
Eiichi Yoshida
Satoshi Murata
Akiya Kamimura
Kohji Tomita
Haruhisa Kurokawa
Shigeru Kokaji
Distributed System Design Research Group
Intelligent Systems Institute
National Institute of Advanced Industrial
Science and Technology (AIST)
1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
e.yoshida@aist.go.jp

A Self-Reconfigurable
Modular Robot:
Reconfiguration
Planning and
Experiments

Abstract

In this paper we address a reconfiguration planning method for lo-
comotion of a homogeneous modular robotic system and we conduct
an experiment to verify that the planned locomotion can be realized
by hardware. Our recently developed module is self-reconfigurable.
A group of the modules can thus generate various three-dimensional
robotic structures and motions. Although the module itself is a simple
mechanism, self-reconfiguration planning for locomotion presents a
computationally difficult problem due to the many combinatorial
possibilities of modular configurations. In this paper, we develop a
two-layered planning method for locomotion of a class of regular
structures. This locomotion mode is based on multi-module blocks.
The upper layer plans the overall cluster motion called flow to realize
locomotion along a given desired trajectory; the lower layer deter-
mines locally cooperative module motions, called motion schemes,
based on a rule database. A planning simulation demonstrates that
this approach effectively solves the complicated planning problem.
Besides the fundamental motion capacity of the module, the hard-
ware feasibility of the planning locomotion is verified through a
self-reconfiguration experiment using the prototype modules we have
developed.

KEY WORDS—self-reconfigurable robot, modular robot,

1. Introduction

In recent years, the feasibility of reconfigurable robotic sys-
tems has been examined through hardware and software ex-
periments in two dimensions (Fukuda and Nakagawa 1988;

The International Journal of Robotics Research
Vol. 21, No. 10-11, October 2002, pp.903-915,
©2002 Sage Publications

Murata, Kurokawa, and Kokaji 1994; Chirikjian, Pamecha,
and Ebert-Uphoff 1996; Hosokawa et al. 1998; Yoshida et al.
1999a; Tomita et al. 1999; Walter, Welch, and Amato 2000;
Yoshida et al. 2000) and three dimensions (Murata et al. 1998;
Kotay et al. 1998; Kotay and Rus 1998; Hamlin and Sander-
son 1998; Yim, Duff, and Roufas 2000; Yoshida et al. 1999b;
Murata et al. 2000; Castano, Chokkalingam, and Will 2000).
Specifically, a self-reconfigurable robot can adapt itself to the
external environments. It can also repair itself by using spare
modules owing to the homogeneity of the module. In this pa-
per we focus on the reconfiguration planning for a new type of
homogeneous, self-reconfigurable modular robot that enables
movement in three dimensions by changing the configuration.
Its various potential applications include structures or robots
that operate in extreme environments inaccessible to humans,
for example, in space, deep sea, or nuclear plants.

The hardware of three-dimensional (3D) self-reconfigurable
modular robots is classified into two types: the lattice type
(Murata et al. 1998; Kotay et al. 1998; Ünsal, Kılıççöte,
and Khosla 2001; Rus and Vona 2001; Yim et al. 2001)
and the linear type (Yim, Duff, and Roufas 2000; Castano,
Chokkalingam, and Will 2000). The former corresponds to
a system where each module has several fixed connection
directions, and a group of them can construct various static
structures such as a jungle gym. However, it is difficult for
such a system to generate wave-like motions involving many
modules at the same time. In contrast, the latter (linear type)
has a shape that can generate various robotic motions such as
a snake or a caterpillar, but self-reconfiguration is difficult.

There have been a number of studies on the software
of lattice-type reconfigurable modular robots. Distributed
self-reconfiguration methods have also been developed for
two-dimensional (2D) and 3D homogeneous modular robots

1

Yoshida
テキストボックス
planning, hierarchical planner, experimental robotics

Yoshida
ノート注釈
Yoshida : MigrationConfirmed

Yoshida
ノート注釈
Yoshida : MigrationNone

2 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2002

(Yoshida et al. 1999a, 1999b; Tomita et al. 1999; Walter,
Welch, and Amato 2000; Yim et al. 2001). The first method
(Yoshida et al. 1999a) has already been implemented in a 2D
hardware system with more than ten modules to demonstrate
the self-assembly and self-repair capacity. The others have
been investigated in simulations to be implemented in hard-
ware in future developments. There are also other methods
based on centralized planning. Kotay and Rus (1998, 2000)
have developed robotic modules and described a global mo-
tion synthesis method for a class of module groups to move
in arbitrary directions. Ünsal, Kılıççöte, and Khosla (2001)
have reported on two-level motion planners for a bipartite
module composed of cubes and links, based on a heuristic
graph search among module configurations.

