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Time Parameterization of Humanoid Robot Paths
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Jean-Paul Laumond,Fellow Member, IEEE, and André Monin

Abstract—This paper proposes a unified optimization frame-
work to solve the time parameterization problem of humanoid
robot paths. Even though the time parameterization problemis
well known in robotics, the application to humanoid robots has
not been addressed. This is because of the complexity of the
kinematical structure as well as the dynamical motion equation.
The main contribution in this paper is to show that the time pa-
rameterization of a statically stablepath to be transformed into a
dynamical stable trajectory within the humanoid robot capacities
can be expressed as an optimization problem. Furthermore we
propose an efficient method to solve the obtained optimization
problem. The proposed method has been successfully validated on
the humanoid robot HRP-2 by conducting several experiments.
These results have revealed the effectiveness and the robustness
of the proposed method.

Index Terms—Timing; Robot dynamics; Stability criteria;
Optimization methods; Humanoid Robot.

I. I NTRODUCTION

The automatic generation of motions for robots which are
collision-free motions and at the same time inside the robots
capacities is one of the most challenging problems. Many
researchers have separated this problem into several smaller
subproblems. For instance, collision-free path planning,time
parameterization of a specified path, feedback control along a
specified path using vision path planning, etc. In this paper,
the problem of finding a time parameterization of a given path
for a humanoid robot is investigated.

The time parameterization problem is an old problem in
robotic research [1]. In order to better understand the objective
of time parameterization of a path, let us start by defining a
path and a trajectory.

A path denotes the locus of points in the joint space, or in
the operational space, the robot has to follow in the execution
of the desired motion, and atrajectory is a path on which a
time law is specified [2].

Generally speaking, the time parameterization of a path is
the problem of transforming this path into a trajectory which
respects the physical limits of the robot, e.g. velocity limits,
acceleration limits, torque limits, etc.

In the research works on manipulators, the time parameter-
ization problem has the objective of reducing the execution
time of the tasks, thereby increasing the productivity. Most of
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Fig. 1. Dynamically stable motion

these approaches are based on time-optimal control theory [3],
[4], [5], [6], [7].

In the framework of mobile robots, the time parameteriza-
tion problem arises also to transform a feasible path into a
feasible trajectory [8], [9]. The main objective, in this case, is
to reach the goal position as fast as possible.

Even though the conventional methods which are based on
the optimal-control theory have been successfully appliedin
practice on manipulators and mobile robots, the application of
time optimal control theory in the case of humanoid robot is
however a difficult task. This is because not only the dynamic
equation of the humanoid robot motion is very complex,
but also applying time optimal control theory requires the
calculation of the derivative of the configuration space vector
of humanoid robot with respect to the parameterized path.
Although such calculation can be evaluated from differential
geometry, it is a very difficult task in the case of systems with
large number of degree of freedoms and branched kinematic
chains, which is the case of humanoid robot. For that, we pro-
pose to solve the time parameterization problem numerically
using a finite difference approach.

The remainder of this paper is organized as follows. Section
II gives an overview of the dynamic stability notion and the
mathematical formulation of Zero Moment Point (ZMP). The
time parameterization problem is formulated as an optimiza-
tion problem under constraints and an efficient method to solve
it is explained in Section III. Cases studies and experimental
results using the humanoid robot platform HRP-2 are given in
Section IV.

II. DYNAMIC STABILITY AND ZMP: AN OVERVIEW

Let us start by introducing some definitions:
Definition 1: Statically stable trajectory is a trajectory for

which the trajectory of the projection of the Center of Mass
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(CoM) of the humanoid robot on the horizontal plane is always
inside of the polygon of support (i.e. the convex hull of all
points of contact between the support foot (feet) and the
ground).

Definition 2: Dynamically stable trajectory is a trajectory
for which the trajectory of Zero Moment Point (ZMP) [10] is
always inside of the polygon of support.

The generation of a statically stable path deals only with the
kinematic constraints of the humanoid robot. It can be obtained
by constraining the projection of the Center of Mass (CoM)
on the horizontal plane to be always inside of the polygon of
support [11], [12], [13], [14].

Theoretically, any statically stable trajectory can be trans-
formed into a dynamically stable one by slowing down the
humanoid robot’s motion.

