ERSS Implementation and Experiments

4.1 Describing Motion Sequence

The motion sequence is represented by a series of seg-
mentsthat describe the connective states and motor actua-
tion of the modular robot based on our formerly developed
interface software [20]. A segment has two parts, motion
and connection operation.

Figure 3 shows examples of segment where those oper-
ations are combined. As shown in the upper left of Fig. 3,
the parts are distinguished as parts 0 and 1 with the cor-
responding rotation angles θ0 and θ1, and the connection
faces are named 0 ∼ 2.

The motion operation is described using the command
“m” such as “m [ID basepart] θ0, θ1” to specify the ac-
tuation of each motor. Here [ID basepart] are the ID
of the module and its base partduring the operation re-
spectively. For each motor actuation, either of part 0 or 1
must be given as base partthat is explicitly fixed to another
module, while the other part is referred to as moving part
(Fig. 3). The motor actuation is specified by “θ0, θ1” as
absolute angles between -90◦ and 90◦, with 30◦ step for
simplicity. We also assume the rotation velocity is constant
for any rotation angles.

The interface software keeps track of the whole config-
uration during the given operations and computes all the
necessary connections. Therefore, there is no need for pro-
viding explicitly all the connections except for the follow-
ing case. By default, the software assumes that the motion
operation automatically cuts all the connections of moving
part that changes its position. To maintain these connec-
tions, the operation connectionmust be provided explic-
itly using the command “c” as “c [ID part] dir.” The
connection operation is specified by command c with ID
and the part that maintains its connection. The connecting
face is designated by “dir” as either of connecting faces 0,
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Fig. 3: Segments with motion and connection commands.

Motion
Sequence

Genotype

{ c [ 0 1 ] 1
   c [ 0 1 ] 2
   m [ 1 0 ]  0   60
   m [ 0 0 ] 60 -60
   m [ 2 0 ] 60 -90 } 

  

Initial configuration

Robot Motion

{ c [ 0 1 ]  1
   c [ 0 1 ]  2
   m [ 0 0 ] 0   -90
   m [ 1 0 ] 90 -90
   m [ 2 0 ] 90 -60 }
 

{ c [ 2 0 ] 0
   c [ 0 1 ] 1
   m [ 2 0 ] 60  30
   m [ 0 0 ] 30 -90
   m [ 1 0 ]  0   30 }
 

Gene 1 Gene 2 Gene 3

Segment 1 Segment 2 Segment 3

Fig. 4: Encoding a robot motion sequence into a genotype
by assigning a gene to a segment.

1, or 2 as shown in Fig. 3.
A segmentcan comprise simultaneous motions with nec-

essary connection operation. A segment is shown as a col-
lection of those operations quoted by “{}.” There is also
a command loop for iterative segments, as the segments
quoted by “L N { ... },” where N is the iteration number.

This syntax can reduce the amount of descriptions be-
cause of the above implicit connection representation and
its automatic interpretation by the interface software.

4.2 Applying Genetic Algorithm to Motion Se-
quence

This section explains the genetic simulator that allows
the modular robot to evolve its motion using a genetic al-
gorithm. We adopt a direct representation that encodes
a segment-based motion sequence into a genotype string
where one gene corresponds to one segment (Fig. 4). Since
the motion sequence defined in Section 4.1 is a series of

segments that are the smallest elements of a genotype, the
segment-based encoding can be understood in a straight-
forward manner. Configuration changes may occur during
executing the motion sequence specified by a genotype. In
this framework, an arbitrary configuration can be chosen
as an initial state. An appropriate motion sequence will be
obtained through the evolution by repeating the following
processes after reproduction; genetic operations including
crossover and mutation, evaluation, and selection.

Genetic Operations
Figure 5 shows how crossover and mutation are applied

to the introduced genotype. The crossover is applied to two
different genotype strings that represent motion sequences
using one cross-point crossover. The mutation is performed
to one string from which random number of segments are
chosen and are replaced by those randomly generated.

Evaluation
Evaluation is conducted in the following two phases for

the newly generated genotypes.
(1) Rejecting physically infeasible genotypes due to hard-

ware limitations like collision or loss of connectivity.
(2) Evaluating performance using fitness functions, either

traveling distance, velocity, energy consumption, or
their combinations, depending on the tasks.

Selection
We adopt here a hybrid selection to prevent premature

convergence and maintain genetic variety by combining
elite, ranking and random selections, with the ratio of 0.1,
0.3, 0.6 respectively. Elite and ranking selections keep the
fittest and relatively fit genotypes. Random selection is in-
troduced in order not to lose the variety of the population.