We have recently developed a new type of modular robotic
system that has both lattice-type and linear-type features (Mu-
rata et al. 2000). The module has a simple bipartite structure
in which each part rotates about an axis parallel to the oth-
ers by a servomotor and has three magnetic connecting faces.
This recent module can form various shapes, such as a legged
walking robot or a crawler-type robot (see Multimedia Exten-
sion 4 for an example of transformation between these loco-
motion modes). However, its reconfiguration planning is not
straightforward because of restricted degrees of freedom and
non-isotropic geometrical properties of mobility of a mod-
ule unlike lattice-type modules in previous research. When a
module moves from one position to another, a sequence of
necessary motions must be duly planned for each individual
local configuration. In addition, a vast search space must be
explored to examine the interchangeability between two arbi-
trary module configurations and to avoid collisions between
modules in 3D space. These properties of the module make
it difficult to identify generic laws of motion planning and to
apply our distributed methods directly.

Therefore, in this paper we concentrate on developing fea-
sible reconfiguration planning for locomotion of a particular
class of lattice-type module clusters by narrowing the mo-
tion search space as the first step to a more general planning
method. The module cluster to be investigated is a serial col-
lection of cube-like blocks, each of which is composed of four
modules. Using this locomotion mode, the self-reconfigurable
robot can surmount large obstacles and gaps that are difficult
for wheeled or legged mobile robots to handle, although it has
a disadvantage of low velocity. Another advantage over other
robot types is its versatility, which simplifies the structure
of the robot since various functions can be realized without
adding supplementary parts.

In this paper, we propose a two-layered planner that con-
sists of global and local planners to guide a class of mod-
ule clusters along a desired trajectory. The former part of the
planner provides the flow of the cluster, which corresponds
to a global movement that enables locomotion along the tra-
jectory. The latter generates local cooperative motions called
motion schemes based on a rule database. The rules take into

account the non-isotropic geometrical properties of module
mobility by associating an appropriate pre-planned motion
scheme with each different local configuration. This method
is classified as a centralized method.

After introducing the design and basic motion of the mod-
ule in Section 2, we provide detailed descriptions of the plan-
ning method in Sections 3–5. In Section 6, fundamental mod-
ule motions are experimentally confirmed using the prototype
modules. The feasibility of the motion plan is then verified
through a many-module experiment. Improvements required
for the hardware prototype and planning software are also
discussed.

2. Hardware Design and Basic Motions

2.1. Hardware Overview

The developed module consists of two semi-cylindrical parts
connected by a link part (Figure 1). Servomotors are embed-
ded in the link part so that each part can rotate by 180◦. The
semi-cylindrical parts of the module are labeled p1 and p2.
The rotational angles of these parts (θ1, θ2) are limited to either
0◦ or ±90◦ for simplicity. The unit length of the lattice grid is
defined as the length between the two rotational axes of the
module. A module therefore occupies two adjacent points in
the grid.

Figure 3(a) shows the hardware of the prototype module.
Each module has three surfaces to connect with other modules,
and the connecting mechanism is based on an “Internally-
Balanced Magnetic Unit” (Hirose et al. 1986). An active semi-
cylindrical part (p1), which can be connected to only passive
parts (p2) of other modules, has nonlinear springs and shape
memory alloy (SMA) springs whose compression force is
made slightly less than the magnetic force. By electrically
heating the SMA springs, the total force of springs becomes

servo 1

servo 2

θ 2

p1
p2

θ 1

magnetic connecting
 faces

Fig. 1. A robotic module (see also Extension 1).

Yoshida, Murata, Kamimura, Tomita, Kurokawa, and Kokaji / A Self-Reconfigurable Modular Robot 3

Strong rare
earth magnets

Non-linear
spring

Heating SMA Strong connection

Disconnection
with small force

Active part

Passive part

Fig. 2. Connection mechanism (see also Extension 1).