Let the ZMP on the horizontal ground be given by the
following vector

p =
[
px py

]T (1)

To computep, one can use the following formula

p = N
n× τ o

(fo|n)
(2)

where the operator× and (.|.) refer to the cross and scalar
products respectively, and

• N is a constant matrix

N =

[
1 0 0
0 1 0

]

(3)

.
• the vectorn is the normal vector on the horizontal ground(

n =
[
0 0 1

]T
)

.
• The vectorfo is the result of the gravity and inertia forces

fo =Mg −

n∑

i=0

mi Ẍ
ci (4)

where g denotes the acceleration of the gravity (g =
−gn), andM is the total mass of the humanoid robot.
The quantitiesmi, Ẍci are the mass of theith link
and the acceleration of its center of massci respectively.
Note thatm0, Ẍc0 are, respectively, the mass and the
acceleration of the free-flyer joint (pelvis joint) of the
humanoid robot.

• τ o denotes the moment of the forcefo about the origin
of the fixed world frame. The expression ofτ o is the
following

τ o =

n∑

i=0

(

mi X
ci ×

(

g − Ẍci
)

− L̇
ci
)

(5)

whereLci is the angular momentum at the pointci

L̇
ci
= Ri

(
Iciω̇

i −
(
Iciω

i
)
× ωi

)
(6)

Ri and Ici are the rotation matrix associated to the
ith link and its inertia matrix respectively.ωi is the
angular velocity of theith link can be obtained using
the following formula

[
ωi

]∧
=
dRi

dt
RiT (7)

where[.]∧ designs the skew operator defined as follows

[.]∧ : ω ∈ R
3 → so(3)

[ω]∧ =





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0




(8)

whereso(3) denotes the Lie algebra ofSO(3) which is
the group of rotation matrices in the Euclidean space.
The inverse operator of skew operator can be defined as
follows

[.]∨ : Ω ∈ so(3) → R
3

[Ω]∨ ,





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0





∨

=





ωx
ωy
ωz





(9)

and the angular velocity can be calculated using the
inverse operator as follows

ωi =

[
dRi

dt
RiT

]∨

(10)

Note that the skew operator and its inverse are linear
operators.
Finally, ω̇i denotes the angular acceleration of theith

link.
Note thatR0 and Ic0 are the rotation matrix associated
to the free-flyer joint (pelvis joint) and its inertia matrix
respectively.ω0 andω̇0 are the angular velocity and the
angular acceleration of the free-flyer joint respectively.

III. T IME PARAMETERIZATION PROBLEM FORMULATION

Generally speaking, the time parameterization problem of
a functionf (xt), wheret denotes time, consists in finding a
real functionSt in such a wayf (xSt) verifies some temporal
constraints.

Mathematically that means

h(St) ≤ f (xSt) ≤ l(St) (11)

In order to obtain a causal and feasible motion, the function
St should be a strictly increasing function, that meansdSt

dt
> 0.

Therefore we will expressSt as the integral of a strictly
positive functionsh > 0, as follows

St =

∫ t

h=0

sh dh (12)

Our objective is to transform the statically stable path into
a dynamically stable trajectory by minimizing a specified
criterion. We will be interested in minimizing cost function
of the form

J (St) = Stf +

∫ tf

h=0

L (qsh , q̇sh , q̈sh , τsh , sh) dh

=

∫ tf

h=0

sh dh

︸ ︷︷ ︸

T1

+

∫ tf

h=0

L (qsh , q̇sh , q̈sh , τsh , sh) dh

︸ ︷︷ ︸

T2

(13)
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whereqsh , q̇sh , q̈sh andτsh design the configuration vector,
the joint velocity, the joint acceleration and the exerted torque
vector respectively. The first term of the cost functionT1 has
the purpose of minimizing the final timetf , the second term
T2 captures the desire to minimize an energy related function
such as the exerted joint torques or the jerk function of some
specific joints of the humanoid robot.

In order to obtain a motion within the humanoid robot
capacities, we will consider two cases:

1) The physical limits which are taken into account are the
joint velocity and acceleration limits of the humanoid
robot. In this case, the functionL in Eq. (13) is de-
fined independently of the exerted torques on humanoid
robot’s joints.