4.3 Experiments of Evolved Motion Sequence

We focus on motion synthesis for fixed configurations
as a first stage of development, although the proposed evo-
lutionary method can designed to deal with configuration
changes. Here we adopt the traveling distance between
the robot’s initial and the final positions of center of mass
through the motion described by the genotypes during a

< Crossover >

Genotype = Motion sequence

Segment Crossover
point

Segments selected
for mutation

Replaced by
random segments 

< Mutation >

Fig. 5: Crossover and mutation operations.



certain period of time.
The GA is conducted with population size 40 and total

generations 50 starting from a randomly generated initial
population. Here the length L of genotype string is con-
stant as L = 10 for simplicity. We use the crossover and
mutation ratios are 0.5 and 0.05. The simulation repeats the
genetically evolving motion sequence during 100 seconds.
We assume that the motors have constant angular velocity
v = π/6 and enough torque to lift another module against
gravity. The dynamics of robot motion are simulated using
a dynamics simulator library Vortex developed by Critical
Mass Labs, and the simulation results are experimentally
validated using the hardware modules.

Figure 6 shows the two fittest motions at different gener-
ations 27 and 40, using the absolute moving distance in the
direction indicated by the arrow. At the earlier generation
of 27, the GA outputs a crawling motion using friction as
shown in Fig. 6(i). Then more efficient motion is discov-
ered where a central module lifts the other two and swings
them forward to gain the distance at generation 40, as in
Fig. 6(ii). Figure 7 is the development of average and max-
imum value of fitness functions in the population, the trav-
eling distance after 100 seconds. We can observe that the
maximum fitness function drastically rises from 4.2 to 7.7
at generation 40 when the lifting motion was acquired. The
average fitness is gradually improved through generations.

Figure 8 shows the motion evolved by applying the dif-
ferent fitness function to the same initial configuration; us-
ing the traveling distance in the different direction. An
inchworm locomotion using two modules at both ends is
obtained so that robot can move effectively in the direction
specified by the arrow.

Figure 9 shows another random configuration to which
total traveling distance in an arbitrary direction is applied
as the fitness function. As a result, a whole-body twisting

(a) (b) (c) (d)
(i) Crawling motion at generation 27.

(a) (b) (c) (d)
(ii) Lift-and-swing motion at generation 40.

Fig. 6: The evolved motions using the moving distance
along the arrows as fitness function. (i) After
rolling itself (b), the robot crawls using friction
(c,d). (ii) The central module lifts the other two
(b) and swings them (c) to gain the distance (d).
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Fig. 7: Development of fitness function.

(a) (b) (c) (d)
Fig. 8: The evolved motion using different fitness func-

tion. The robot realizes an inchworm locomotion.

(a) (b) (c) (d)
Fig. 9: A whole-body motion evolved using the total

moving distance as fitness function. (a) initial con-
dition. The robot is rolling itself (b, c) and then
total body is flipped over (d).

motion was finally acquired after simulation of 50 gener-
ations. During this motion, the robot continuously twists
its body and repeats flipping itself to move in a certain di-
rection. Although it is a simple motion that iterates a se-
quence composed of just 10 segments, it can keep twisting
skillfully and produce a steady advance.

To summarize, we have shown that the proposed simple
method can generate suitable motion sequences according
to the given initial configurations and different fitness func-
tions, in an adaptive and effective fashion. We have exper-
imentally demonstrated that the evolved motion are physi-
cally feasible for the modular robot hardware M-TRAN.

5 ALPG – Locomotion Pattern Evolution us-
ing CPG

We are also developing another evolutionary method
ALPG dedicated to locomotion generation for a fixed con-
figuration, while ERSS aims evolution of motion sequence
including configuration changes [11]. By focusing on the
acquisition of oscillatory pattern using CPG, the method
can deal with the evolution of locomotion for many-module
structures more easily than ERSS method.



In biomimetic research field there have been a number of
research on generation of biped or quadruped locomotion
using neural oscillators [16, 17]. It is considered possible to
apply the same principle to the modular robots to generate
locomotive motions.

In this method, for a fixed configuration, each module’s
motor is controlled by an assigned oscillator, which is con-
nected to other modules’ oscillators. Using GA, the lo-
comotion pattern is evaluated based on fitness function to
optimize the such parameters as connection weights be-
tween oscillators. The generated locomotion pattern is fi-
nally transferred in the hardware to verify its effectiveness.

6 ALPG Implementation and Experiments
6.1 Neural Oscillator Model

We applied a neural oscillator as a model of the Cen-
tral Pattern Generator (CPG) as shown in Fig. 10 [16, 17],
where each neuron is represented by the non-linear differ-
ential equations (1) for total N modules. Each module’s
motor has its own CPG and is controlled directly by the
CPG output expressed in (2).

τ u̇{1,2}i = −u{1,2}i + w12y{2,1}i − βv{1,2}i + ue

+f{1,2}i + s{1,2}i

τ ′v̇{1,2}i = −u{1,2}i + y{1,2}i (1)

y{1,2}i = max(0, u{1,2}i)
f1i = k(angle(t)i − initial anglei)
f2i = −f1i

s{1,2}i =
n∑

j=1

weightijy{1,2}j

Outputi = p1y1i + p2y2i (2)

where subscripts 1, 2 corresponds to extensor and flexor
neurons respectively (Fig. 10). For CPGi of total 2N ,
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Fig. 10: Schematic view of neural oscillator.

ui and vi are the internal states, yi is the output of the
neuron, fi and si are the feedback signals from each mo-
tors and other neurons, and weightij denotes the connect-
ing weight between CPGi and CPGj . Other parameters
are constant values; time constants {τ , τ ′} of ui, vi are
{0.05, 0.6}, fatigue coefficient of neuron β=1.5, connec-
tion weight between neurons w12=2.5, output weight of
neurons p1, p2=1.25, the feedback coefficient of motor an-
gles k=8, and is an external input ue=8.5.