Active Passive

Magnets

Serial Comm. GND
12V

BasicStamp IIServomotors

Magnets

Nonliner
springs SMA

springs

(a) (b)
Fig. 3. Hardware module (see also Extension 1): (a) Hardware overview, and (b) Internal structure

larger than the magnetic force and the connection is released,
as shown in Figure 2 (Murata et al. 2000). Figure 3(b) shows
the internal structure of the module. The connecting surfaces
also have electrodes for power supply and serial communica-
tion. All the connected modules can be supplied power from
one module connected to the power source. This eliminates
the tether entanglement that becomes significant in 3D con-
figurations.

Each module is equipped with a PIC microprocessor Ba-
sicStamp II that drives servomotors and SMA actuators. In
the current development, all the modules are controlled from
a host PC that provides motion commands through serial com-
munication bus lines. One semi-cylindrical part is 6 cm cube,
and a module weighs approximately 400 g. The SMA actuator
is controlled by 200 Hz PWM with a 60% duty ratio, 12 V
voltage and 2 A average current.

2.2. Atomic Motion

Before introducing the reconfiguration planner, it is helpful
to explain the atomic motions that are the simplest module

motions of one or two modules. There are mainly three types
of atomic motion: pivot motion, forward-roll motion and mode
conversion.

Figures 4 and 5 show two different atomic motions on a
plane, forward-roll and pivot motions, where the orientations
of the rotational axes are different.

When a module makes a motion, one of the parts must be
attached to another module, or fixed part, to maintain connec-
tivity. This fixed part is called a base part. Atomic motions
are achieved by alternating the base part properly. Here, the
plane is also assumed to be filled by the connecting faces of the
module that performs appropriate connection and disconnec-
tion operations to realize these motions. The module is said
to be in pivot mode or forward-roll mode if it can perform one
of these motions. Mode conversion is a two-module motion
to convert from one mode to the other, where a helper module
is required as illustrated in Figure 6. Using modules in both
forward-roll mode and pivot mode makes possible a variety
of 3D structures. Reconfiguration is performed by a motion
sequence, which is a series of these basic module motions.

4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2002

Fig. 4. Forward-roll motion (see also Extension 1).

Fig. 5. Pivot motion.

3. Planner Architecture for Block-based
Locomotion

The goal of planning is to enable a class of a module cluster to
trace a given 3D trajectory in the lattice grid (Figure 7). The
trajectory corresponds to a path that the robot would traverse.
Reconfiguration planning enables the module cluster to move
in various environments as mentioned in Section 1. One of
the examples of its application is a rescue robot. If external
sensors are available, the robot can go into a narrow space,
move around, and search for survivors in rubble by adapting its
configuration to unstructured environments. Other examples
include a planetary exploration robot and a plant inspection
robot that are also required to go through environments with
many obstacles.

The planner must generate an appropriate motion sequence
so that the cluster motion can be guided along the desired
trajectory.

3.1. Locomotion by Block-based Cluster

The search space grows exponentially with the number of
modules and the motion sequence length1 when generating
an arbitrary motion for an arbitrary configuration. To develop

1. For N modules, 2N − 1 possibilities at maximum to determine which
module to move every time they make motions. For each case, each module
can take at most nine possible states for angles (θ1, θ2), even using discrete
angle 0◦ and ±90◦. The fixed part selection has also two possibilities. The
search space increases exponentially in the length of motion sequence as
well.

Yoshida, Murata, Kamimura, Tomita, Kurokawa, and Kokaji / A Self-Reconfigurable Modular Robot 5

Fig. 6. Mode conversion from pivot to forward-roll.

Given trajectory

Module cluster

Planned motion

Fig. 7. Planning of cluster motion.

a feasible motion generator, we consider a particular class of
module clusters (Figure 8) composed of four-module blocks
that resemble large cubes. All the rotation axes of the mod-
ules in a block are oriented in the same direction, while the
directions of the link part in different layers are orthogonally
placed.

We adopted this cube-like block from among several pos-
sibilities since it is the smallest block that has an isotropic
shape that can be connected at any of its faces. This isotropic
geometry enables us to easily configure various sizes of 3D
structures and to maintain the connectivity of all the modules
in a cluster composed of these blocks. This block also has the
advantage that it is simple to plan a global motion along a
3D trajectory. Similar approaches using “metamodules” have
also been reported to simplify planning of large-scale mod-
ular robots (Nguyen, Guibas, and Yim 2000; Kotay and Rus
2000).