2) The physical limits which are taken into account are the
joint velocity and torques limits of the humanoid robot,
and there is no constraint on the functionL.

Even though the first case is included in the second one, we
will propose an adequate and optimized method to solve each
case.

A. Case 1: joint velocity and acceleration limits

Let us suppose that we have a path which consists of
K points. At first, we transform this path into a trajectory
by considering a uniform time distribution function. In other
words, we suppose thatst = 1 : ∀t in Eq. (12). Let the
sampling period of the desired trajectory be∆t, we denote
the time horizonT = K∆t.

In this case, the time parameterization problem of transform-
ing the initial path into a dynamically stable trajectory within
the joint velocity and acceleration limits of the humanoid robot
can be expressed as an optimization problem as follow

min
st

J(st) = min
st

{
∫ T

t=0

stdt+

∫ T

t=0

L (qst , q̇st , q̈st , st) dt

}

(14)

subject to

st > 0 (15)

p−

st
≤ pst ≤ p+

st
(16)

(
fost |n

)
< 0 (17)

µ
(
fost |n

)
<

(
τ ost |n

)
< −µ

(
fost |n

)
(18)

q̇− ≤ q̇st ≤ q̇+ (19)

q̈− ≤ q̈st ≤ q̈+ (20)

where pst is the ZMP vector,p−
st

and p+
st

design the
polygon of support for the humanoid robot.fost andτ ost denote
the applied force on the foot (feet) and the moment of this
force about the origin of the fixed world frame respectively.
µ is the coefficient of the static friction. The vectorq̇st

and
q̈st

denote the joint velocity and acceleration of the humanoid
robot respectively.q̈+ and q̇+ design the upper limits of
acceleration and velocity respectively.q̈− and q̇− design the
lower limits of acceleration and velocity respectively.

The constraints of the optimization problem (14) can be
analyzed as follows

• Constraint (16) guarantees that the ZMP is inside of the
polygon of support.

• Constraint (17) ensures that the foot is in contact with
the ground (the humanoid robot will not jump).

• Constraint (18) prevents the foot from sliding around the
Z-axis.

• Constraint (19) guarantees that the obtained trajectory
respects the joint velocity limits of the humanoid robot.

• Constraint (20) guarantees that the obtained trajectory
respects the joint acceleration limits of the humanoid
robot.

Let us writepst , f
o
st

andτ ostas functions ofst

pst = N
n× τ ost(
fost |n

) (21)

where

τ ost =

n∑

i=0

(

mi X
ci
t ×

(

g − Ẍci
t

)

− L̇
ci

t

)

fost =Mg −

n∑

i=0

mi Ẍ
ci
t

(22)

in which

Ẍci
t =

∆X
ci
t

∆t st−1 −
∆X

ci
t−1

∆t st

st2st−1∆t

L̇
ci

t = Ri
t

(
Iciω̇

i
t −

(
Iciω

i
t

)
× ωit

)

(23)

The angular velocityωit can be obtained as follows

ωit =

[
∆Ri

t

st∆t
Ri
t

T
]∨

=
1

st

[(
Ri
t −Ri

t−1

∆t

)

Ri
t

T
]∨

=
1

st

[

I3 −Ri
t−1R

i
t

T

∆t

]∨

(24)

whereI3 ∈ R
3×3 is the identity matrix.

The angular acceleratioṅωit can be calculated as follows

ω̇it =
ωit − ωit−1

st∆t

=

st−1

[
I3−Ri

t−1
Ri
t

T

∆t

]∨

− st

[
I3−Ri

t−2
Ri
t−1

T

∆t

]∨

st2st−1∆t

(25)

In similar way, we obtain

q̇st =
∆qt

st∆t

q̈st =
∆qt
∆t st−1 −

∆qt−1

∆t st

st2st−1∆t

(26)
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1) Reformulation of the inequality constraints: It is clear
that the constraints (16∼ 20) are rational functions in the
time parameterization function(st). In order to accelerate the
convergence rate of the optimization problem and the accuracy
of the obtained solution, one might think of transforming the
inequality constraints from rational functions to polynomial
functions.