6.2 Evolution of CPG Network using GA

Genetic Representation
For the CPG network to output adaptive locomotion pat-

tern, the initial values u0{1,2}i and v0{1,2}i of each CPG
and the connection weights weightij are evolved together
by using GA. The initial values are important for converg-
ing the oscillation of the CPG to a limit cycle attractor
smoothly. The connection weights determine the phase dif-
ferences between the oscillations of CPGs and make the
limit cycle robust against external disturbances.

The values of u0{1,2}i and v0{1,2}i are real numbers from
-8.0 to 8.0 and from 0.0 to 3.0. The connection weights be-
tween CPGs, weightij , take discrete values, -1 (inhibitory
connection), 0 (no connection) or 1 (excitatory connection)
to narrow the search space [17]. Individual genotypes rep-
resented as a string of those values and crossover is applied
separately to initial values and conneciton weights.
Evaluation and Selection using Fitness Function

Locomotion by each individual is evaluated by the fit-
ness function represented by (3) in 15 seconds in simula-
tion space, where a, b, and c are weighting coefficients and
are fixed to 200, 250, and 0.47. Here, length is the mov-
ing distance of the center of gravity in a fixed direction,
width width is the deviation from the direction, energyis
the energy consumption during the motion, and N is the
total number of modules. The fitness function is designed
for the straight locomotion in the specified direction.

fitness= a · length− b · width− c · energy/N (3)

In the selection process, first 40% of fittest individuals
are preserved in the next generation as elites. Then the rest
60% of individuals are generated through crossover opera-
tion of two individuals chosen arbitrarily from those elites.
Mutation is finally applied to the newly generated individ-
uals with the rate of 0.05. GA simulation is applied to the
population of 150 individuals. The simulation terminates
when the average fitness converges within certain range, or
the generation exceeds the maximum number 150.

6.3 Experimental Results of Evolved Pattern

We applied the ALPG method to the various module con-
figurations to the hardware modules as shown in Figure 11.
The initial states of Fig. 11(i) and (ii) have the same con-
nective configuration but the different initial motor angles.



(i) Four-leg gait for nine-module configuration

(ii) Wave locomotion for the same nine-module configuration as (i) but different initial state

(iii) Six-leg gait for nine-module configuration

(iv) Snake-like wave for six-module configuration

Fig. 11: Hardware experiments of various evolved locomotion patterns.

This difference leads to different locomotion pattern, one
is a gait pattern and the other is a wave-like motion. For
other configurations, stable locomotion patterns have been
obtained successfully for all the configurations.

Figure 12(a) illustrates the simulation results of motion
in the phase space (the angle and angular velocity) for one
of the motors depicted in Fig.11(i) and Fig. 12(b) shows
the cyclic change of all the motors angle. The motor angle
oscillates with a constant frequency (about 1.2Hz), ampli-
tude and phase difference, making the locomotion pattern
stable.

The above experiments verified that the proposed evo-
lutionary method can effectively and robustly generate ap-
propriate locomotion pattern to various configuration.

7 Conclusions

In this paper we presented two methods of evolution-
ary motion synthesis for a modular robot, ERSS (Evolu-

tionary Reconfiguration Sequence Synthesis) and ALPG
(Automatic Locomotion Pattern Generation), and verified
their effectiveness experimentally using recently developed
robot M-TRAN. In ERSS, the motion sequence is de-
scribed as a series of segments specifying both dynamic
motion and configuration changes. This sequence descrip-
tion can easily be translated into genetic representation to
which GA (Genetic Algorithms) is applied. Using the trav-
eling distance as the fitness function, interesting full-body
dynamic motions were evolved through dynamic simula-
tion. Their feasibility and validity was verified through ex-
periments using M-TRAN II hardware. The other method
ALPG concentrates on the evolution of locomotion pattern
using CPG (Central Pattern Generator) for fixed configu-
rations. We adopt a CPG model using mutually connected
oscillators whose output controls each module’s motions.
The network between CPG evolves through GA also based
on traveling distance. For various different configurations,
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Fig. 12: Movement of one joint in the pattern in Fig. 11(i).

efficient periodical locomotion patterns were evolved in
simulation world. Their effectiveness were also experimen-
tally demonstrated.

One of the important issues of future work is integration
of sensors into self-reconfigurable modular robots. Soft-
ware aspect is equally significant for efficient reconfigura-
tion planning and motion generation. We will also address
the method of generic behavior decision for the modular
robots based on distributed or hierarchical approach, by ap-
propriately combining the developed evolutionary compu-
tations in pursuit of adaptive and robust operation of mod-
ular robots.
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