A couple of modules that have different rotation axis direc-
tions, called converters, are attached to the top of the cluster.
The converter modules are used to change the direction of the
rotation axis of the modules in the chain cluster.

3.2. Planner Architecture

Given the block-based trajectory of locomotion as the input,
the motion of each module must be planned. However, the
module’s non-isotropic geometrical properties make it diffi-
cult to obtain the motion sequence in a straightforward man-
ner. Since a module has only two parallel rotation axes, its
3D motion usually requires a combined cooperative motion
sequence with other surrounding modules. The cooperative
motion sequence must be carefully chosen in each individual
local configuration to avoid collisions between modules or
loss of connectivity during the motion. Since generally appli-
cable laws have not been determined yet for planning these
motion sequences, an available database of rules is necessary.

In this paper we propose a two-layered motion planner
consisting of the global flow planner and the local motion
scheme selector. As shown in Figure 9, the global flow planner
searches possible module paths and motion orders to provide
the global cluster movement, called flow, according to the
desired trajectory. This is realized as the motion of a block
such that the tail block is transferred toward the given head-
ing direction. The local motion scheme selector verifies that
the paths generated by the global planner are valid for each
member module of the block according to the possible mo-
tion orders, by repeatedly applying rules from the database.
The rule includes a local reconfiguration motion sequence,
called a motion scheme, associated with an individual initial
local configuration. If the given paths are validly determined
for all the member modules in one of the motion orders, the
selector updates the reconfiguration plan by adding selected
motion schemes from the database. Otherwise, the selector
tries the other possibilities generated by the global planner
until a feasible plan is determined. The selector copes with
the non-isotropic properties of module mobility by associ-
ating the cooperative motion with the corresponding local

6 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2002

(a) (b)
Fig. 8. A cluster composed of two layers with two converter modules: (a) block of four modules, and (b) cluster of 14 modules
with two converters.

 Global planner Locomotion
trajectory

 Motion scheme selector

Target position of
 moving tail block

- motion order
 Candidate list

 Rule database

if local config
then motion scheme

For each motion order:

- Verifies feasibility of paths
based on rule database

 for each module

- paths for each
 member module

 Candidate list

Reconfiguration plan Add and update: New motion sequence

Input:

Output:
Planning result:

Fig. 9. Reconfiguration planner architecture.

configuration in the form of rules. Note that this is a central-
ized planning method, which assumes that all the information
about the modules in the cluster is available.

The method is scalable in the sense that the planning of
various lengths of cluster can be treated in the same frame-
work, although it applies only to these particular serial clusters
composed of four-module cubic blocks.

In the planning described below, we assume for simplicity
that only one motion scheme is allowed at a time and that
the flow direction does not self-intersect and runs straight
for at least two unit lengths during the cluster flow. We also
assume in the planning that one module can lift only one other
module, which comes from the limited torque capacity of the
hardware.

4. Cluster Flow and Global Planner

The input to the global planner is the desired trajectory of the
cluster. The cluster flow is defined as the trace of block motion,

where the tail block is transferred to the other end as the new
head, as shown in Figure 10. While there are several ways of
generating the cluster motion, we adopt a simple motion that
sends modules individually toward the head. More practically,
they move primarily by the forward-roll motion on the side
of the cluster (Figure 10).

The global flow planner outputs possible paths of each
member module in the tail block and its motion orders in
which the four member modules in a block move along the
corresponding path to realize the desired flow. A path denotes
the routing of a member module of a block. It is derived by
tracing lattice positions on the side of the cluster, starting
from the initial tail position, until the module reaches one of
the target positions next to the current head block. A module
may have multiple target positions and paths; their number
varies depending on the cluster configuration. In Figure 11
where module 1 is moving, there are two possible paths to
the two target positions. The tail block becomes a new head
block after it reaches the other end of the cluster. The next tail
is then sent to the head, and so forth.

Yoshida, Murata, Kamimura, Tomita, Kurokawa, and Kokaji / A Self-Reconfigurable Modular Robot 7

Tail

Flow direction

New head

<Initial state> <Final state>

<Transient state>

Head

Modules moving on the side of cluster

Block

Target
position

Fig. 10. Example of block motion.