In order to reformulate the inequality constraints, let us start
by the constraint of ZMP (16):

p−

st
≤ pst ≤ p+

st
⇔

[
pst
−pst

]

≤

[
p+
st

−p−
st

]

⇔

[
−N

(
n× τ ost

)
+
(
fost |n

)
p+
st

N
(
n× τ ost

)
−
(
fost |n

)
p−
st

]

≤ 0

(27)
As D(st) = st

2st−1∆t > 0 : ∀st, we multiply the two
sides of inequality (27) byD(st) and obtain

p−

st
≤ pst ≤ p+

st
⇔




−N

(
n× τ̃ ost

)
+
(

f̃ost |n
)

p+
st

N
(
n× τ̃ ost

)
−
(

f̃ost |n
)

p−
st



 ≤ 0

(28)
where

τ̃ ost =
n∑

i=0

(

mi X
ci
t ×

(

g̃ − ˜̈
Xci
t

)

− ˜̇
L
ci
t

)

f̃ost =M g̃ −

n∑

i=0

mi
˜̈
Xci
t

(29)

in which

g̃ = g st
2st−1∆t

˜̈
Xci
t =

∆Xci
t

∆t
st−1 −

∆Xci
t−1

∆t
st

˜̇
L
ci
t = Ri

t

(

Ici
˜̇ω
i

t −
st−1

∆t

(
Iciω̃

i
t

)
× ω̃it

)

ω̃it =

[

I3 −Ri
t−1R

i
t

T

∆t

]∨

˜̇ωit = st−1

[

I3 −Ri
t−1R

i
t

T

∆t

]∨

− st

[

I3 −Ri
t−2R

i
t−1

T

∆t

]∨

(30)
It is clear thatτ̃ ost and f̃ost are polynomial function with

respect tost. As a result, the inequality constraint of ZMP
trajectory becomes polynomial function with respect tost.

In similar way the constraints (17 - 18) can be transformed
into the following equivalent ones

(

f̃ost |n
)

< 0 (31)

µ
(

f̃ost |n
)

<
(
τ̃ ost |n

)
< −µ

(

f̃ost |n
)

(32)

The velocity and acceleration limits can be reformulated as
follows

st q̇
− ≤

∆qt

∆t
≤ st q̇

+ (33)

st
2st−1 q̈− ≤

∆qt

(∆t)2
st−1 −

∆qt−1

(∆t)2
st ≤ st

2st−1 q̈+ (34)

As a result, all constraints of the optimization problem
are transformed into polynomial functions with respect tost.
Recall that the original constraints of the optimization problem
before the reformulation are rational function with respect to
st. By using this reformulation the convergence rate of the
optimization problem has been considerably improved.

2) Discretization of The Solution Space: As it is well
known, the space of the admissible solutions of the minimiza-
tion problem (14) is in fact very large. In order to transform
this space to a smaller dimensional space, we can use a basis
of shape functions (e.g. cubic B-spline functions).

Let us consider a basis of shape functionsBt that is defined
as follows

Bt =
[
B1
t B2

t · · · Blt
]T (35)

whereBit denotes the value of shape function numberi at
the instantt. The dimension ofBt is l which defines the
dimension of the basis of shape functions.

The projection ofst into the basis of shape functionsBt
can be given by the following formula

st =
l∑

i=1

siB Bit = sTB Bt (36)

Thus, the optimization problem (14) can be rewritten as
follows

min
sB

{
l∑

k=1

skB

∫ T

t=0

Bkt dt+

∫ T

t=0

L (qsB , q̇sB , q̈sB ) dt

}

subject to

sTB Bt > 0

N
(
n× τ̃ osB

)
+
(

f̃osB |n
)

p+
sB

≤ 0

N
(
n× τ̃ osB

)
−
(

f̃osB |n
)

p−

sB
≤ 0

(

f̃osB |n
)

< 0

µ
(

f̃osB |n
)

<
(
τ̃ osB |n

)
< −µ

(

f̃osB |n
)

q̇− sTB Bt ≤
∆qt

∆t
≤ q̇+ sTB Bt

q̈−

sB
≤

∆qt

(∆t)
2 s

T
B Bt−1 −

∆qt−1

(∆t)
2 sTB Bt ≤ q̈+

sB

(37)
in which

q̈+
sB

= BT
t sBs

T
BBts

T
BBt−1 q̈+

q̈−

sB
= BT

t sBs
T
BBts

T
BBt−1 q̈−

(38)