The global planner also outputs the possible motion orders
of applying paths. These orders must be determined in such
a way that the connectivity of whole cluster is maintained.
For example, consecutive transportation of modules 1 and 2
in Figure 11 is not allowed because the connectivity of the
two lower modules is violated after the motion of the two
modules.

5. Motion Scheme Selector

After the global planner outputs the possible motion orders
and module paths, appropriate motion schemes must be se-
lected for the modules to achieve the paths to generate the
reconfiguration plan. The motion scheme selector plays this
role by using the database of rules for local cooperative
motion.

5.1. Selection Overview

The selector outputs a reconfiguration plan as a unified motion
sequence by collecting the motion schemes selected based on
the rule database, as described below. Each rule includes a
motion scheme associated with an initial configuration that is
described as a connectivity graph. Here, the block movement

is realized by the individual motion of each member module
in a valid order; one module continues to move until it reaches
a target position.

(1) Selecting the motion order. A motion order in which
all the member modules of the moving block have
valid paths is selected from among the possible motion
orders.

If a feasible order is found, the selector can successfully
output the reconfiguration plan.

(2) Verifying the valid paths. The possible paths for the
moving module are examined to determine if they are
sufficiently valid to have a unified motion sequence
that enables the module to reach the target position.
This verification is performed in increasing order of
the path’s traveling distance: the path with the shortest
length is tried first; the second shortest, next; and so on.

This verification terminates successfully if a valid path
is found for the moving module.

(3) Generating the unified motion scheme. The output uni-
fied motion sequence for the path is initialized as an
empty sequence. The following is repeated until the

8 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2002

Path 1

Path 2
goal points

p1 p2

path points
p1 p2

Possible paths
Possible target
positions

Flow direction

p1
p2

2

1 2
1

(Moving)

Fig. 11. Path of a module for block motion.

moving module reaches the target position along the
examined path, starting from the initial position.

(a) A list of all the rules that match the current local
configuration of the moving module is extracted
from the rule database (Section 5.2).

(b) The rules in the list are screened by verifying the
motion executability, taking into account connec-
tivity and collision avoidance (Section 5.3).

(c) A rule that gives the maximum forward movement
along the path is selected from among the listed
rules.

The motion scheme associated with the selected
rule is added to the unified motion sequence. The
position of the moving module is also updated
accordingly.

If no rules are found, the selection process con-
tinues by using a backtracking search.

If the module arrives at the target position, a unified
motion sequence is successfully generated for the path.

If the above verification is successful, the unified motion se-
quence is determined for the moving block and is added to
the total reconfiguration plan; otherwise the planning fails.
Sufficient rules must therefore be provided to appropriately
generate the reconfiguration plan.

Concerning the computational complexity, the most time-
consuming part is the backtracking search during generation
of the unified motion scheme. However, the search space can
be sufficiently narrowed based on careful rule definition and

the heuristics selecting the rules giving the maximum move-
ment along the path. In most cases, the planner can retrieve
one best-fitting rule at each position in the path. The compu-
tational time, therefore, becomes almost linear to the numbers
of modules and rules.

5.2. Rule Matching

A rule in the database is composed of an if-condition part
and a then-action part as shown in Figure 12. The former is
a connectivity graph that describes a local connection state to
be matched to the current local configuration of the moving
module. The latter corresponds to a motion scheme written in
the form of a motion sequence.

Figure 12 also graphically describes a local configuration.
A node is assigned to each module in the connectivity graph.
The node includes such data as the local identification of the
module, rotation angles and the states of the six connecting
faces. An arc in the connectivity graph denotes a connection
to other modules and specifies the relative direction of the
rotation axes and the link part.

In order to implement the motion scheme selector, we ex-
tracted several fundamental motion schemes as follows:

1. rolling on a side of the cluster (Figure 12);

2. carrying a module by making a right angle on a plane
(Figure 13);

3. converting the rotational axis of a module (Figure 14).

Figure 12 shows a rule corresponding to a simple motion
scheme of rolling on the side of the cluster. Figures 13 and 14

Yoshida, Murata, Kamimura, Tomita, Kurokawa, and Kokaji / A Self-Reconfigurable Modular Robot 9

1 2

3
4

 Initial config.

Graph of initial config
of connected modules

\

 Rule

if: then: Motion scheme

step 1: module 1 base p2
 rot (90, -90)

step 2: module 1 base p1
 rot (-90, 90)

p1 p2

1
2

3
4

step 1 step 2

motion sequence

 Motion scheme applied

Moving module: 1

Fig. 12. Example of a rule for a rolling motion scheme.

Moving

x y

Module path

 Flow direction

Helper module

Fig. 13. Direction change of cluster on a plane.

Moving

x y

Module path

 Flow direction

Converter
Module

Fig. 14. Direction change to vertical direction on a plane.

10 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2002

illustrate how the module configuration changes in the latter
two motion schemes. The converter modules are used when
the desired cluster flow requires change of the rotational axes
of the modules (Figure 14). The number of converter modules
can be augmented if necessary. Some 30 basic rules have been
extracted as basic motion schemes and are currently hand-
coded.

To find a motion scheme of the moving module for the path
and motion order, the selector searches for rules that match
the current local configuration of the module. The selector
then makes a list of all the matching rules that will be verified
by the motion executability test described below.

5.3. Motion Executability Test

The motion executability check is performed for each matched
rule from two aspects: collision avoidance and connectivity
of the total cluster. If the latter is not satisfied, the cluster
may be split into two or more smaller clusters, which may
cut off the communication and power supply. Applying the
motion scheme to the moving module enables a collision to
be detected by calculating the sweeping area of its motions.
Similarly, the connectivity during the motion is examined by
tracing the current connectivity graph from the moving mod-
ule down to connected modules.

When more than one rule is found to be valid, the rule
that gives the maximum forward movement along the path
is selected. This avoids infinite motion loops that make the
modules move back and forth in the same place.

5.4. Planning Results and Discussion

The reconfiguration planner can generate 3D paths for various
sizes of clusters. Figure 15 shows some snapshots taken from
the planned motion of a cluster of 22 modules starting from
a configuration on a plane. The cluster first changes its flow
direction in the horizontal plane, then moves in a vertical
direction. The cluster traveled by 16 unit lengths along the
flow trajectory, and the resulting motion sequence took 773
steps.

Although the currently developed method applies to a lim-
ited class, we believe that the basic framework of the two-
layered approach is generally effective for other classes. The
global planner depends largely on the application and should
be designed to narrow the search space according to the
task. In contrast, the motion scheme selector is less problem-
dependent owing to its locality. It is applicable to various
classes of module structures provided that basic rule sets,
which can cover sufficiently wide cases, are correctly ex-
tracted. We are thinking of extending the database using an
evolutionary method, and also of generating more complex
rules including rule hierarchy.

Simultaneous motion of several modules is another im-
portant issue for overcoming the low velocity of the cluster

motion. This improvement is being implemented to increase
the concurrency of motion by parallelizing several concurrent
motion sequences. Future work also includes trajectory plan-
ning and extension of the planning method for more compli-
cated paths, as well as theoretical investigation of complete-
ness and optimality.

6. Hardware Experiments

A hardware prototype of the robotic modules is currently un-
der development. After the basic atomic motions of modules
are verified, an example of the cluster motion of a block struc-
ture will be implemented to show the planned motion can be
achieved by hardware modules.

6.1. Atomic Motions

Figures 16–18 show the experiments of the forward-roll mo-
tion (Figure 4), pivot motion (Figure 5), and mode conversion
(Figure 6). In these experiments, the connecting mechanism
performed reliably; it is strong enough to hold the module
against gravity and detaches smoothly. It takes approximately
5 s for the connection to be completely released, mainly due
to the time required to heat the SMAs. We also verified from
Figure 18 that the module has sufficient torque to conduct
certain two-module motions.

6.2. Block Cluster Locomotion

The planned cluster motion experiment described in this paper
has been conducted using the hardware modules. The motion
is planned in the host PC and then converted into low-level
control commands of servomotors and SMA actuators by the
simulator software. These control commands are distributed
to the microprocessor of appropriate modules through a serial
bus line by way of electrodes on the connecting faces. The
commands are sent with module IDs so the indicated modules
can achieve the desired motion. Power is also supplied to
all the modules through inter-module connection from one
module connected to the power source.