Thus, the optimization problem has been transformed into
finding the vectorsB ∈ R

l.
In order to transform this optimization problem into a

classical optimization problem, let us introduce a constant
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ǫ ∈ R : 0 < ǫ≪ 1 and the following definitions

J (sB) =

{
l∑

k=1

skB

∫ T

t=0

Bkt dt+

∫ T

t=0

L (qsB , q̇sB , q̈sB ) dt

}

G(sB) =

































−sTB Bt + ǫ

N
(
n× τ̃ osB

)
+
(

f̃osB |n
)

p+
sB

N
(
n× τ̃ osB

)
−
(

f̃osB |n
)

p−
sB

(

f̃osB |n
)

+ ǫ

−
(
τ̃ osB |n

)
+ µ

(

f̃osB |n
)

+ ǫ
(
τ̃ osB |n

)
+ µ

(

f̃osB |n
)

+ ǫ

∆qt
∆t − q̇+ sTB Bt

−∆qt
∆t + q̇− sTB Bt

∆qt
(∆t)2

sTB Bt−1 −
∆qt−1

(∆t)2
sTB Bt − q̈+

sB

− ∆qt
(∆t)2

sTB Bt−1 +
∆qt−1

(∆t)2
sTB Bt + q̈−

sB

































(39)
Thus the optimization problem (37) can be transformed to the
following classical form

min
sB

J(sB)

subject to

G(sB) ≤ 0

(40)

The above optimization problem has been extremely studied in
the literature of optimization theory. To solve this optimization
problem, one can use the augmented Lagrange multiplier
method, which is a very efficient and reliable method [15],
[16]. Based on the augmented Lagrange multiplier method,
the optimization problem (40) is transformed into the mini-
mization of the following function

min
sB ,λψ

J̃(sB, λψ) = J(sB) + λTψψ +
1

2
σψTψ (41)

whereψ = max
{
G(sB),

−1
σ
λψ

}
, and σ > 0. Then there

exist λ∗ψ such thats∗B is an unconstrained local minimum of
J̃(sB , λ

∗

ψ) for all σ smaller than some finitēσ.
To solve the unconstrained optimization problem ofJ̃(sB, λψ)
with respect tosB , one can use Gauss-Newton method.

Note that the functioñJ(sB , λψ) is differentiable insB if
and only if J(sB) andG(sB) are differentiable insB.

As we have proveG(sB) is polynomial with respect tosB
and its derivative can be calculated easily. The cost function
J(sB) is defined by the user and it is supposed to be derivable
with respect tosB and its derivative is continuous.

So in this case we can write

∂J̃(sB, λψ)

∂sB
=
∂J(sB)

∂sB
+max {0, λψ + σG(sB)}

T ∂G(sB)

∂sB
(42)

As λ∗ is unknown, an update rule is used

λk+1
ψ = λkψ + σψ(skB) (43)

whereskB is the unconstrained minimum of̃J(sB, λkψ). Such
updating rule will generate a sequenceλkψ converges toλ∗ψ
[17]. In practice, a good schedule is to choose a moderateσ0,
and increase it as follows

σk+1 = ασk (44)

whereα is between 5 and 10. A thresholdσmax is chosen
and the update rule ofσ stops whenσk becomes higher than
σmax.

For more details on the algorithm of augmented Lagrange
multiplier method see [18], [15], [17].

3) Implementation Algorithm: The algorithm of the imple-
mentation can be summarized as follows

1) Given a path which is supposed to be statically stable.
2) Split the path into various time segments depending

on the place and shape of support polygon during the
motion. The support polygon for each time segment is
fixed.

3) Choose∆t, this value is usually determined by the
sampling period of the humanoid robot’s control loop.
For instance, for the humanoid robot HRP-2∆t =
5.0× 10−3sec.

4) Transform each time segment of the initial path into
a trajectory by considering a uniform time distribution
function (st = 1, ∀t).

5) Calculate∆qt, X
ci
t , ∆Xci

t and Ri
t (i = 0, 1, · · · , n),

for each time segment of the path. Recall that the path
is defined by the parameters

{
qt, X

c0
t , R

0
t

}
, whereqt

designs the configuration vector of the humanoid robot
joints,Xc0

t andR0
t denote the position and the rotation

matrix in the Euclidean space of the free-flyer joint
(pelvis joint).