In this experiment, eight-module cluster flow motion is
executed. Although the generated motion plan transfers the
modules individually on the side of the cluster, the plan was
modified so that some motions are carried out in parallel to re-
duce the execution time. There was a total of 23 motion steps.
As shown in Figure 19, cluster motion has been achieved,
demonstrating the validity of the planned motion.

These experiments have suggested several issues to be im-
proved in future hardware developments.

Redesigning electrodes. During the pivot motion (Figure 5),
there is sometimes an unnecessary contact between the
electrodes. The next prototype model will be improved
by allowing the electrodes to slide with the connecting
mechanism to prevent such unfavorable effects.

Yoshida, Murata, Kamimura, Tomita, Kurokawa, and Kokaji / A Self-Reconfigurable Modular Robot 11

x y

z

Desired flow
direction

Current direction

90 horizontal

90 vertical

Fig. 15. Simulated plan of motions in different flow directions from initial configuration on a plane (see also Extension 2).

Fig. 16. Experiment of forward-roll motion.

Fig. 17. Experiment of pivot motion.

12 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2002

Fig. 18. Experiment of mode conversion.

Flow direction

Target positions

Initial state Step 4 After step 8 Step 14

After step 17 After step 18 After step 21 Final state
Fig. 19. Experiment of cluster motion of block structure using eight modules (see also Extension 3).

Providing sensors for modules. By measuring the internal
state and detecting the external environment, the group
of modules will be able to adapt to various situations.
For this purpose, we intend to use inclinometers and
tactile sensors in the next prototype.

Planning for efficient motions. Plans that require more dis-
connection operations consume more time for motion,
even though the difference is not apparent in the current
simulator. This cost should be reflected in planning and
rule definition to generate more efficient motion by the
hardware module. Simultaneous module motion is an-
other issue to be addressed for efficient module motion
as previously mentioned.

7. Conclusions

In this paper we have discussed the reconfiguration planning
for locomotion of a self-reconfigurable modular robot and
conducted experiments of the planned locomotion. A mod-
ule was designed to generate 3D structures of both the lattice

and linear types. A two-layered planning method was pro-
posed for a class of 3D structures composed of multi-module
blocks. The global flow planner outputs possible paths and
motion orders to realize the block-based cluster flow. The lo-
cal motion scheme selector determines the motion of each
module according to the output from the global planner. The
non-isotropic geometric properties of module mobility were
properly reflected in the rules that associate appropriate pre-
planned motions with corresponding local configurations. Fu-
ture work concerning the reconfiguration planner includes in-
vestigation of more complete and compact rule sets applicable
to wider classes of configurations. Generating simultaneous
motion of many modules is also an important issue to be inves-
tigated to fully exploit the parallelism of the modular robot and
to improve the locomotion velocity. Theoretical completeness
and optimality of the method must also be addressed in future
work.

Several experiments have been performed to verify the fun-
damental atomic motions and to show the feasibility of the
generated plans using the prototype modules. From these ex-
periments, we could obtain feedback to the planner in order

Yoshida, Murata, Kamimura, Tomita, Kurokawa, and Kokaji / A Self-Reconfigurable Modular Robot 13

to improve the efficiency of the motion by the hardware mod-
ule. The basic module functions have now been confirmed.
In the next development stage, we will seek to improve some
mechanisms for motion reliability and to provide sensors for
modules. This will allow the module cluster to move around
in unknown environments with bumps or walls, adapting its
shape to the outside world.

Multimedia Index Table

The multimedia extension page is found at http://www.
ijrr.org.

Extension #1 (Video) MTRAN mechanism and its
basic motions

Extension #2 (Video) Simulation of block cluster
motion by 22 modules

Extension #3 (Video) Experiment of cluster motion
by eight hardware modules

Extension #4 (Video) Another example: reconfiguration
from a crawler to four-legged walking
robot

References

Castano, A., Chokkalingam, R., and Will, P. 2000. Au-
tonomous and Self-Sufficient CONRO Modules for Re-
configurable Robots. In Distributed Autonomous Robotics
4, Springer, Berlin, pp. 155–164.

Chirikjian, G., Pamecha, A., and Ebert-Uphoff, I. 1996. Eval-
uating Efficiency of Self-Reconfiguration in a Class of
Modular Robots. J. Robotic Systems 12(5):317–338.