6) Calculate the cubic B-spline functions.
7) Solve the optimization problem (37) for each time

segment with the initial solution obtained by applying
the above steps.

B. Case 2: joint velocity and torque limits

In this case, we suppose that we have a path which consists
of K points. Similarly to the precedent case, we transform
this path into a trajectory by considering a uniform time
distribution function. We denote the time horizonT = K∆t,
where∆t is the sampling time.

In this case, the time parameterization problem of transform-
ing the initial path to a dynamically stable trajectory within
the joint velocity and torque limits of the humanoid robot can
be expressed by the following optimization problem

min
st

J(st) = min
st

{
∫ T

t=0

stdt+

∫ T

t=0

L (qst , q̇st , τst , st) dt

}
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subject to

st > 0

p−

st
≤pst ≤ p+

st
(
fost |n

)
< 0

µ
(
fost |n

)
<
(
τ ost |n

)
< −µ

(
fost |n

)

q̇− ≤q̇st ≤ q̇+

τ− ≤τ st ≤ τ+

(45)

whereτst designs the vector of exerted torques on the hu-
manoid robot’s joints.τ− andτ+ denote the lower and upper
limits of the torque vector.

By including the torque limits into the time parameterization
problem, the obtained motion will not damage the motors
located in the articulated joints, and the robot will not stop
because of high exerted torques.

However, solving the time parameterization problem, in this
case, becomes more difficult. This is because the equation of
motion of the humanoid robot should be taken into account,
this equation is a complicate and high nonlinear equation.

The motion equation has the following form

M (qt) q̈t +C (qt, q̇t) = τt (46)

whereM (qt) is the mass matrix,C (qt, q̇t) is the Coriolis
matrix, and includes gravity and other forces . At a glance, Eq.
(46) might appear to be simple; nevertheless the analytical
expressions for a simple six-axis industrial robotic arm are
extremely complex.

In order to solve the optimization problem (45), the deriva-
tive of τst with respect tost should be calculated. This
derivative can be calculated as follows

dτst
dst

=
∂τst
∂qst

dqst
dst

+
∂τst
∂q̇st

dq̇st
dst

+
∂τst
∂q̈st

dq̈st
dst

(47)

Because of the path of the vectorqst is expressed as discreet
points in the configuration space, and the time parameteriza-
tion algorithm will not change the positions of these points
in the configuration space, thereforedqst

dst
≈ 0. The quantities

dq̇st
dst

and dq̈st
dst

can be calculated easily by using the finite
difference approximation of Eq. (26).

The main difficulty is the calculation of the quantities
∂τst
∂q̇st

and ∂τst
∂q̈st

. Although, in principle, these quantities can
be numerically approximated analogously by using the finite
difference, we have observed that this approximation leads
to illconditioning, and poor convergence behavior. This is
because of the high non-linearity of the motion equation (46).

To overcome this problem, an analytical formulation can be
derived of the quantities∂τst

∂q̇st
and ∂τst

∂q̈st
by using the recursive

dynamic algorithm proposed in [19], [20], which is based on
Lie groups and algebras. (for more details see [19], [20], [21],
[22]).

Note that the quantities∂τst
∂q̇st

and ∂τst
∂q̈st

are calculated only
one time and then they are used as constants in the time pa-
rameterization algorithm. Therefore the torque limit constraint
can be reformulated as polynomial function with respect tost
analogously to the previous case.

Thus, the time parameterization problem can be transformed
into the classical optimization problem

min
st

J(st)

subject to

G(st) ≤ 0

(48)

Similarly to the previous case, the above problem can
be solved using the discretization of solution space and the
augmented Lagrange multiplier method.

C. Discussion

In this section, we discuss how to split the initial path into
time segments according to the support polygon and the global
optimal solution of the optimization problem.

• The support polygon is a function ofsB, and it depends
on the horizontal position of CoM. However, as the given
path is a statically stable one, it can be split into various
sections. Each section is a statically stable path which has
a fixed support polygon that is independent ofsB. Note
that the polygon of support can be determined according
to the position of feet and by verifying if the feet are
in contact with the ground. This determination can be
done independently fromsB, this is because the position
vector of the jointsXt is an invariant quantity in the time
parameterization algorithm.