Fukuda, T., and Nakagawa, S. 1988. Approach to the Dynami-
cally Reconfigurable Robotic System. J. Intell. Robot Syst.
1:55–72.

Hamlin, G. and Sanderson, A. 1998. A Modular Approach
to Reconfigurable Parallel Robotics, Kluwer Academic,
Boston.

Hirose, S., Imazato, M., Kudo, Y., and Umetani, Y. 1986.
Internally-balanced Magnetic Unit. Advanced Robotics,
3(4):225–242.

Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama,
H., Kuroda,Y., and Endo, I. 1998. Self-organizing Collec-
tive Robots with Morphogenesis in a Vertical Plane. In
Proc. 1998 IEEE Int. Conf. on Robotics and Automation,
pp. 2858–2863.

Kotay, K., and Rus, D. 1998. Motion Synthesis for the Self-
Reconfigurable Molecule. In Proc. 1998 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pp. 843–851.

Kotay, K., and Rus, D. 2000. Scalable parallel algorithm
for configuration planning for self-reconfiguring robots.
In Proc. SPIE, Sensor Fusion and Decentralized Control
in Robotic Systems III.

Kotay, K., Rus, D., Vona, M., and McGray, C. 1998. The Self-
Reconfiguring Robotic Molecule. In Proc. 1998 IEEE Int.
Conf. on Robotics and Automation, pp. 424–431.

Murata, S., Kurokawa, H., and Kokaji, S. 1994. Self-
Assembling Machine. In Proc. 1994 IEEE Int. Conf. on
Robotics and Automation, pp. 441–448.

Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., and
Kokaji, S. 1998. A 3-D Self-Reconfigurable Structure. In
Proc. 1998 IEEE Int. Conf. on Robotics and Automation,
pp. 432–439.

Murata, S., Yoshida, E., Tomita, K., Kurokawa, H.,
Kamimura, A., and Kokaji, S. 2000. Hardware Design
of Modular Robotic System. In Proc. 2000 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, F-AIII-3-5.

Nguyen, A., Guibas, L., and Yim, M. 2000. Controlled Mod-
ule Density Helps Reconfiguration Planning. In Workshop
on Algorithmic Foundations of Robotics (WAFR), pp. 23–
35.

Rus, D., and Vona, M. 2001. Crystalline Robots: Self-
reconfiguration with Compressible Unit Modules. Au-
tonomous Robots 10(1):107–124.

Tomita, K., Murata, S., Yoshida, E., Kurokawa, H., and
Kokaji, S. 1999. Self-assembly and Self-Repair Method
for Distributed Mechanical System. IEEE Trans. Robotics
Automation 15(6):1035–1045.

Ünsal, C., Kılıççöte, H., and Khosla, P. 2001. A modular self-
reconfigurable bipartite robotic system: Implementation
and motion planning. Autonomous Robots 10(1):23–40.

Walter, J., Welch, J., and Amato, N. 2000. Distributed Re-
configuration of Hexagonal Metamorphic Robots in Two
Dimensions. In Proc. SPIE, Sensor Fusion and Decentral-
ized Control in Robotic Systems III, pp. 441–453.

Yim, M., Duff, D., and Roufas, K. 2000. PolyBot: a Modular
Reconfigurable Robot. In Proc. 2000 IEEE Int. Conf. on
Robotics and Automation, pp. 514–520.

Yim, M., Zhang, Y., Lamping, J., and Mao, E. 2001. Dis-
tributed Control for 3D Metamorphosis. Autonomous
Robots 10(1):41–56.

Yoshida, E., Murata, S., Tomita, K., Kurokawa, H., and
Kokaji, S. 1999a. An Experimental Study on a Self-
repairing Modular Machine. Robotics and Autonomous
Systems 29:79–89.

Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., and
Kokaji, S. 1999b. A Distributed Method for Reconfigu-
ration of 3-D homogeneous structure. Advanced Robotics
13(4):363–380.

Yoshida, E., Kokaji, S., Murata, S., Tomita, K., and Kurokawa,
H. 2000. Miniaturization of Self-Reconfigurable Robotic
System using Shape Memory Alloy. J. Robotics Mecha-
tronics 12(2):1579–1585.