• The optimal solution obtained by solving the optimization
problem of time parameterization is a local optimum.
However, if we prove that the optimization problem is
convex, then the obtained solution is the global optimum.
To this end, we should prove that the functioñJ of Eq.
(41) is a convex function. The functionsJ andψ of Eq.
(41) are convex, because the first one is defined by the
user and it is supposed to be convex and the second
one is convex on account of the convexity ofG(sB).
Consequently, the functioñJ is convex and the obtained
local optimum solution is theglobal optimum.

IV. CASE STUDIES AND EXPERIMENTAL RESULTS

The considered example is a collision-free reaching motion
in a cluttered environment. Fig. 2 shows snapshots of the
simulated motion. In the initial configuration, the robot is
standing on its right foot and surrounded by a torus, a cylinder
and a box. In this example, the task for the humanoid robot is
to move its left hand to a specified position, and at same time
to keep the projection of its CoM inside of the support polygon
(statically stable motion). Producing such kind of motion is
a very challenging task. This is because the environment is
very cluttered, and the support polygon is small (standing on
the right foot). During the motion the humanoid robot should
avoid the collision between its left leg and an obstacle which
consists of a cylinder and a box, at the same time the left hand
should avoid the collision with the torus to reach the desired
position. This collision-free path is created using an efficient
method proposed by Kanehiroet al [14].

Once the collision-free path is available, this path is con-
verted to a trajectory using a uniform time distribution func-
tion.
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x

y

Fig. 2. Snapshots of the simulated whole body reaching with collision avoidance

The sampling time∆t has been chosen to be equal to
5.0 × 10−3sec. The duration of the initial trajectory is equal
to 77sec.

In this section,we will consider three scenarios:

A. First Scenario:

The time parameterization problem has the form of Eq. (37),
in whichL (qsB , q̇sB , q̈sB ) = 0. In this scenario, the objective
of time parameterization is to transform the initial path into a
minimum time and dynamically stable trajectory.

The effect of the number of B-spline functions on the
duration of the obtained trajectory and the required numberof
iterations to reach the optimal solution is reported in Table I.

TABLE I
DURATION OF OBTAINED TRAJECTORIES AND NUMBER OF ITERATIONS

Number of B-spline Duration of Number of
obtained trajectory (sec) iterations

10 18.35 4
20 14.81 9
40 12.68 19
120 8.92 27

We have chosen to report the number of iteration instead
of the computational time. This is because we are using

MATALB language to solve the optimization problems. How-
ever, the number of iterations of the augmented Lagrange
multiplier method gives a good idea of the computational time
[23], [24], [17]. In fact, the augmented Lagrange multiplier
method is a fast and reliable method because it does not require
the inversion of matrices which have, in our case, very huge
dimensions.

From Table I, it is clear that the duration of the obtained
trajectory decrease by increasing the number of B-spline
functions. However, the number of iterations to reach the
optimal solution increases while increasing the number of B-
spline functions.

The trajectories of ZMP (Px andPy) corresponding to basis
of B-spline functions of 20 and 120 functions are given in
Fig. 3. The directionsx and y for the humanoid robot are
drawn in Fig. 2.

From Fig. 3, we observe that the trajectories of ZMP are
always maintained inside of the polygon of support. However
the fluctuations of ZMP occur more frequently when a basis
of 120 Bsplines is used, this is because the motion is faster
than the motion obtained by using a basis of 40 Bsplines.

In Fig. 4, the initial, the reference and the executed tra-
jectories of the roll axis of right shoulder joint are given.
The initial trajectory is directly obtained from the statically
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Fig. 3. First scenario: ZMP trajectories, and the safety zones for dynamical stability which are designed by the red lines. The time scale of the two figures
is not the same because the time parameterization functionsare different
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Fig. 4. First scenario (minimum time trajectory): The initial trajectory of the
roll axis of right shoulder joint which is obtained directlyfrom the statically
stable path (figure above). The reference and the executed trajectories of the
real experiment on the humanoid robot HRP-2 (figure below). The time scale
after time parameterization (figure below) is much smaller than that of the
initial trajectory (figure above)

stable path by considering a uniform distribution of the time
parameterization function(st). The reference trajectory is the
the minimum time trajectory obtained by using a basis of120
B-spline functions. We can observe that the executed trajectory
of the real experiment on the humanoid robot HRP-2 is exactly
following the reference trajectory. The humanoid robot HRP-
2 is a position controlled robot, that means the trajectories of
the humanoid robot’s joints are tracked using a high-gain PID
controller.

The time parameterization functionsst which correspond
to basis of B-spline functions of 20, 40 and 120 functions are
given in Fig. 5.

Snapshots of the conducted motion applied to the humanoid

!

!"!#
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! $! %! &! '! #! (! )!

120 Bsplines

20 Bsplines

40 Bsplines

Time (s)

s
t

Fig. 5. First scenario (minimum time trajectory): Time parameterization
function (st)

robot HRP2 are given in Fig. 9.

B. Second Scenario:

In this scenario, the time parameterization problem has
also the form of Eq. (37), in whichL (qsB , q̇sB , q̈sB ) =

β
...
X
left hand

t . The functionL captures the jerk function of
the left hand joint, this joint plays the role of end-effector in
the computation of the initial path. The jerk function can be
approximated as follows

...
Xt =

Ẍt − Ẍt−1

st∆t
(49)

whereẌt is expressed as a function ofst as in Eq. (23). The
duration of the obtained trajectories and the required number
of iteration to reach the optimal solution is reported in Table II.
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TABLE II
DURATION OF OBTAINED TRAJECTORIES AND NUMBER OF ITERATIONS

β Duration of Number of
obtained trajectory (sec) iterations

10
−5 10.73 16

10
−4 14.13 31

10
−3 23.18 39

The time parameterization functionsst which correspond
to β = 10−4 and10−3 and the two configurations which are
related to high variation in the jerk function are given in Fig. 6.

The high variation of the jerk function in the first config-
uration occurs because the left hand stops near the torus in
order to avoid the collision, in the second configuration the
left hand is inside the torus and it changes the direction of its
motion to avoid collision and at the same time to reach the
desired position.

!

!"#

$

$"#

%

! $! %! &! '! #! (! )!

s
t

Time (s)

β = 10
−4

β = 10
−3

Fig. 6. Second scenario: time parameterization function (st) and the two
configurations (front and side views) which are related to high variation in
the jerk function

C. Third Scenario:

In this scenario, the time parameterization problem has
the form of Eq. (45), in whichL (qsB , q̇sB , q̈sB ) = 0. The
objective is also to find the minimum time trajectory and
dynamically stable. The difference between this scenario and
the first one is that the torque limits of the humanoid robot
are taken into account in this scenario.

A comparison between the time parameterization function
st which is obtained in this scenario and that one of the first
scenario is presented in Fig. 7.
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!"'#

! $! %! &! '! #! (! )!

s
t

Time (s)

without torque limits

with torque limits

Fig. 7. Third scenario: time parameterization function (st)

In order to obtain a safe motion which is not near the
physical limits of the humanoid robot, we used a safety margin
of 20 percent of the humanoid robot’s torque limits.

A comparison between the applied torque on the yaw axis
of the hip joint with and without the consideration of torque
limits is given in Fig. 8. This figure shows that the constraints
on the torque limits have been successfully respected, on the
other hand the duration of the obtained trajectory is more than
that one of the first scenario. This is in order to respect the
torque limits.

V. CONCLUSION

In this paper, we proposed a numerical method to solve the
time parameterization problem of humanoid robot paths. The
main contribution of this method is transforming a statically
stable path into a minimum time and dynamically stable
trajectory which respects the physical limits of the humanoid
robot’s joints. We have shown that not only minimizing the
trajectory time but also some energy criteria such as the jerk
function can be considered.

The initial statically stable path can be calculated using
inverse kinematic methods or the motion planning methods.
This path, by definition, is a pure geometric description of the
motion.

The effectiveness of the proposed method has been validated
using the humanoid robot HRP-2.
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Fig. 9. Snapshots of the real experiment using the humanoid robot HRP-2
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Fig. 8. Third scenario: applied torque on the yaw axis of the hip joint.
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